
6-10 September 2005, Valencia, Spain.

Proceedings

Edited by:

Concepción Maroto

Rubén Ruiz

Javier Alcaraz

Eva Vallada

Fortunato Crespo

ORP3 2005
Operational Research Peripatetic Post-Graduate Programme
A EURO conference for young OR researchers and practitioners
6-10 September 2005, Valencia, Spain.

I.S.B.N: 84-689-3077-6
D.L.: V-3130-2005

Address of the Editors: Departamento de Estadística e Investigación Operativa
Aplicadas y Calidad

Universidad Politécnica de Valencia
Camino de Vera s/n
46021 Valencia, Spain
tel: +34 96 387 74 90, fax: +34 96 387 74 99
email: cmaroto@eio.upv.es

Published by: ESMAP, S.L.

Cover drawing: Carmen Lloret
email: clloret@dib.upv.es

Scientific Committee

David Alcaide López de Pablo
Universidad de La Laguna

Spain

Javier Alcaraz Soria
Universidad Politécnica de Valencia

Spain

Ramón Álvarez Valdés Olaguíbel
Universitat de València

Spain

Denis Bouyssou
CNRS - LAMSADE. Université

Paris-Dauphine
France

Fortunato Crespo Abril
Universidad Politécnica de Valencia

Spain

Laureano Escudero Bueno
Universidad Miguel Hernández. Centro de

Investigación Operativa
Spain

Horst W. Hamacher
Universität Kaiserslautern

Germany

Concepción Maroto Álvarez (Chair)
Universidad Politécnica de Valencia

Spain

Ethel Mokotoff Miguel
Universidad de Alcalá

Spain

Luis Paquete
Technische Universität Darmstadt

Germany

Jesús Pastor Ciurana
Universidad Miguel Hernández. Centro de

Investigación Operativa
Spain

Marie Claude Portmann
École des Mines de Nancy (INPL)

France

Joaquín Sicilia Rodríguez
Universidad de La Laguna

Spain

Thomas Stützle
Technische Universität Darmstadt

Germany

Rubén Ruiz García
Universidad Politécnica de Valencia

Spain

Enriqueta Vercher González
Universitat de València

Spain

i

Organization Committee

Andrés Carrión García

Fortunato Crespo Abril

José Miguel Carot Sierra

Gerardo Minella

Juan Carlos García Díaz

José Jabaloyes Vivas

Rubén Ruiz García (Chair)

Eva Vallada Regalado

Elena Vázquez Barrachina

ii

Referees

The editors and scientific committee would like to thank the following refererees:

Carlos Andrés Romano
Valerie Belton

José D. Bermúdez Edo
Andrés Carrión García
Emilio Carrizosa Priego

Marco Chiarandini
Marcos Colebrook Santamaría

Erik Demeulemeester
Javier Faulín Fajardo

Juan Carlos García Díaz
José Pedro García Sabater

José Miguel Gutiérrez Expósito
Martine Labbé

María Teresa León Mendoza
Fermín Fco. Mallor Giménez

Alfredo Marín Pérez

Nieves Martínez Alzamora
Pedro Mateo Collazos

Manel Mateu Doll
Ana Meca Martínez

Stefan Nickel
José Parreño Fernández
Rafael Pastor Moreno
Joaquín Pérez Navarro

Marco Pranzo
Justo Puerto Albandoz
Andrés Ramos Galán

Cesar Rego
Susana San Matías Izquierdo

Pedro Sánchez Martín
Baldomero Segura García del Río

Elena Vázquez Barrachina

iii

Contents

Preface . ix
1 Heuristic procedures for generating stable project baseline schedules

Stijn Van de Vonder, Erik Demeulemeester and Willy Herroelen 11
2 Exact Solution Procedures for the Balanced Unidirectional Cyclic Layout

Problem
Temel Öncan and İ.Kuban Altınel . 21

3 Multiobjective service restoration in electric distribution networks using a
local search based heuristic
Vinícius Jacques Garcia and Paulo Morelato França 35

4 The Traveling Salesman Problem with Time-Dependent Costs: an exact ap-
proach
José Albiach, José María Sanchis and David Soler 45

5 Dimensioning and designing shifts in a call center
Cyril Canon, Jean-Charles Billaut and Jean-Louis Bouquard 55

6 A new concept of approximate efficiency in multiobjective mathematical pro-
gramming
César Gutiérrez, Bienvenido Jiménez and Vicente Novo 65

7 An Efficient Approach for Solving the Production/Ordering Planning Prob-
lem with Time-varying Storage Capacities
José Miguel Gutiérrez, Antonio Sedeño-Noda, Marcos Colebrook and Joaquín Si-
cilia . 75

8 Optimizing the service capacity by using a speed up simulation
Isolina Alberto, Fermin Mallor and Pedro M. Mateo 85

9 Exact Algorithms for Procurement Problems under a Total Quantity Discount
Structure
D.R. Goossens, A.J.T. Maas, F.C.R. Spieksma and J.J. van de Klundert . . 93

10 Designing Reliable Systems with SREMS++
Angel Juan, Javier Faulín, Vicente Bargueño and Anita Goyal 115

11 Nonconvex optimization using an adapted linesearch
Alberto Olivares, Javier M. Moguerza and Francisco J. Prieto 127

12 A multi-criteria and fuzzy logic based approach for the relative assessment of
the fire hazards of chemical substances and installations
Apostolos N. Paralikas and Argyrios I. Lygeros 141

v

13 Supply Chain Games
Federico Perea . 153

14 Hybrid Supply Chain Modelling - Combining LP-Models and Discrete-Event
Simulation
Margaretha Preusser, Christian Almeder, Richard F. Hartl, and Markus Klug 163

15 Tolerance-based Branch and Bound Algorithms
Marcel Turkensteen, Diptesh Ghosh, Boris Goldengorin and Gerard Sierksma 171

16 Decision support system for Attention Deficit Hyperactivity Disorder diag-
nostics
Iryna Yevseyeva, Kaisa Miettinen and Pekka Räsänen 183

17 Optimality conditions in preference-based spanning tree problems
Miguel Ángel Domínguez-Ríos, Sergio Alonso, Marcos Colebrook and Antonio
Sedeño-Noda . 195

18 Robust 1-median location problem on a tree
Rim KALAÏ, Mohamed Ali ALOULOU, Philippe VALLIN and Daniel VAN-
DERPOOTEN . 201

19 Models and Software for Improving the Profitability of Pharmaceutical Re-
search
Jiun-Yu Yu and John Gittins . 213

20 Application of U-Lines principles to the Assembly Line Worker Assignment
and Balancing Problem (UALWABP). A model and a solving procedure
Cristóbal Miralles, José Pedro García and Carlos Andrés 227

21 Modelling and Forecasting Spanish Mortality
Ana Debón Aucejo and Francisco Puig Blanco 235

22 Planning holidays and working time under annualised hours
Amaia Lusa, Albert Corominas and Rafael Pastor 243

23 Soft computing-based aggregation methods for human resource management
Lourdes Canós and Vicente Liern . 251

24 Cutting Plane and Column Generation for the Capacitated Arc Routing Prob-
lem
David Gómez-Cabrero, José Manuel Belenguer and Enrique Benavent 259

25 GRASP and Path Relinking for Project Scheduling under Partially Renewable
Resources
Fulgencia Villa, Ramón Alvarez-Valdes, E. Crespo and J. Manuel Tamarit . 267

26 Evaluation of a hierarchical production planning and scheduling model for a
tile company under different coordination mechanisms
María del Mar Alemany, Eduardo Vicens, Carlos Andrés and Andrés Boza . 283

27 A Restricted Median Location Model for Stop Location Design in Public
Transportation Networks
Dwi Retnani Poetranto . 297

28 A Column Generation Approach to the Capacitated Vehicle Routing Problem
with Stochastic Demands
Christian H. Christiansen and Jens Lysgaard 311

29 Integrating nurse and surgery scheduling
Jeroen Beliën and Erik Demeulemeester . 319

30 A bi-objective coordination setup problem in a two-stage production system
Michele Ciavotta, Paolo Detti, Carlo Meloni and Marco Pranzo 335

vi

31 Two unifying frameworks in voting theory
Estefanía García, José Luis Jimeno and Joaquín Pérez 345

32 Real time management of a metro rail terminus
Marta Flamini and Dario Pacciarelli . 357

33 Optimization models for the delay management problem in public transporta-
tion
Géraldine Heilporn, Luigi De Giovanni and Martine Labbé 367

34 A Metaheuristic Approach for the Vertex Coloring Problem
Enrico Malaguti, Michele Monaci and Paolo Toth 377

35 Investigating inventory control tactics in two node capacitated supply chains
Georgia Skintzi, Gregory Prastacos and George Ioannou 387

36 Ejection Chain Algorithms for the Traveling Salesman Problem
D. Gamboa, C. Osterman, C. Rego and F. Glover 403

37 Parallel machine scheduling with resource dependent processing times
Raúl Cortés, Jose Pedro García, Rafael Pastor and Carlos Andrés 413

38 A Tabu Search algorithm for two-dimensional non-guillotine cutting problems
Francisco Parreño, Ramón Alvarez-Valdes and J. Manuel Tamarit 417

39 Problem of time-consistency in model of Kyoto Protocol realization
Maria Dementieva, Pekka Neittaanmäki and Victor Zakharov 429

vii

Preface

Every Operations Research Congress is important, whether national, international, general
or specific. Sharing knowledge, ideas and experiences with close and distant peers is an
inseparable aspect from our work as operation researchers dedicated to finding solutions to
decision-making problems that currently challenge enterprises and organisations around the
world. ORP3 is also an important and very special congress. It is important because it
is born under the auspices of the European society EURO which ensures scientific rigor in
both paper selection and the level of participants, since they are not only required to present
their own scientific work, but must also discuss the work of a colleague. And it is special
because it seriously raises the subject of the introduction of future OR scientists to the
transfer of knowledge and to the notion of respect towards the work of fellow researchers. It
is therefore an important and special congress because of its contribution to the training of
future OR researchers who, in the next decades, could and should in turn contribute to the
improvement of our society by increasing the competitiveness of enterprises, public services
and organisations while keeping the professional ethics that characterises experts in the field.

This third edition of the ORP3 also includes the lessons of two well known senior researchers
from our field through tutorials aimed to help young researchers understand operations re-
search classic and recent techniques. We would like to thank Denis Bouyssou and Thomas
Stützle for their valuable contribution to the congress.

The Scientific Committee, together with a large number of assisting referees, have revised
each of the numerous papers presented twice. The 40 young researchers whose papers have
been selected are from 14 different countries and offer an accurate representation of op-
erations research techniques. Therefore, this volume compiles various contributions, from
new solutions to classic problems such as the travelling salesman problem, to the newest
applications of game theory to the Kyoto protocol. More specifically, this volume includes
papers dealing with optimization problems, scheduling problems, manufacturing systems,
vehicle routing, manpower planning, multicriteria decision making, set covering and inven-
tory. Furthermore, several different techniques have been used, and among them: integer
programming, dynamic programming, Branch & Bound methods, simulation, multiobjective
algorithms, cooperative games and metaheuristics.

As usual in ORP3 congresses, the organization has been left to a group of young OR re-

ix

searchers. The particular characteristics of ORP3 turned the organization of the congress
into a real challenge, since accommodation and full board were included for all participants
in the 200 Euro registration fee. In order to comply with this requirement and to pro-
vide accommodation minutes away from where the congress will be held, the residence hall
Galileo Galilei at the Universidad Politécnica of Valencia main campus site has been cho-
sen. The Committee has organized two interesting and hopefully fun visits within the social
programme for the congress: A guided tour around historical Valencia and its landmarks
and a guided visit to the natural park “Albufera”, an ecologically valuable site and the most
important wetland in the Valencian Community. Participants will be able to enjoy a tipi-
cally Valencian dinner in a “Barraca” (traditional small farmhouse), encouraging a friendly
atmosphere among peers.

And last, on behalf of the Scientific Committee and the Organization Committee, we would
like to thank EURO for placing their trust in the Operations Research Group and in the
Universidad Politécnica of Valencia for the organization of the third ORP3 congress. Like-
wise, we would like to thank all the referees for their effort in revising the papers of their
particular fields of expertise. We hope that between all of us, young and senior researchers,
we will be able to offer a small contribution to the development of Operations Research and
to its impact on the development of society within the next decades.

Valencia, June 24th, 2005,

Concepción Maroto
Chair of the Scientific Committee

Rubén Ruiz
Chair of the Organization Committee

x

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 11

Heuristic procedures for generating stable project
baseline schedules

Stijn Van de Vonder, Erik Demeulemeester and Willy Herroelen
Center for Operations Management, K.U.Leuven

Naamsestraat 69, B-3000 Leuven (Belgium)
Email: Stijn.VandeVonder@econ.kuleuven.ac.be@econ.kuleuven.be

Abstract— Solution robust project scheduling is a grow-
ing research field aiming at constructing proactive sched-
ules to cope with multiple disruptions during project
execution. When stochastic activity durations are consid-
ered, including time buffers between activities is a proven
method to improve the stability of a baseline schedule.

This paper introduces multiple algorithms to include
time buffers in a given schedule while a predefined project
due date remains respected. Multiple efficient heuristic and
meta-heuristic procedures are proposed to allocate buffers
throughout the schedule. An extensive simulation-based
analysis of the performance of all algorithms is given. The
impact of the activity duration variance structure on the
performance is discussed in detail.

Keywords— Project scheduling, uncertainty, stability,
buffers

I. I NTRODUCTION

T HE vast majority of the research efforts in project
scheduling over the past several years have concen-

trated on the development of exact and heuristic proce-
dures for the generation of a workablebaseline schedule
(pre-scheduleor predictive schedule) assuming complete
information and a static and deterministic environment.
During execution, however, a project may be subject to
considerable uncertainty, which may lead to numerous
schedule disruptions. Activities can take shorter or longer
than primarily expected, resource requirements or avail-
ability may vary, new activities might have to be inserted,
etc..

Recent research [12] has demonstrated that when
projects have to be executed in the face of uncertainty,
proactive-reactive project scheduling procedures are ca-
pable of combining schedule stability and makespan per-
formance and the use of an objective function aiming at
schedule stability pays off. The objective of this paper is
to develop and validate a number of heuristic procedures
for generating stable project baseline schedules.

The problem used as our vehicle of analysis can be
described as follows. A project networkG = (N, A) is

represented in activity-on-the-node representation with
dummy start and end nodes. All non-dummy project ac-
tivities have stochastic activity durationsdj , are subject
to finish start zero-lag precedence constraints and require
an integer per period amountrjk of one or more renew-
able resource typesk (k = 1, 2, ...K) during execution.
All resources have a fixed per period availabilityak. Ev-
ery non-dummy activityj has a weightwj that denotes
the marginal cost of deviating the realized starting time
of activity j during execution from its predicted activity
start time in the baseline schedule. The weight of the
dummy end activitywn denotes the cost of delaying
the project completion beyond a predefined deterministic
project due dateδn. The objective is to build a stable
precedence and resource feasible baseline schedule by
minimizing the stability cost functionΣwj(E|sj − sj |),
defined as the weighted sum of the expected absolute
deviations between the predicted starting timessj of
the activities in the baseline and their realized starting
timessj during actual schedule execution. Following the
classification scheme of Herroelen et al. [7] this problem
can be classified asm, 1|cpm,dj , δn|Σwj(E|sj − sj |).
The first field (m, 1) refers to the use of an arbitrary
number of renewable resource types. The second field
specifies finish-start precedence relations (cpm), stochas-
tic activity durations (dj) for which the distribution
function is assumed known or can be estimated, and
a deterministic project due date (δn). The last field
specifies the non-stability function to be minimized. The
scheduling problem for stability has been shown to be
ordinary NP-hard [10].

Both simple heuristics and meta-heuristics will be
presented in this paper, the objective of which is to gener-
ate stable baseline schedules with acceptable makespan
performance. The remainder of the paper is organized
as follows. Section II introduces the different heuristic
procedures. The set-up of the computational experiment
is described in Section III. Section IV presents the
computational results, while a last section is devoted to
overall conclusions.

12 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

1

2

3

4

5

6

11 time

1

2

3

4

5

6

11 time13

Include

Time

Buffers

(a) (b)

n n

Fig. 1. Inserting time buffers in a baseline schedule

II. A LGORITHMS

The heuristic algorithms described in this section
all consider a deterministic project due dateδn and
start from an initial unbuffered schedule in which time
buffers are inserted in order to protect against anticipated
disruptions. In this section several algorithms for buffer
allocations are introduced. Every feasible solution for
the deterministic resource-constrained project scheduling
problem (RCPSP) using mean activity durations (prob-
lem m, 1|cpm|Cmax [7]) can serve as initial unbuffered
schedule. The impact of the scheduling procedure used
to construct this unbuffered schedule lies outside the
scope of this paper. All buffer allocation procedures
will be illustrated on a minimum makespan schedule
constructed by applying the branch-and-bound algorithm
of Demeulemeester & Herroelen [2], [3] for solving
the deterministic RCPSP. We setδn = ⌊1.3 × Cmax⌋.
A recent study [12] investigated the impact of several
project due date settings on stability and makespan
and a project due date of⌊1.3 × Cmax⌋ was found to
be adequate for most project schedules. The included
time buffers are idle periods (gaps) in the schedule
between the planned starting time of an activity and
the latest planned finish time of its predecessors. The
buffers should act as cushions to prevent propagation of
a disruption throughout the schedule.

Figure 1 illustrates the insertion of time buffers in
a baseline schedule. Figure 1(a) shows a minimum
makespan schedule. Figure 1(b) shows the buffered
schedule with time buffers inserted in front of activities
3, 4 and 5.

Two factors are taken into consideration in determin-
ing the size of the buffer in front of an activityi. First,
the variability of all the activities that precede activityi
in the schedule (measured by the standard deviation of
their duration) is taken into account, because it affects
the probability that activityi can start at its scheduled
starting time. Second, the weight of activityi, and both
the weights of its predecessors and successors contain

relevant information, because they reflect how costly it
is to disrupt the starting time of activityi in relation to
its predecessors and successors in the schedule.

The resource flow dependent float factor(RFDFF)
heuristic, proposed in [12], is used as our evaluation
benchmark. This heuristic relies completely on the activ-
ity weights but does not exploit the available information
offered by the activity duration distributions in mak-
ing its buffering decisions. The operating principles of
RFDFF will be recapitulated in Section II.A. Thevirtual
activity duration extension(VADE) heuristic presented
in Section II.B, relies on the standard deviation of the
duration of an activity in order to compute a modified
duration to be used in constructing the baseline schedule.
The starting time criticality (STC) heuristic (described
in Section II.C) tries to combine information on activity
weights and activity duration variances. Section II.D
introduces an improvement phase that can be added to
each of the just mentioned heuristics to enhance their
performance. Section II.E describes a tabu search meta-
heuristic that searches for the best buffer insertion for a
given schedule by exploring the neighborhood solutions.

A. RFDFF

The suboptimal resource flow dependent float factor
(RFDFF) heuristic that has been developed by Van
de Vonder et al. [12] as an extension to theadapted
float factor (ADFF) heuristic proposed in [9] and [13],
will serve as our benchmark. RFDFF starts from an
unbuffered schedule (in this paper this is the minimum
duration schedule obtained by the branch-and-bound
procedure of Demeulemeester & Herroelen [2], [3]) and
modifies it by adding safety buffers in front of activities.
The hope is that the time buffers serve as a cushion to
prohibit the propagation of the disruptions through the
schedule.

The starting time of activityj in the RFDFF schedule
is calculated assj(S) := sj(B&B) + αj(float[j]),
wheresj(B&B) denotes the starting time of activityj

Stijn Van de Vonder et al. 13

in the minimum duration baseline schedule andαj de-
notes theactivity dependent float factor. The total float,
float[j], is the difference between the latest allowable
starting time of activityj given the project due date
(i.e. its starting time in the right-justified version of the
minimum duration schedule) and its scheduled starting
time in the minimum duration schedule.

To calculate the float factorsαj , we first need to
define a resource flow networkG′ = (N, R) [1] on the
minimum duration schedule. The resource flow network
is a network with the same set of nodes (N) as the
original project networkG = (N, A), but with arcs
connecting two nodes if there is a resource flow between
the corresponding activities. It thus identifies how each
single item of a resource is passed on between the
activities in the schedule. A schedule may allow for
different ways of allocating the resources so that the
same schedule may be represented by different resource
flow networks. We use the single pass algorithm of
Artigues & Roubellat [1] to select a feasible resource
flow network.

The float factorsαj are now calculated asαj =
βj/(βj + λj), where βj is the sum of the weight of
activity j and the weights of all its transitive predecessors
in bothG andG′, while λj is the sum of the weights of
all transitive successors of activityj in both networks.
The weights of activities that start at time 0 are not
included in these summations because it is assumed that
these activities can always start at their planned start
time and thus do not need any buffering to cope with
possible disruptions of their predecessors. The RFDFF
heuristic consequently inserts longer time buffers in front
of activities that would incur a high cost if started earlier
or later than originally planned and resource constraints
will always remain satisfied in the resulting schedule.

B. VADE

Thevirtual activity duration extension(VADE) heuris-
tic starts from a completely different point of view. The
standard deviationsσj of the activity durations, assumed
known, are used to iteratively compute virtual duration
extensions for the non-dummy activities. These virtual
activity durations are used to update the activity start
times and, by doing so, insert time gaps in the baseline
schedule. The updated activity starting times are then
used to generate the buffered baseline schedule using
the original expected activity durations.

The iterative procedure works as follows:
For j = 1, 2, ..., n − 1 do d∗j = E(dj) andvj = 1;
Computesj , j = 1, 2, ..., n;
While sn ≤ δn do

Find j∗ :
v∗

j

σj∗
= minj

{

vj

σj

}

(tie-break:max swi =
∑

i=succ(j) wi);
v∗j = v∗j + 1;
d∗j = d∗j + 1;
Computesn;

Generate the buffered baseline schedule.
Initially each non-dummy activity durationd∗j , j =

1, 2, ..., n − 1 is set equal to its expected valueE(dj)
and all vj = 1. The initial activity start timessj ,
j = 1, 2, ..., n, are computed by creating an early start
schedule for the resource flow network using the activity
durations d∗j . As long as the project duration stays
within the due date, the activity start times are iteratively
updated as follows. Determine the activityj∗ for which
v∗

j

σj∗
= minj

{

vj

σj

}

. Ties are broken by selecting the
activity for which the sum of the weights of all its non-
dummy successors is the smallest. Setv∗j = v∗j + 1
andd∗j = d∗j + 1. If necessary, update the schedule and
reiterate.

C. STC

The starting time criticality heuristics exploit infor-
mation about both the weights of the activities and the
variance structure of the activity durations. The basic
idea is to start from an unbuffered initial schedule and
iteratively create intermediate schedules by adding a one-
unit time buffer in front of that activity that needs it the
most in the current intermediate schedule, until adding
more safety would no longer improve stability. We thus
need a measure to quantify for each activity how critical
its current starting time is in the current intermediate
baseline schedule.

The starting time criticality of an activityj is defined
as stc(j) = P (s(j) > s(j)) × wj = γj × wj , whereγj

denotes the probability that activityj cannot be started
at its scheduled starting time.

The iterative procedure runs as follows. At each itera-
tion step (see pseudocode below) the buffer sizes of the
current intermediate schedule are updated. The activities
are listed in decreasing order of thestc(j). The list is
scanned and the size of the buffer to be placed in front of
the currently selected activity from the list is augmented
by one time period and the starting times of the direct
and transitive successors of the activity are updated.
If this new schedule has a feasible project completion
(sn < δn) and results in a lower estimated stability cost
(
∑

j∈N stc(j)), the schedule serves as the input schedule
for the next iteration step. If not, the next activity in the
list is considered. Whenever we reach an activityj for
which stc(j) = 0 (all activities j with sj = 0 are by
definition in this case) and no feasible improvement is

14 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

found, a local optimum is obtained and the procedure
terminates.

Iteration step

Calculate allstc[i]
Sort activities by decreasingstc[i]
While no improvement found do

take next activityj from list
if stc[j]=0 : procedure terminates
else add buffer in front ofj

update schedule
if improvement & feasible do

store schedule
goto next iteration step

else
remove buffer in front ofj
restore schedule

The iteration step of the STC heuristic

Regrettably, the probabilitiesγj are not easy to com-
pute. We definek(i, j) as the event that predecessor
i disturbs the planned starting time of activityj. The
probability that this event occurs can be expressed
as P (k(i, j)) = P (si + di + LPL(i, j) > sj) in
which LPL(i, j) is the sum of the durationsdh of
all activities h on the longest path between activityi
and activity j in original network G or the resource
flow network G′. γj can then be calculated asγj =
P (

⋃

(i,j)∈T (A∪R) k(i, j)), with T (A ∪ R) being defined
as the set of all direct and transitive1 predecessors of
j in the original network and the resource flow net-
work. STC makes two assumptions in approximating
γi: (a) predecessori of activity j starts at its originally
planned starting time when calculatingk(i, j) and (b)
only one activity at a time disturbs the starting time
of activity j. Assumption (b) means that we estimate
P (

⋃

(i,j)∈T (A∪R) k(i, j)) by
∑

(i,j)∈T (A∪R) P (k(i, j)),
i.e. we assume thatP (k(i1, j) ∩ k(i2, j)) = 0 for each
(i1, j), (i2, j) ∈ T (A ∪ R). Assumption (a) boils down
to settingsi = si. Combining both assumptions yields
γ′

j =
∑

(i,j)∈T (A∪R) P (di > sj − si − LPL(i, j)) such
thatstc(j) = γ′

j ×wj . Becausesi, sj andLPL(i, j) and
the distribution ofdi are all known, we can now easily
calculate all values ofγ′

j andstc(j) for every activityj.

D. Improvement heuristic

The improvement heuristic starts from an initial so-
lution. This can be the initial unbuffered schedule or a
schedule found by any of the heuristics discussed above.

1TG = (N, TA) represents the transitive closure ofG = (N, A)
with edge(i, j) ∈ TA if there is a directed path fromi to j in A

The activities are entered in a list in decreasing order of
their starting time in the input schedule. The activities
are considered in the order dictated by the list. For the
currently selected activity from the list, it is determined
how many periods the activity can be moved backward
and forward in time without affecting the starting time
of any other activity in the schedule. From all discrete
time instants in this displacement interval, the instant
that yields the lowest stability cost during simulation, is
chosen as the new starting time of the current activity
in the updated schedule. With this updated schedule, we
proceed to the next activity in the list. If the next activity
in the list is the dummy start activity, we restart the list.
If the list is scanned entirely without any improvement,
a local optimum has been found and the procedure
terminates.

Basically the algorithm is a combination of steepest
and fastest descent. For an activity selected from the
list, we examine all possible starting times and select the
best one (steepest descent). However, we do not examine
the entire range of starting times ofall the activities
and select the best, but instead we already update the
schedule if a better solution is found for the current
activity before proceeding to the next activity in the list.
This fastest descent part of the algorithm is included to
speed up computations.

E. Tabu search

Descent approaches may terminate at a local optimum
after some iterations when no further improvement can
be found in the direct neighborhood of the current
solution. Glover [5], [6] developed the principle of tabu
search algorithms, which allow to select the mildest
ascent solution to continue the search whenever no
improvement can be found. A tabu list keeps track of
recent solutions that will be forbidden moves in order to
avoid cycling.

The tabu search procedure departs from the STC-
schedule described in Section II.C. At each iteration step,
the neighborhood of the current solution contains at most
2×(n−2) solutions. For each non-dummy activity of the
project, we have two possible neighborhood solutions.
One is obtained by increasing the buffer in front of the
activity in the schedule by one time period, if possible
(plus-move). The other is obtained by decreasing the
buffer size of this activity by one unit, if possible (minus-
move). The buffers in front of all other activities are left
unchanged. Two tabu lists are kept, both of lengthn/3.
The first list stores all recent plus-moves, while the sec-
ond one stores all recent minus-moves. Before allowing
a new plus-move, we have to check whether this activity

Stijn Van de Vonder et al. 15

is not in the second list. If a buffer size decrease (minus-
move) delivers the best solution in the neighborhood, the
first tabu list has to be checked. By doing so, we avoid
cycling, but we do allow an activity to be consecutively
selected more than once if the considered moves have
the same direction. The aspiration criterion defines that
a move that would yield a new best solution will be
accepted even if it would normally be prohibited by the
tabu list. Because the tabu search described here only
adds or subtracts one unit of time buffer at a time, large
shifts of the starting time of an activity compared to its
initial starting time will only occur if all intermediate
positions yield acceptable solutions. This might obstruct
the procedure to move an activity into its actual best
positioning for all other activity starting times considered
fixed. To remove this inconvenience, one iteration step
of the improvement heuristic of Section II.D will be
allowed after a fixed number of iterations (100). The
overall best found solution is stored throughout the
whole procedure. The tabu search stops after a fixed
number of iterations.

III. E XPERIMENTAL SET-UP

All proposed algorithms have been coded in Microsoft
Visual C++ 6.0. The procedures were tested on two data
sets. A first set consist of the 480 networks of the J30
instance set of PSPLIB [8]. A second set consists of the
eighty 30-activity networks constructed in [11] by using
the RanGen project scheduling network instances gene-
rator developed by Demeulemeester et al. [4] using two
settings (0.5 and 0.75) for the order strength, resource
factor and resource constrainedness. For an extensive
study of the impact of the parameter settings on schedule
stability we refer to [12].

In order to investigate the impact of activity duration
variability, we distinguish between low, high and random
duration variability.High duration variabilitymeans that
the real activity durations are all discretized values drawn
from a right-skewed beta-distribution with parameters 2
and 5, that is transformed in such a way that the mini-
mum duration equals 0.25 times the expected duration,
the mean duration equals the expected duration and the
maximum duration equals 2.875 times the expected du-
ration. Low duration variabilitymeans that the realized
activity durations are also discretizations of values drawn
from a beta-distribution with parameters 2 and 5, but
with the mean equal to the expected activity duration
and with minimum and maximum values equal to 0.75
times and 1.625 times the expected activity duration,
respectively. Last,random duration variabilitystands for
the case where no overall uncertainty level exists for the
project and the variabilities are activity dependent. We

randomly select for every activity whether the activity
hashigh, low or medium duration variability. The dis-
tribution functions for high and low variability are as
explained above, whilemedium duration variabilityis an
intermediate case where the realized activity durations
are drawn from a beta-distribution with parameters 2
and 5, but with minimum and maximum values equal to
0.5 times and 2.25 times the expected activity duration,
respectively. Figure 2 shows the distribution functions
from which the realized durations are drawn for an
activity with an expected 3-period duration.

The stability costΣwj(E|sj−sj | is evaluated by draw-
ing thewj for each non-dummy activityj ∈ {1, 2....n−
1} from a discrete triangular distribution withP (wj =
q) = (21 − 2q)% for q ∈ {1, 2....10}. This distribution
results in a higher probability for low weights and in
an average weightwavg = 3.85. The weightwn of the
dummy end activity denotes the marginal cost of not
making the projected project completion and will be
fixed at ⌊10 × wavg⌋ = 38. For an extensive evaluation
of the impact of the activity weight of the dummy end
activity, we refer to [11] and [12].

Extensive simulation will be used to evaluate all
procedures on stability and computational efficiency.
For every network instance, two sets of 100 executions
(referred to further on as thetraining set and thetest
set) are simulated by drawing different actual activity
durations from the described distribution functions. The
test set of executions is run to avoid overfitting as will
be explained below.

Using the simulated activity durations, therealized
scheduleis constructed by applying the following reac-
tive procedure. First, an activity list is deduced from the
baseline schedule by ordering the activities in increasing
order of their starting time. Ties are broken by decreasing
order of activity weight, then by increasing activity
number. Afterwards, the realized schedule is constructed
by applying a parallel schedule generation scheme (SGS)
on this activity list using the actual activity durations.
To maintain stability, an activity is never allowed to
start earlier than its scheduled starting time. Thus, at
each decision point we scan the ordered activity list to
select the set of eligible unscheduled activities that have
a baseline starting time that is not larger than the current
decision time. It should be observed that the resource
allocation (i.e. the flow network) of the resulting realized
schedule and the baseline schedule may differ. For a
comparison of different reactive procedures we refer the
reader to [11].

The algorithms proposed in Sections II.D and II.E se-
lect the best neighborhood solution drawing disruptions
from the stochastic activity duration density functions.

16 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

(a) (b) (c)

86420

2

1.5

1

0.5

0

86420

2

1.5

1

0.5

0

86420

2

1.5

1

0.5

0

Realized duration Realized duration Realized duration

density density density

Fig. 2. Distribution functions for low (a), medium (b) and high (c) durationvariability if E(di) = 3

Including information about these simulated disruptions
might make the buffer allocation decision process sub-
ject to overfitting. The best schedule for the simulated
disruptions will not necessarily be the best schedule for
the actual disruptions during project execution, even if
we assume that they are drawn from the same density
functions. As mentioned above, we try to avoid overfit-
ting by examining the results on both the training and
test set of execution scenarios.

IV. COMPUTATIONAL RESULTS

All computational results have been obtained on a
Pentium IV 2.4 GHz personal computer A total of
ten scheduling procedures are evaluated. The minimum
duration schedule obtained by the branch-and-bound pro-
cedure of Demeulemeester & Herroelen [2], [3] serves as
the benchmark. Algorithms 2-4 are the RFDFF, VADE
and STC heuristics introduced in Sections II.A-II.C.
Algorithms 5-8 are all instances of the improvement
heuristic of Section II.D with the solutions of algorithms
1-4 as initial solution. The tabu search procedure of
Section II.E is executed with 100 (Algorithm 9) and 300
(Algorithm 10) iteration steps, respectively. Algorithms
1-4 will be referred to assimple heuristics, while algo-
rithms 5-10 will be called theimprovement heuristics.

For every algorithm we calculate the average stability
cost (Stab) over all networks and executions on both
a training set and a test set of simulated disruptions.
%Best denotes the percentage of network instances for
which a certain algorithm yields the minimum stability
cost among the algorithms within its class. Again, this
measure will be calculated for training and test set
disruptions to examine the degree of overfitting. We
feel that comparing simple heuristics with improvement
algorithms would give few additional insights. Finally,
also the average computational times (in seconds) are
given for each algorithm. Note that the computational
time of algorithms 2-10 include the computational time

of algorithm 1, because the RCPSP always needs to be
solved. Also, the reported computational times of the
improvement heuristics 5-10 will comprise the time to
calculate their initial solution.

In the remainder of this section, results will be dis-
cussed for the three activity duration variability cases
introduced in the previous section.

A. High duration variability

TABLE I

RESULTS ONPSPLIBDATA SET WITH HIGH DURATION

VARIABILITY

Training Set Test Set
Algorithm Stab %Best Stab %Best Time
1. RCPSP 400.97 0 401.27 0 0.07
2. RFDFF 137.14 6 137.69 6 0.08
3. VADE 144.96 2 146.94 3 0.17
4. STC 117.67 92 118.45 91 0.10
5. RCPSP D 108.28 3 116.80 9 1.84
6. RFDFF D 99.89 22 107.86 25 1.15
7. VADE D 100.62 11 108.98 13 1.29
8. STC D 100.23 10 107.88 22 1.08
9. Tabu 100 99.22 40 107.86 25 7.50
10. Tabu 300 98.86 63 107.67 25 22.16
11. Best 97.80 100 104.87 100

Tables I and II show the average results on the PSPLIB
and RanGen data set when all activities are subject to
high activity duration variability.

1) Simple heuristics:Tables I and II reveal that STC
gives by far the best results among the simple heuris-
tics. Although VADE and RFDFF have a much smaller
stability cost than the minimum duration schedule, they
only outperform STC on a few network instances.

On average, VADE shows worse results than RFDFF
on the PSPLIB set, but surprisingly generates better
results on the RanGen problem set. This is due to the
differences in the experimental designs used to construct
both data sets. For all the networks in the RanGen

Stijn Van de Vonder et al. 17

TABLE II

RESULTS ONRANGEN DATA SET WITH HIGH DURATION

VARIABILITY

Training Set Test Set
Algorithm Stab %Best Stab %Best Time
1. RCPSP 558.82 0 556.00 0 0.01
2. RFDFF 155.93 1 154.69 0 0.01
3. VADE 143.54 4 144.93 3 0.10
4. STC 123.81 95 123.49 98 0.03
5. RCPSP D 128.29 1 135.25 4 2.48
6. RFDFF D 114.30 14 121.49 19 1.12
7. VADE D 112.89 8 120.63 24 0.98
8. STC D 112.50 6 119.45 26 0.83
9. Tabu 100 111.01 45 119.30 18 6.89
10. Tabu 300 110.68 71 119.05 19 20.59
11. Best 109.66 100 116.43 100

data set a rather high resource factor and resource
constrainedness (0.5 or 0.75) are assumed, resulting in
resource intensive networks with many forbidden sets.
On the other hand, the factorial design for PSPLIB also
includes networks that are less resource constrained.

When we only select the 60 resource intensive net-
works with resource factor exceeding 0.5 and resource
strength equal to 0.2 from the PSPLIB data set, we
observe that the average stability cost of the VADE
heuristic equals 174.38, which is significantly better than
the stability costs of RFDFF (189.96). We might thus
conclude that RFDFF encounters problems when dealing
with resource intensive networks. In these networks
many resource conflicts need to be resolved, which will
lead to more extra precedence relations in the resource
flow network and eventually to a largerCmax for the
RCPSP and thus a largerδn. RFDFF typically allocates
a larger portion of the total safety to the dummy end
activity than the other heuristics. For resource intensive
networks, the total safety included (recall thatδn =
⌊1.3 × Cmax⌋) might be too high such that RFDFF
overprotects the project completion and has to pay a high
extra stability cost for this unnecessary extra protection
due to poorly buffered intermediate activities. This ex-
plains the comparative stability advantage of VADE on
resource intensive data sets, such as the 80 networks of
the RanGen data set and the 60 selected networks of
PSPLIB.

The required computational effort is highly correlated
with the number of time-consuming2 evaluations needed
in the procedure, which is low for all simple heuris-
tics. Because VADE selects the best among a range of
solutions, its computational time is the most demanding

2Remember that each evaluation consists of 100 simulated execu-
tions of the project that have to be scheduled by using the parallel
SGS.

among the simple heuristics. For the same reason, VADE
might be slightly affected by overfitting. Indeed, if there
is an increase in average stability cost in the test set
over the training set results, it is more pronounced for
VADE than for the other simple heuristics. However, this
overfitting is clearly not critical.

2) Improvement heuristics:Comparing algorithms 5-
10 on the training set reveals that all stable project
schedules (2-4) provide good starting solutions for the
improvement heuristic of section II.D. Only the mini-
mum duration schedule leads to a substantial stability
cost and computational effort. As somewhat expected,
tabu search obtains the best results of all heuristics.

Row 11 represents the average over all networks of
the best solutions found by any of the 10 algorithms. In
63% of the PSPLIB networks and 71 % of the RanGen
networks, this best solution has been obtained by Tabu
300. The deviation between the average stability cost of
Tabu 300 and the stability cost of row 11 is around 1%
for both data sets. The2×(n−2) evaluations required at
each of the 300 (100) iteration steps of the tabu search
procedure account for the increase in computation time.

When comparing the performance of the improvement
algorithms on the test set, we observe an increase in the
average stability costs, while the mutual differences in
stability cost between the algorithms are largely reduced.
Although Tabu 300 remains slightly better than the
improvements heuristics 6-8 onStab, the small differences
make it harder to justify the high computational burden of Tabu
300. On the RanGen data set, %Best is even better for VADE
D and STC D than for our tabu search. We also note that the
performance deviation of Tabu 300 from the best result found
over all 10 algorithms has increased from 1% to approximately
2.5%. We may conclude that the tabu search is subject to
overfitting.

B. Low duration variability

TABLE III

RESULTS ONPSPLIBDATA SET WITH LOW DURATION

VARIABILITY

Training Set Test Set
Algorithm Stab %Best Stab %Best Time
1. RCPSP 123.17 0 122.64 0 0.08
2. RFDFF 6.11 0 6.01 0 0.08
3. VADE 1.69 17 1.84 11 0.14
4. STC 1.08 84 1.05 89 0.10
5. RCPSP D 6.14 0 7.03 0 1.35
6. RFDFF D 1.25 8 1.71 8 0.66
7. VADE D 0.75 10 1.29 8 0.54
8. STC D 0.67 28 1.04 35 0.46
9. Tabu 100 0.58 72 1.18 20 4.43
10. Tabu 300 0.56 85 1.18 23 13.02
11. Best 0.54 100 0.84 100

18 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE IV

RESULTS ONRANGEN DATA SET WITH LOW DURATION

VARIABILITY

Training Set Test Set
Algorithm Stab %Best Stab %Best Time
1. RCPSP 172.91 0 171.45 0 0.01
2. RFDFF 7.09 0 6.88 0 0.01
3. VADE 1.55 19 1.64 10 0.07
4. STC 1.09 81 1.04 90 0.03
5. RCPSP D 22.00 0 22.73 0 1.46
6. RFDFF D 2.33 0 2.68 0 0.52
7. VADE D 0.82 16 1.28 16 0.39
8. STC D 0.80 24 1.09 35 0.32
9. Tabu 100 0.70 61 1.24 18 4.25
10. Tabu 300 0.68 83 1.24 21 12.71
11. Best 0.67 100 0.91 100

Recent research [11] showed that when activity duration
variability is rather low, proactive scheduling becomes increas-
ingly attractive because the disadvantage in makespan perfor-
mance compared to a minimum duration schedule becomes
very small, while the improvement on stability remains large.
By consequence, the low variability case of this section might
be considered particulary interesting. Remark that increasing
δn has been shown [11] to have a similar impact on solution
robustness. The amount of uncertainty in a project should
always be regarded in accordance with the tightness of the
project due date.

1) Simple heuristics:Tables III and IV give an overview
of the obtained results. Compared to the results of Section
IV.A.1 we observe that that RFDFF performs relatively worse
on the training set and is even dominated (%Best = 0) on
all networks by the other simple heuristics. RFDFF does
not use any information about activity duration variability
and will thus construct exactly the same schedule whatever
the amount of uncertainty in the environment. While this
procedure provides reasonable results in the case of high
variability, its stability cost in the case of low variability is
not competitive with the stability cost values obtained by other
simple heuristics. RFDFF typically overprotects the project
completion, causing poorly buffered intermediate activities and
unnecessary stability losses during execution.

STC ranks once again best among the simple heuristics,
closely followed by VADE. Taking into account thatwavg =
3.85, their low average stability costs (< 2) indicate that
almost every activity of the project will be executed as planned
by applying these buffer allocation procedures without anyloss
in makespan performance compared to the RCPSP solution.

The results obtained on the test set are very similar. We
only note a substantial smaller %Best performance for VADE.
Because VADE evaluates multiple solutions and selects the
best one, it does not come as a surprise that this heuristic
is somewhat subject to overfitting, while all other simple
heuristics do not use any evaluation for buffer allocation and
are by definition unaffected by overfitting.

2) Improvement algorithms:Improvement algorithms 6-
10 all generate extremely satisfying results. Tabu 300 again

ranks best among all heuristics on the training set. On the
test set, we remark that STC D outperforms Tabu 300 on as
well Stab as %Best. Even the simple heuristic STC without
improvement phase generates a lower average stability cost
than Tabu 300 and for the RanGen data set even the most
stable schedule overall. The improvement phase in STC D
has almost no impact. The more intensive local search done
by the tabu search algorithm only overfits the baseline schedule
on the simulated disruptions in the training set. Tabu search
is certainly not recommended in the low duration variability
case.

C. Random duration variability

TABLE V

RESULTS ONPSPLIBDATA SET WITH RANDOM DURATION

VARIABILITY

Training Set Test Set
Algorithm Stab %Best Stab %Best Time
1. RCPSP 267.19 0 267.87 0 0.07
2. RFDFF 58.00 1 57.76 2 0.08
3. VADE 54.92 4 55.37 4 0.15
4. STC 40.79 94 40.41 94 0.10
5. RCPSP D 36.47 3 40.01 6 1.60
6. RFDFF D 32.11 19 35.25 21 0.96
7. VADE D 32.00 13 35.36 19 1.01
8. STC D 31.76 13 34.60 25 0.83
9. Tabu 100 31.13 45 34.72 21 6.24
10. Tabu 300 30.97 64 34.64 28 18.37
11. Best 30.36 100 33.05

TABLE VI

RESULTS ONRANGEN DATA SET WITH RANDOM DURATION

VARIABILITY

Training Set Test Set
Algorithm Stab %Best Stab %Best Time
1. RCPSP 379.61 0 374.97 0 0.01
2. RFDFF 65.46 0 64.74 0 0.01
3. VADE 48.82 6 48.22 9 0.08
4. STC 40.26 94 39.01 91 0.03
5. RCPSP D 48.83 0 51.04 4 2.37
6. RFDFF D 36.78 8 39.08 10 0.91
7. VADE D 34.18 24 36.87 21 0.74
8. STC D 33.78 11 35.97 31 0.66
9. Tabu 100 33.23 40 35.91 28 0.57
10. Tabu 300 32.95 68 35.88 25 16.98
11. Best 32.50 100 34.61 100

In this case, we assume that the project manager is able to
estimate the amount of uncertainty present in each individual
activity. By taking this information into account when allocat-
ing buffers VADE and STC construct baseline schedules that
should be better adapted to the project under consideration.

Overall, the obtained results (Tables V and VI) are very
similar to the ones obtained for the high duration variability
case of section IV.A. First, STC is again by far the best

Stijn Van de Vonder et al. 19

performing simple heuristic on the PSPLIB and RanGen data
sets. Second, the tabu search procedure obtains the best overall
results, although the differences between training set andtest
set indicate that they are partially affected by overfitting.

The RFDFF schedule that does not use the available extra
information, performs on average slightly worse than VADE
on PSPLIB, while its disadvantage becomes even more explicit
on the resource intensive RanGen networks.

We might conclude that STC (D) manages best to deal
with random duration variability. Apart from the tabu search
procedure, we see few reasons to use other heuristics than STC
in the random variability case.

V. CONCLUSIONS AND FURTHER RESEARCH

Proactive project scheduling is concerned with building
stable baseline schedules that are able to absorb most of the
anticipated disruptions during project execution. In thispaper,
we presented various heuristic algorithms for inserting time
buffers in a project schedule.

An extensive simulation-based experiment on PSPLIB and
RanGen instances revealed that the STC heuristic in general
ranks best among the simple heuristics that do not rely on an
improvement phase. STC uses information on activity weights
and activity duration variability for the buffer allocation pro-
cess.

Improvement heuristics will typically yield better solutions,
but may be subject to overfitting. To avoid this, results were
examined on both a training and a test set, where the test set
was constructed by drawing different actual activity durations
from the distribution function. When the project environment
comprises low activity duration uncertainty, any improvement
on the STC baseline schedule will very likely turn out to be
overfitting during project execution. When some or all project
activities are subject to considerable uncertainty, localsearch
will improve the stability of the baseline schedule even after
the impact of overfitting is removed. The proposed tabu search
procedure results in the minimum expected cost of the project,
but is rather time consuming. A descent approach with STC
(or VADE) as initial scheduling procedure results in an almost
equally small expected stability cost and requires much less
computational effort to calculate the baseline schedule.

In this paper buffers were heuristically allocated to a given
minimum duration schedule while the resource allocation was
kept fixed. The development of efficient exact buffer allocation
procedures is a topic for further research. The study of the
impact of different initial schedules and different resource
allocations on the efficiency and effectiveness of the buffer
allocation process is also an interesting open research issue.
Starting from a heuristic RCPSP solution would make it possi-
ble to extend the results to the J60, J90 and J120 PSPLIB data
sets. Ultimately, we aim at finding an integrated solution robust
approach for scheduling, resource allocation and buffering.

ACKNOWLEDGEMENTS

This research has been supported by Project OT/03/14 of
the Research Fund K.U.Leuven.

REFERENCES

[1] C. Artigues and F. Roubellat, “A polynomial activity insertion
algorithm in a multi-resource schedule with cumulative con-
straints and multiple modes,”European Journal of Operational
Research, vol. 127, pp. 294–316, 2000.

[2] E. Demeulemeester and W. Herroelen, “A branch-and-bound
procedure for the multiple resource-constrained project schedul-
ing problem,” Management Science, vol. 38, pp. 1803–1818,
1992.

[3] ——, “New benchmark results for the resource-constrained
project scheduling problem,”Management Science, vol. 43, pp.
1485–1492, 1997.

[4] E. Demeulemeester, M. Vanhoucke, and W. Herroelen,
“RanGen: A random network generator for activity-on-the-node
networks,”Journal of Scheduling, vol. 6, pp. 17–38, 2003.

[5] F. Glover, “Tabu search, Part I,”INFORMS, Journal of Com-
puting, vol. 1, pp. 190–206, 1989.

[6] ——, “Tabu search, Part II,”INFORMS, Journal of Computing,
vol. 2, pp. 4–32, 1990.

[7] W. Herroelen, B. De Reyck, and E. Demeulemeester, “On
the paper ”Resource-constrained project scheduling: notation,
classification, models and methods” by Brucker et al.”European
Journal of Operational Research, vol. 128, no. 3, pp. 221–230,
2000.

[8] R. Kolisch and A. Sprecher, “PSPLIB - a project scheduling
library,” European Journal of Operational Research, vol. 96,
pp. 205–216, 1997.

[9] R. Leus, “The generation of stable project plans,” Ph.D. disser-
tation, Department of applied economics, Katholieke Univer-
siteit Leuven, Belgium, 2003.

[10] R. Leus and W. Herroelen, “The complexity of machine
scheduling for stability with a single disrupted job,”Operations
Research Letters, vol. 33, pp. 151–156, 2005.

[11] S. Van de Vonder, E. Demeulemeester, and W. Herroelen,
“An investigation of efficient and effective predictive-reactive
project scheduling procedures,” Department of applied eco-
nomics, Katholieke Universiteit Leuven, Belgium, Tech. Rep.
0466, 2005.

[12] S. Van de Vonder, E. Demeulemeester, W. Herroelen, and
R. Leus, “The trade-off between stability and makespan in
resource-constrained project scheduling,” 2004,International
Journal of Production Research,to appear.

[13] ——, “The use of buffers in project management: the trade-
off between stability and makespan,”International Journal of
Production Economics, vol. 97, pp. 227–240, 2005.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 21

Exact Solution Procedures for the Balanced
Unidirectional Cyclic Layout Problem

Temel Öncan∗ and İ.Kuban Altınel †
∗ Galatasaray University/Department of Industrial Engineering

Ortak̈oy, İstanbul, 34357, T̈URKİYE
Email: ytoncan@gsu.edu.tr

†Boğaziçi University/Department of Industrial Engineering
Bebek,İstanbul, 34342, T̈URKİYE

Email: altinel@boun.edu.tr

Abstract— In this paper we consider the balanced uni-
directional cyclic layout problem (BUCLP) arising in the
determination of workstation locations around a closed
loop conveyor system, in the allocation of cutting tools on
the sites around a turret, in the positioning of stations
around a unidirectional single loop AGV path. BUCLP
is known to be NP-hard. One important property of
this problem is the balanced material flow assumption
where the material flow is conserved at every workstation.
We first develop a branch-and-bound procedure by using
the special material flow property of the problem. Then,
we propose a dynamic programming algorithm, which
provides optimum solutions for instances with up to
20 workstations due to memory limitations. The branch
and bound procedure can solve problems with up to 50
workstations.

Keywords— Balanced unidirectional cyclic layout, flexi-
ble manufacturing systems, branch and bound, dynamic
programming.

I. I NTRODUCTION

CONSIDER a manufacturing cell which consists of
a circular material handling system andn worksta-

tions assigned ton predetermined candidate locations.
Circular material handling systems connect all work-
stations by a circuit passing through each workstation
exactly once. The system is assumed to move the materi-
als unidirectionally (e.g. clockwise or counter-clockwise)
around the circuit. Typical examples of this type material
handling systems are loop conveyors (Figure 1), robot
arms rotating unidirectionally (Figure 2), and unidirec-
tional single loop automated guided vehicles (Figure
3). As it can be seen one of the workstations serves
as the load/unload (LUL) area. A common operational
policy for circular material handling systems is to require
all parts enter and leave the manufacturing cell at the
LUL area. Each part is routed through workstations

following the sequence specified in its process plan.
When a part is processed at one of the workstations,
material handling system moves it unidirectionally to
the next workstation pointed in the process plan. If
the workstation is occupied, the part is awaited in a
buffer until it becomes available. The objective is to
determine the assignment of workstations to candidate
locations which minimizes total transportation cost of the
parts in the manufacturing cell within a unit time. This
is a layout problem where a layout is an assignment
of workstations to locations. According to Afentakis
[2], Unidirectional Cyclic Layouts (UCLs) are mostly
preferred because of their relative low initial investment
costs, high material handling flexibility and their ability
of being easily accommodated to future introduction of
new parts and process changes.

As underlined by Kouvelis, Chiang and Kıran [13]
the optimal design of its physical layout is crucial for
the performance of an FMS. The work by Afentakis [2]
is the very first attempt for the design of a UCL in this
respect. He gives a binary integer linear programming
formulation to determine locations of the workstations
which minimize material transport in a UCL. We refer
this problem as the Unidirectional Cyclic Layout Prob-
lem (UCLP) in the sequel. Kouvelis and Kim [15] have
shown that the UCLP is NP-hard. A detailed discussion
on the complexity of the UCLP is also provided by
Tansel and Bilen [22].

As a generalization of the UCLP we refer to the single
loop facilities layout problem (SLFL) where both the
unidirectional and bidirectional flow cases are considered
[4]. The SLFP is much more complicated than UCLP
since it consists of two subproblems: the determination
of the optimal sequence of workstations along a single
loop based on the part flow matrix and the design of
optimal flow path configuration subject to this inter-

22 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

workstations sequence.
UCLP has special forms. In one of them the material

flow is conserved at each workstation: Total inflow is
equal to total outflow at a workstation. This version of
the UCLP is known as thebalanced unidirectional cyclic
layout problem(BUCLP). In this work we concentrate
on the balanced case which is particularly relevant in au-
tomated manufacturing where no manual interruption is
allowed to remove/insert parts from/to the workstations.
Another special form of the UCLP is theequidistant
unidirectional cyclic layout problem(EUCLP), where
the locations around the unidirectional cyclic material
handling system are assumed to be equally distant to
each others (Figure 4). The third special type is known
as thebalanced equidistant unidirectional cyclic layout
problem(BEUCLP) and combines these two. Equidistant
UCLP (EUCLP) and balanced UCLP (BUCLP) have
been addressed by Bozer and Rim [6] and Kıran,Ünal
and Karabatı [12] respectively.

Bennell, Potts and Whitehead [5] considered one
extension of the UCLP, namely the min-max loop layout
problem (MMLLP). The MMLLP is to find the ordering
of workstations around the UCL such that the maximum
number of circuits required for any product is minimized.
Notice that only the objective functions of the UCLP
and MMLLP are different. The authors proposed iterated
descent, tabu search and randomized insertion algorithms
for this problem [5].

Fig. 1. Closed loop conveyor system with9 stations

In this work, we propose two exact solution ap-
proaches for the BUCLP: branch and bound scheme
and dynamic programming algorithm. New upper and
lower bounding methods are proposed and tested within
the branch and bound scheme. Using the special matrix
properties of the problem we propose new dominance
rules that are used within both the branch and bound
and dynamic programming algorithms. To the best of
our knowledge, there is no other work proposing exact
algorithms for the BUCLP. Only, Lee, Huang and Chiang
[16], Kouvelis and Kim [15] and Kıran and Karabatı

Fig. 2. Unidirectional robot arm serving8 stations

[11] have devised branch and bound approaches for the
general UCLP.

Fig. 3. AGV system with6 stations and4 vehicles

Fig. 4. Equidistant closed loop conveyor system with6 workstations

The remainder of this paper is organized as follows.
In the next section we provide a formal description of
the BUCLP and explain two known formulations.The
new branch and bound algorithm is presented in Section
III. In Section IV we give our dynamic programming
approach for the BUCLP. Section V includes our com-
putational results. Finally, the conclusions are given in
Section VI.

II. BALANCED UNIDIRECTIONAL CYCLIC LAYOUT

PROBLEM

Let N = {1, . . . , n} be the set of workstations
to be located at candidate locations connected by a

Temel Öncan anḋI.Kuban Altınel 23

unidirectional circular material handling system where
one of the workstations represents the LUL area, and
F be then × n part flow matrix whose(i, j)th entry
fij ≥ 0 denotes the average number of jobs to be moved
from workstationi to workstationj over a given length
of time. Clearlyfii = 0. A discussion of how matrix
F is determined from process plans can be found in
[22]. Let Ci =

∑

j,j 6=i

fji denote the sum of jobs moved

other workstations to workstationi (i.e. total inflow of
workstation i) and, Ri =

∑

j,j 6=i

fij denote the sum of

jobs moving from workstationi to other workstations
(i.e. total outflow of workstationi). For the BUCLP,
we assume that the material flow is conserved namely,
Ri = Ci, holds for all workstationsi = 1, . . . , n.

Unidirectional cyclic material handling systems to-
gether with then candidate locations specified around
it can be modelled by a circuit withn vertices. No-
tice that n is the number of candidate locations (also
workstations) including the LUL area. The vertices are
numbered1 throughn in increasing order in clockwise
direction, which is assumed without loss of generality as
the direction of material flow. The system is illustrated
in Figure 5.

Fig. 5. A unidirectional cyclic material handling system.

The weight wt is the length of arc(t, t + 1) and
determines the distance between locationst and t + 1.
Notice that locationn + 1 denotes location1 because
of circularity. As a consequence,dij , the transportation
distance from locationi to locationj, becomes

dij =

{

∑j−1
t=i wt if i < j

λ −
∑j−1

t=i wt if i > j
. (1)

Here the constantλ is the length of the circuit. Namely,
∑n

t=1 wt = λ and distancedij satisfies the following
metric properties:

1) dij = 0 ∀ i, j; i = j
2) dik + dkj ≥ dij ∀ i, j, k; i 6= j 6= k
3) dij + dji = λ ∀ i, j; i 6= j
4) dij 6= dji unlessdij = λ/2 ∀ i, j; i 6= j

A layout of n workstations, which has already been
defined as the assignment of workstationsi = 1, . . . , n
to candidate locations{1, . . . , n} with one workstation
per location, can be denoted as a permutation vector
π = (π1, . . . , πn) where πi is the workstation number
assigned to locationi. Then the question is to determine
an assignment which minimizes certain appropriate cost
function of material transport. For the UCLP two types
of objective function have been used in the literature:

1) Minimization of the total part transport distance
per unit time

2) Minimization of the total number of parts that pass
through the LUL area per unit time

As shown by Bozer and Rim [6], Kıran and Karabatı
[11], and Kıran,Ünal, and Karabatı [12] under the first
objective the UCLP becomes the QAP after lettingΠ
denote the set of all possible layouts, namely all possible
permutations of indices{1, . . . , n}

min
π∈Π

c1(π) = min
π∈Π

n
∑

i=1

n
∑

j=1
j 6=i

fπiπj
dij . (2)

To formulate the UCLP with the second objective
function Afentakis [2], and Kouvelis and Kim [15] have
defined the indicator function

I(i, j) =

{

1 if i > j
0 otherwise

, (3)

which is used to count the number of parts passing
through the LUL area. If the locationi is greater than
locationj, the parts going from workstationπi, located at
locationi, to workstationπj , located at locationj, passes
through the LUL area; and this results in the following
QAP formulation of the UCLP:

min
π∈Π

c2(π) = min
π∈Π

n
∑

i=1

n
∑

j=1
j 6=i

fπiπj
I(i, j). (4)

In fact,
c1(π) = λc2(π) (5)

for UCLs with single LUL areaandbalanced part flow,
both formulations become equivalent. This result has
been shown by Kouvelis and Kim [15]. Then, any one
of the workstations can be chosen as the LUL area. As
a remark, although it is not particularly stated in any of
these works, balanced part flow assumption is necessary
in the derivation of relation (5).

The relation (5) betweenc1(π) andc2(π) is important
becausec2(π) has the following property which helps
us to provide computationally efficient upper bounds [3]
and new dominance rules.

24 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Consider the initial layout

π = (π1, ..., πi−1, πi, πi+1, ..., πj−1, πj , πj+1, ..., πn),
(6)

andmove forwardworkstationπi located at locationi to
location j (with i < j). This results in the new layout

πf = (π1, ..., πi−1, πi+1, ..., πj−1, πj , πi, πj+1, ..., πn),
(7)

where workstationπi is now at locationj. However, for
the same initial layout (6), when workstationπj located
at locationj is moved backwardto locationi (with i < j)
the new layout

πb = (π1, ..., πi−1, πj , πi, πi+1, ..., πj−1, πj+1, ..., πn),
(8)

is obtained. Workstationπj is now at locationi. Then,
the change in the cost functionc2(π) due to the forward
move of workstationπi to locationj and the backward
move of workstationπj to locationi are respectively

∆f
c2

= c2(π) − c2(π
f) =

j
∑

k=i+1

(fπkπi
− fπiπk

), (9)

and

∆b
c2

= c2(π) − c2(π
b) =

j−1
∑

k=i

(fπjπk
− fπkπj

). (10)

This is a direct consequence of the definition of the
cost function c2(π). We can determine the costs of
layoutsπ andπf as,

c2(π) =
n

∑

k=j+1

i−1
∑

l=1

fπkπl
+

n
∑

k=j+1

fπkπi
+

n
∑

k=j+1

j−1
∑

l=i+1

fπkπl
+

n
∑

k=j+1

fπkπj
+

i−1
∑

l=1

fπjπl
+ fj,i +

j−1
∑

l=i+1

fπjπl
+

j−1
∑

k=i+1

i−1
∑

l=1

fπkπl
+

j−1
∑

k=i+1

fπkπi
+

i−1
∑

l=1

fπiπl
+

i−1
∑

k=2

k−1
∑

l=1

fπkπl
+

j−1
∑

k=i+2

k−1
∑

l=i+1

fπkπl
+

n
∑

k=j+2

k−1
∑

l=j+1

fπkπl
,

and

c2(π
f) =

n
∑

k=j+1

i−1
∑

l=1

fπkπl
+

n
∑

k=j+1

j−1
∑

l=i+1

fπkπl
+

n
∑

k=j+1

fπkπj
+

n
∑

k=j+1

fπkπi
+

i−1
∑

l=1

fπiπl
+

j−1
∑

l=i+1

fπiπl
+ fπiπj

+

i−1
∑

l=1

fπjπl
+

j−1
∑

l=i+1

fπjπl
+

j−1
∑

k=i+1

i−1
∑

l=1

fπkπl
+

i−1
∑

k=2

k−1
∑

l=1

fπkπl
+

j−1
∑

k=i+2

k−1
∑

l=i+1

fπkπl
+

n
∑

k=j+2

k−1
∑

l=j+1

fπkπl
.

Then ∆f
c2

can be obtained by subtractingc2(π
f) from

c2(π), resulting in many cancellations and finally in the
simple expression of (9).∆b

c2
can be obtained similarly.

Notice that (9) and (10) can be used for the BUCLP
with c1(π) or c2(π) since both objectives are equivalent.
However, this is not possible for the unbalanced UCLP.

In their early work Bozer and Rim [6], later on Kıran,
Ünal and Karabatı [12] have shown that the costc1(π)
of a layoutπ is independent of where the workstations
are located around the unidirectional cyclic material
handling system when the part flow is balanced. In other
words the predetermined locations can be shifted without
modifying the value of the objective function as long
as the layout, namely the sequence of the workstations
around the unidirectional cyclic material handling sys-
tem, remains the same. In short, when the part flow
is balanced, even the locations are nonequidistant, the
problem becomes equivalent to the determination of
a cyclic permutation of the workstations around the
unidirectional circular material handling system, which
minimizes total material transport. In fact it has been
shown that the BUCLP and EUCLP are equivalent [6],
[12].

A. Afentakis’ BUCLP formulation

In his seminal paper, Afentakis [2] proposed a Binary
Integer Linear Programming (BILP) formulation for the
BUCLP which he called as the Loop Interconnection
Problem (LIP). The author assumed that parts enter and
exit the system through a LUL area and complete an
integer number of tours around the loop before leaving

Temel Öncan anḋI.Kuban Altınel 25

the system, which makes the material flow balanced. LIP
is given below:

LIP: min
n

∑

(i,j)∈A

fij(1 − yij) (11)

s.t. yij + yji = 1 ∀i, j; i 6= j (12)

yik + ykj − 1 ≤ yij

∀i, j, k; i 6= j 6= k (13)

yij = 0, 1 ∀i, j; i 6= j (14)

where

yij =

1 if workstation j is located after
workstationi in an optimal layout

0 otherwise
.

As noted by Afentakis [2], the objective function (11)
minimizes the total number of times the parts cross the
LUL area. Constraints (12) are symmetry constraints
and guarantee that either workstationi is located before
workstationj, or vice versa. Constraints (13) are tran-
sitivity constraints and state if workstationi is located
before workstationk and workstationk is located before
workstationj, then workstationi must be located before
workstationj.

B. Kıran, Ünal and Karabatı ’s BUCLP formulation

Later, Kıran,Ünal and Karabatı [12] have developed
an extended formulation for the BUCLP. They define
the decision variablesdij denoting the circular distance
from workstationi to workstationj and the following
auxiliary binary decision variables

xij =

1 if workstation j immediately follows
workstationi in an optimal layout

0 otherwise

The distances can be scaled by dividing the constant
circuit length λ. This does not affect the solution of
the problem. Thus, it is possible to assume thatλ = 1
and 0 ≤ dij ≤ 1 without loss of generality. The cost
parametersfij state the total part flow from workstation
i to workstationj. Then their BILP formulation for the

BUCLP is given as

BUCLP: min
n

∑

i=1

n
∑

j=1

i6=j

fijdij (15)

s.t.
n

∑

j=1

i6=j

xij = 1 ∀i (16)

n
∑

i=1
i6=j

xij = 1 ∀j (17)

dij + dji = 1 ∀i, j; i 6= j (18)

dkj ≥ dki + dij + xij − 1

∀i, j, k; i 6= j 6= k (19)

xij = 0, 1 ∀i, j; i 6= j (20)

0 ≤ dij ≤ 1 ∀i, j; i 6= j. (21)

In this formulation, the objective function (15) is to
minimize the total travel distance of all parts entering
into the system. Constraints (16) and (17) are exactly
the assignment constraints and ensure that each work-
station has exactly one predecessor and one successor.
Constraints (18) and (19) define the properties of the
distance matrix. Also (19) guarantees thatdij = dik+dkj

if workstationj immediately follows workstationk in the
flow direction. Kıran,Ünal and Karabatı [12] have shown
that this is a valid BUCLP formulation. An interesting
consequence of this formulation is the interpretation of
the distance variablesdij . The flow is balanced first
of all. It is also assumed that parts enter and leave
the system by the LUL area. As a result the objective
function of the BUCLP becomes equivalent toc2(π), and
counts the number of times parts pass through the LUL
area, since the length of the UCL is1. Thereforedij must
behave as the indicator function (3) and be equal to1 if
workstationi comes after workstationj in a layout.

III. T HE BRANCH AND BOUND ALGORITHM

At the start of our branch and bound algorithm,
we have an empty sequence of workstations and when
the algorithm stops we obtain a complete sequence
of workstations such that total material transportation
cost is minimized. The first (last) position of the se-
quence corresponds to the first (last) candidate location
immediately after (before) the Load/Unload area. At
every node of the branching tree, we have two sets
of workstations: assigned and unassigned. The set of
assigned workstations are kept in a partial sequence,
with fixed positions. However, the positions of the set
of unassigned workstations are not determined.

26 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

When a new node is generated, one workstation from
the unassigned set is chosen and included into the
assigned set. In other words, every time a new node is
generated in the branching tree we assign a workstation
from the unassigned set, to the first leftmost available
location of the partial sequence. The partial sequence
of a node is kept of all of its descendant branching
nodes. That is to say, the partial sequence of a node is
always inherited from its ancestors. For every node a new
partial sequence is obtained by choosing and locating
an unassigned workstation to the first leftmost available
position in the inherited partial sequence.

Moreover, for each node, we compute a lower and
upper bound considering the assigned and unassigned
sets of workstations. To determine the lower bound, we
first compute the cost of assigned workstations. Then,
we consider the costs due to the set of unassigned
workstations. The upper bound value is the objective
function value of the solution obtained with the heuristic
procedure. During the search procedure, we keep the best
upper bound value of all generated nodes.

In summary, at the very beginning of the algorithm,
n− 1 nodes are generated. For each of them, there exist
only two assigned workstations in two leftmost positions
of the corresponding partial sequence. Note that since
for the balanced caseRi =

∑

j,j 6=i

fij =
∑

j,j 6=i

fji = Ci

∀ i = 1, . . . , n, our concern is the relative ordering of
workstations rather than the assignment of workstations
to candidate location. To better explain this, consider the
objective function values of sequencesπ1 = (1, 2, . . . , n)
and π2 = (2, . . . , n, 1). Both of these values are equal
since

∑

j,j 6=1

f1j =
∑

j,j 6=1

fj1 holds because of the balanced

material flow assumption. Therefore, without loss of
generality, we locate workstation1 in the first leftmost
position andn − 1 other workstations, namely worksta-
tions 2, . . . , n, in the second leftmost positions of the
partial sequences. Next, we run branching and bounding
procedures consecutively. The lower and upper bounding
procedures are explained below. The nodes whose lower
bound values are greater than the current best upper
bound values are discarded for further consideration.
Then, the node with the lowest lower bound value is
chosen for further branching to generate new nodes.
These steps continue until we have only one node with
equal lower and upper bound values.

To better illustrate these steps, we present with Figure
6 a branch and bound subtree for an instance with four
workstations. At the first node, namely at Node 0, we
assign workstationi into the first location. In other
words, we have the partial sequence{i} for Node 0.
Node 1, Node 2 and Node 3 are in the second level of the

tree and they are branches of Node 0. Workstationsj, k
and l are respectively assigned into the second available
locations. Their partial sequence are respectively{i, j},
{i, k} and {i, l}. Node 4, Node 5, Node 6, Node 7,
Node 8 and Node 9 are in the third level of the tree and
they represent all possible solutions with workstationi
assigned to location 1.

i

i,j i,k i,l

i,j,k,l i,j,l,k i,k,j,l i,k,l,j i,l,j,k i,l,k,j

Node 0

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

Fig. 6. The enumeration tree of a 4-workstation example

A. Preprocessing Steps

The preprocessing steps constitute the initialization
phase of our branch and bound algorithm. These pro-
cedures are run at the very beginning of the algorithm
with the purpose to reduce the size of the material flow
matrix, and therefore the size of the problem.

Kouvelis and Kim have proposed the preprocessing
steps in their seminal paper [15] on the UCLP. In their
work, to reduce the size of the problems, the prepro-
cessing phase consists of searching for the workstations
which have only inflows and/or outflows. They have
shown that in an optimal solution, a workstationi that
has only inflow (outflow) is always located at the last
(first) candidate location in an optimal sequence.

In addition to this rule, we also detect workstations
i with fij = fji for all j = 1, . . . , n as proposed
by Lee, Huang and Chiang [16]. They have noticed
the optimal layout is independent of the position of
such workstations. As a consequence, these workstations
should be detected at the beginning of the algorithm.

B. Lower Bound

To compute the lower bound values we need to
consider three flow quantities:

1) flows between assigned workstations,

Temel Öncan anḋI.Kuban Altınel 27

2) flows between unassigned-assigned workstation
pairs, and

3) flows between unassigned workstations.

The flows between assigned workstations and the
flows between unassigned-assigned workstations pairs
can be directly computed since the actual position of
assigned workstation is known. In fact, to directly com-
pute these two flow quantities we use the following
observation. For a given sequence of workstations, the
workstation located in the first position contributes to
the objective function value as much as the sum of the
inflows from all other workstations. Namely, if work-
stationi is located in the first position, the contribution
to the total cost due to workstationi is Ci =

∑

k,k 6=i

fki

wherefki is the fixed flow quantity from workstationk
to workstationi. Moreover suppose that, workstationj
is located in the second position of that partial sequence.
Then, the contribution to the total objective function is
(

∑

k,k 6=j

fkj)− fij = (Cj)− fij . In other words, it is equal

to the total amount of flow to workstationj except the
inflow quantity from workstationi to workstationj.

As an illustrative example, consider a sequence
{i, k, l, j} of four workstations. Our objective it to
calculate the objective function

∑

i

∑

j

fijdij . Recall that

dij = 1 if workstation i is located after workstationj
and the LUL area is located at some position on the
path from workstationi to workstationj. For the given
sequence of workstation the objective function value is

Ci + (Ck − fik) + (Cl − fil − fkl) (22)

whereCi is the sum of columni of the flow matrix, i.e.
Ci =

∑

j,j 6=i

fji.

To calculate a bound for the third case, namely the
flow corresponding to the unassigned workstations, may
be much more complicated than the first two cases. One
way to give a bound for the third case is to solve the LP
relaxation of the BUCLP formulation by Afentakis [2].
One disadvantage of this method is its dependence on
the efficiency of the commercial LP solver used. Another
alternative is to perform the lagrangian relaxation of this
formulation. By using the similarity of the BUCLP with
the LOP and other sequencing problems we decided to
follow the lower bounding method proposed by Potts
[19] for the Precedence Constrained Single Machine
Scheduling Problem. When there is no precedence con-
straints this problem is to find a sequence of jobs which
minimizes the sum of completion times. In other words,
it turns out to find a linear ordering of jobs on a single
machine.

Before explaining the steps of the lagrangian relax-
ation scheme lets consider the formulation by Afentakis
[2]. First, notice that we can rewrite the transitivity
constraints (13) as(1 − yki) + (1 − yjk) − 1 ≤ yij .
Then by rearranging the terms in the left hand side we
obtain 1 ≤ yij + yjk + yki. Note that together with
the symmetry constraints (12) and appropriate objective
function we obtain the well-known Linear Ordering
Problem formulation [21]. At this stage, we are faced
with the problem of deciding which constraint set should
be relaxed. Note that when we relax the transitivity con-
straints (13), the remaining symmetry constraints forms a
Totally Unimodular Matrix. On the other hand, from the
lagrangian relaxation theory, we know that we will never
reach a lower bound better than the Linear Programming
relaxation bound of the original formulation (i.e. LIP
formulation) [17]. Therefore, we associate lagrangian
multipliers αij for symmetry constraints (12). Then, we
obtain the following relaxed formulation of the BUCLP:

c
(0)
2 =

n
∑

i=1

n
∑

j=1
j 6=i

fijyji =

n
∑

i=1

n
∑

j=1
j 6=i

fijyji +
n

∑

i=1

n
∑

j=1
j 6=i

(1 − yij − yji)αij

s.t.yij + yjk + yki ≥ 1 ∀i, j, k; i 6= j 6= k

yij = 0, 1 ∀i, j; i 6= j

where the lagrangian multipliersαij are set to

αij = αji =
min{fij , fji}

2
.

The reduced cost matrixF (0) = (f
(0)
ij) consists off (0)

ij =

fij− αij − αji. Note that eitherf (0)
ij = 0 or f

(0)
ji = 0

Then, the transitivity constraintsyij + yjk + yki ≥ 1
for i, j, k = 1, . . . , n; i 6= j 6= k are consecutively
introduced. Whenever a constraint is considered in the
context of lagrangian relaxation we update the objective
function value,c2. Broadly speaking, when the(t −
1)th transitivity constraint is introduced, the lagrangian
objective function value will be

c
(t−1)
2 =

n
∑

i=1

n
∑

j=1
i6=j

f
(t−1)
ij yji +

n
∑

i=1

n
∑

j=1
i6=j

αij +
t−1
∑

p=1

β(p) (23)

Next, at thetth step, we update the lagrangian function
with

c
(t)
2 = c

(t−1)
2 + β(t)(1 − yij − yjk − yki) (24)

whereβ(t) = min{fji, fkj , fik}. Thusβ(t) is set as large
as possible while keeping the elements of the reduced

28 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

cost matrix F(t) nonnegative. The value ofβ(t) gives the
increase in the lower bound. In other words, the bigger
β(t) is, the larger increase we have in the lagrangian
relaxation function value (23). On the other hand, when
there is noβ multiplier with positive value we reach to
a feasible ordering of workstations and the reduced cost
matrix can be used to obtain this feasible ordering, as
pointed by Potts [19].

When we find aβ(t) multiplier with positive value, the
elements of the reduced cost matrixF (t−1) correspond-
ing to yij , yjk and yki are updated and we obtain F(t).
In other words we perform the following operations:

f
(t)
ji = f

(t−1)
ji − β(t)

f
(t)
kj = f

(t−1)
kj − β(t)

f
(t)
ik = f

(t−1)
ik − β(t).

To improve the lower bound we must consider tran-
sitivity constraints (13) as much as possible. However,
the decision of which transitivity constraints should be
considered first, may greatly affect the efficiency of
the lower bounding procedure. One criterion may be to
consider them in increasing order of indicesi < j < k.
Another criterion is to consider the sequence generated
by the upper bounding procedure. Then the transitivity
constraints satisfied by this sequence are consecutively
considered. With the second criterion, the first few con-
straints introduced, contribute better to the lower bound
than the first few constraints considered with the first
criterion. In this work, we prefer to apply the second
criterion with the hope to obtain stronger lower bounds.

Now, we can formally present our lower bounding
procedure. For any workstationj, j = 1, . . . , n, let
Zj

{i}
be the amount of part flow into workstationj,

exceptfij where{i} is the workstation located before
workstationj. In other words,Zj

{i}
= Cj − fij where

Cj is the ith column’s sum of the part flow matrix.
Consider the case where a sequence of two workstations,
namely {i, k}, is located before workstationj. The
amount of part flows into workstationj, except fij

and fkj , is Zj

{i,j}
= Cj − fij − fkj . For a partial

sequence of workstations{i, j, k} we have the lower
boundLB = Ci + Zj

{i}
+ Zj

{i,k}
+ lb(k), wherelb(k) is

the bound obtained for unassigned workstations, namely
all workstations excepti, j andk, using the lagrangian
relaxation. For instance consider the branch and bound
subtree of Figure 6. For Node 0 and Node 1 the lower
bounds are respectively,LB0 = Ci + lb(i) and LB1 =
Ci + (Cj − fij) + lb(i, j). For Node 4, the lower bound

is

LB4 = Ci + (Cj − fij) + (Ck − fik − fjk) + lb(i, j, k)

= Ci + (Cj − fij) + (Ck − fik − fjk)

+ (Cl − fil − fjl − fkl)

= Ci + (Cj − fij) + (Ck − fik − fjk).

C. Upper Bound

To compute the upper bounds, we temporarily com-
plete the partial sequence with the set of unassigned
workstations. To assign the unassigned workstations into
candidate (available) locations in the rest of the partial
sequence, we use the KK3 heuristic proposed by Kou-
velis and Kim [15]. As a result we have a complete
sequence of workstations. Then, we perform the Move-
Reverse (MR) heuristic of Altınel and̈Oncan [3] to
improve the newly inserted set of workstations. Note
that, we perform the KK3 and MR without harming the
initial partial sequence.

KK3 starts with the part flow matrixF and determines
workstation pair(i∗, j∗) which gives the largest

RCij = (Ri − Ci) − (Rj − Cj) + fji − fij (25)

value. Here,Ri and Ci are respectively obtained by
summing up the entries of theith row and ith column
of F . They denote total outflow and total inflow for
workstationi. As for fij andfji, they are the number of
parts processed in workstationi per unit time that must
be routed to workstationj, and vice versa. These two
workstations, namelyi∗ andj∗, are respectively assigned
to the first and the last available locations. Then rows
i∗ and j∗, and columnsi∗and j∗ are deleted fromF
and a new(i∗, j∗) is determined by using (25) on the
new part flow matrixF . These steps are repeated until
the part flow matrix consists of a single element. KK3
yields a layout where workstations with higher outflow
rate are located at the beginning and workstations with
higher inflow rate at the end of a layout (i.e. workstation
sequence).

In MR, the moveheuristic and thereverseoperation
alternate until no further decrease in the objective func-
tion is possible.

Given the current assignment ofn workstations ton
available locations (i.e. a layoutπ), the moveheuristic
computes the change in the objective value that results
because of moving any workstationπi located at location
i to any of the locationsj 6= i. This is done for every
workstation and the improvements are recorded. Then
the moveoperation resulting in the largest improvement
is realized. The procedure is repeated until no improve-
ment is possible. Moving workstationπi from locationi

Temel Öncan anḋI.Kuban Altınel 29

to locationj consists of a sequence of location changes.
First workstationπi is moved to locationj. Then, if
j < i workstationsπj , πj+1, . . . , πi−1 at locationsj, j +
1, . . . , i − 1, are shifted forward to locationsj + 1, j +
2, . . . , i. If i < j, backward shift occurs for workstations
πi+1, πi+2, . . . , πj , from locationsi + 1, i + 2, . . . , j to
locationsi, i+1, . . . , j−1. Recall that the changes in the
objective function values due to forward and backward
move operations are respectively given by expressions
(9) and (10) in Section II.

The reverseoperation simply reverses the order of
workstations of a given layout. In particular when ap-
plied to the layout obtained by themove heuristic,
usually results in a layout with a larger objective function
value. However, when themoveheuristic is implemented
on the reversed layout, a new layout which is better than
the one of the previousmoveheuristic has been given,
can be obtained. In other words,reversesomewhat rep-
resents an uphill move to escape from a local optimum
solution obtained bymove heuristic. Moreover, it has
been shown that themoveheuristic following areverse
operation does not worsen the layout themoveheuristic
preceding thereverseoperation gives [3].

To better illustrate this, consider Node 1 in Figure 6.
In Node 1, the set of assigned workstationsi andj, are
respectively assigned in the first and second available
locations in the partial sequence. To compute the upper
bound value of Node 1 we need to obtain a complete
sequence of all four workstations. In other words, we
need to temporarily locate the unassigned workstations
k and l to the candidate positions, namely the third
and fourth positions. We first run KK3 to construct a
sequence then MR to improve the layout for the rest of
the partial sequence. Suppose that MR outputs{l, k}.
Then the feasible solution can be represented with the
solution{i, j, l, k} and the upper bound value is UB1 =
Ci + (Cj − fij) + (Cl − fil − fjl).

D. Dominance Rules

Dominance rules help to identify the set of dominant
sequences. Given two sequencesπ and π, π dominates
π, means that the objective function value obtained with
π is better than the one obtained withπ. For a feasible
instance of the problem, there is at least one sequence
which dominates other sequences.

In this section we first present existing dominance
rules, which are based on the notion of location in-
terchanges. Then we propose a new dominance rule
based on the notion of move operations. An interchange
operation is the basic action of the famousswapheuristic
which is widely used for solving the facility layout

problems [7]. Consider the initial sequence

π = (1, ..., i − 1, i, i + 1, ..., j − 1, j, j + 1, ..., n) (26)

and the sequence obtained by interchanging the locations
of workstationsi and j

π = (1, ..., i − 1, j, i + 1, ..., j − 1, i, j + 1, ..., n). (27)

Then the change in the cost function is

∆c2 = c2(π) − c2(π) =

j−1
∑

k=i+1

{(fkj − fjk) + (fik − fki)} + fij − fji. (28)

wherec2 is the objective function of the UCLP. Clearly
when∆c2 is positive then we have a positive gain from
this interchange operation. Kouvelis and Kim [15] uses
(28) to develop new dominance rules for identifying local
optimal solutions. Based on these rules they have devised
three construction heuristics: KK1, KK2 and KK3. KK3,
is the best of them. Later, Kıran and Karabatı [11]
have used formula (28) to propose General Dominance
(GD) and Adjacent Dominance (AD) rules which they
used within their branch and bound algorithm. The GD
rule is applied within the branch and bound algorithm
when a new node in the branching tree is generated.
Every time a new node is generated, a workstationi
from the unassigned set is located at the first available
location of the partial sequence. With the GD rule, we
first compute all the interchange costs of workstation
i with the workstations of the partial sequence, and in
case of a positive gain, we do not consider this newly
generated node for further consideration. One weakness
of the GD is its CPU time requirement. Considering
this, Kıran and Karabatı [11] have come up with another
dominance rule: AD which is a simplified version of the
GD rule. They consider only adjacent workstations. In
the branch and bound algorithm, the AD rule computes
the interchange cost of workstationi and the workstation
immediately before workstationi in the partial sequence.
In case this value is positive, the new node is fathomed.
The AD rule is also used by Lee, Huang and Chiang
[16] within their branch and bound algorithm.

Both GD and AD are interchange based dominance
rules. Now we propose a new dominance rule based
on the idea of move operations. According to extensive
computational experiments, Tansel and Bilen [22] have
observed that themoveheuristic is more efficient than
the swapheuristic. This is the basic result that the move
based dominance rule is expected to be more efficient
than GD and AD rules. Moreover, a move operation
is more elementary than an interchange operation; and

30 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

every interchange operation can be performed by two
move operations.

In our branch and bound algorithm, we only apply the
move based dominance rules when a new workstationi
is assigned to the last available position of the partial
sequence. We efficiently compute the cost of all possible
forward and backward move operations of workstationi
through the partial sequence by using formula (9) and
(10), respectively. In case a positive gain is detected
in the objective function value we do not consider this
node for further branching namely, this node is fathomed.
For instance consider Node 1. At this node we have
assigned workstationj to the available position at the
end of the partial sequence{i} of Node 0, and we have
obtained partial sequence{i, j}. However, if the cost
of partial sequence{j, i}, which is obtained by moving
workstationj into location i, is better than the partial
sequence{i, j}, then the partial sequence{i, j} must be
reordered as{j, i} in the optimal sequence. As a result,
we do not consider Node 1 for further branching.

IV. T HE DYNAMIC PROGRAMMING ALGORITHM FOR

THE BUCLP

The dynamic programming approach presented in this
section is based on the ideas of the seminal works by
Held and Karp [8] and Karp and Held [10] for se-
quencing problems. Their dynamic programming scheme
is extended to the one dimensional space allocation
problem, [18], the row layout problem [14] and the single
machine scheduling problem [1].

Consider a subsetS of the set of workstationsN =
(1, 2, . . . , n) with cardinality |S| and S = N \ S.
Let Z(S) denote the optimal objective value of the
BUCLP formulation such that the set of workstations
are located in the leftmost position of the sequence (e.g.
π = (π1, π2, . . . , π|S|). For the first stage, we set the
boundary condition

Z({i}) = 0 ∀i ∈ N (29)

Then the recursive relationship

Zi(Sk+1 = Sk ∪ {i}) =

min
j∈Sk

(Zj(Sk)) +

∑

l∈Sk

fil

(30)

is valid for stage|Sk| + 1, where|Sk| is the cardinality
of the subsetSk which consists ofk workstations and
i ∈ Sk

The optimal solution is reached by backtracking from
stagen. That is to say, the optimum solution is given
by Z(N). Karp and Held [10] have shown that by

using the recursive relationship (30) we can reach to
the optimum inO(n2n) operations. As noted by Hubert,
Arabie and Meulman [9], the dynamic programming
implementations of this type are extremely memory re-
source dependent. Indeed, we were able to solve BUCLP
instances of size up to20 workstations with our hardware
platform of 1GByte memory.

V. COMPUTATIONAL RESULTS

In an FMS environment, workstations are intercon-
nected by a material handling system and able to process
different part types simultaneously. In our experiments
we consider four different FMS environments with re-
spectively 20, 30, 40 and 50 workstations interconnected
by a unidirectional cyclic material handling system. We
also fix the number of different part types to 50.

Let P= {1, . . . , P} be the set of part types andfp
ij be

the total number of parts of typep that flow from station
i to stationj per period of time. Notice P=50 in our test
bed. Then,

fij =
∑

p∈P

fp
ij i, j = 1, . . . , n; i 6= j (31)

determines the part flow per time period from stationi to
stationj. When the flow is balancedfp

ij can be expressed
as

fp
ij = npn

p
ij i, j = 1, . . . , n; i 6= j ; p ∈ P (32)

wherenp denotes the number of parts of typep to be
processed in the system andnp

ij denotes the number of
moves part typep makes from stationi to stationj per
period of time, since no part is lost and no new part
is created during the process to cause an unbalance in
the flow. Each part type may have a different process
plan. The process planSp is the sequence in which
part typep visits the workstations. Notice that in any
process plan a part can visit a workstation more than
once, and hence a workstation’s number can appear
more than one time inSp, but not consecutively. Hence,
np

ij specifies the number of times workstationsi and
j appear consecutively (i immediately beforej) in the
process planSp. We have generated randomly 30 process
plans, for each one of 50 part types, for our four FMS
environments. For this purpose we first created uniform
positive integer numbers between 1 and the number
of workstations, (i.e. 20, 30, 40 or 50) to determine
the number of workstations to be visited by this part
type. This actually gives the size of a linear array
representing a process plan, which we fill entry by entry
by uniform positive integers between 1 and the number
of workstations while preventing the same integer from
occurring consecutively more than one time. This makes

Temel Öncan anḋI.Kuban Altınel 31

30× 50× 4 = 600 process plans at sum; and they are all
used in the generation of all instances.

As it can be observed when the part flow is balanced
formula (32) applies and the value ofnp has a direct
effect to the magnitude offij . Hence, it is possible to
control the range of numbers in the part flow matrix
by means ofnp. We generate three sets ofnp with
p = 1, . . . , 50 respectively from uniform distributions
U(1,10), U(1,50) and U(1,100) as done by Tansel and
Bilen [22]. They correspond to low, medium and high
variation part flows. We will mark the instances with
letters L, M and H to identify the type of variation
they have, in the sequel. We first use formula (32)
then formula (31) to obtain balanced part flows between
workstation pairs. We generate 10 test problems per
variation type.

In each set, instances are grouped according to the
type of variation their flows have. Each group is formed
by four 10-problem packages respectively with 20,
30, 40 and 50 workstations. For example the instance
Bal20-M3 is the third instance of the 10-problem
package with 20 workstations and medium variation
in part flows. In short, there are 40 test instances for
each variation type, which makes a test bed of 120 test
instances.

The results of our dynamic programming approach are
presented in Table I. We report the CPU time as the
performance measure of the algorithm. The first, third
and fifth columns of these tables stand for instances.
With the second, fourth and sixth columns only reports
the CPU times for instances with 20 instances. We could
not solved instances with larger size because of our
limited memory storage (1 GByte).

The results of our branch and bound algorithm are
summarized in Tables II – V. We report both the number
of nodes explored and the CPU time as computational
performance measures. The first, fourth and seventh
columns of these tables stand for instances. These in-
stances are randomly generated as we explained above.
The second, fifth and eighth columns give the number of
nodes explored until the optimal solution is reached. The
third, sixth and ninth columns are the total CPU times
in seconds.

Considering the overall CPU time averages of the in-
stances in Tables I and II which are 58.11 and 20.67 secs.
respectively, it may seem that the dynamic programming
approach is more advantageous than the branch and
bound approach. However, this is not the case since the
minimum and maximum CPU times are 6.11 and 271.16
secs. for the branch-and-bound algorithm and, 15.09 and
29.93 secs. for the dynamic programming algorithm.
Moreover, we can not say that the dynamic programming

TABLE I

CPU TIMES (SEC.) FOR THE DYNAMIC PROGRAMMING

ALGORITHM

Instance CPU Instance CPU Instance CPU

Bal20-L1 22.46 Bal20-M1 21.76 Bal20-H1 16.37

Bal20-L2 15.09 Bal20-M2 19.27 Bal20-H2 27.28

Bal20-L3 19.63 Bal20-M3 22.12 Bal20-H3 27.72

Bal20-L4 19.71 Bal20-M4 22.64 Bal20-H4 29.93

Bal20-L5 21.70 Bal20-M5 16.65 Bal20-H5 19.34

Bal20-L6 15.30 Bal20-M6 22.67 Bal20-H6 19.26

Bal20-L7 17.47 Bal20-M7 21.99 Bal20-H7 16.01

Bal20-L8 18.06 Bal20-M8 20.64 Bal20-H8 22.75

Bal20-L9 21.89 Bal20-M9 23.40 Bal20-H9 23.48

Bal20-L10 17.48 Bal20-M10 16.47 Bal20-H10 21.54

Average 18.88 Average 20.76 Average 22.37

approach is superior to the branch and bound algorithm
because of its excessive memory storage requirement.

We could only solve instances with up to 50 worksta-
tions, it is because the computational effort to find the
optimum solution grows exponentially with the number
of workstations. It is an expected result since BUCLP is
naturally a difficult problem as most of the combinatorial
optimization problems. However, the proposed branch
and bound algorithm appears quite efficient to solve real-
life problems.

As a last remark, we can say that as the variation in
part flow matrix increases the number of nodes explored
increases. This can be observed better for test sets with
20 workstations in Table II.

Finally, we should point out that, our codes are written
using C++ programming language and all the computa-
tional tests are realized on a 1.7 GHz Pentium IV PC
with a 1 GByte RAM.

32 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TA
B

LE
II

C
O

M
P

U
T

A
T

IO
N

A
L

R
E

S
U

LT
S

O
F

T
H

E
B

R
A

N
C

H
A

N
D

B
O

U
N

D
A

L
G

O
R

IT
H

M
F

O
R2

0
W

O
R

K
S

T
A

T
IO

N
IN

S
T

A
N

C
E

S

In
st

an
ce

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)I

ns
ta

nc
e

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)I

ns
ta

nc
e

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)

B
al

20
-L

1
19

8.
90

B
al

20
-M

1
19

6.
50

B
al

20
-H

1
19

7.
01

B
al

20
-L

2
19

8.
63

B
al

20
-M

2
42

8
17

3.
18

B
al

20
-H

2
58

3
26

3.
56

B
al

20
-L

3
19

6.
11

B
al

20
-M

3
19

8.
43

B
al

20
-H

3
74

38
.0

1

B
al

20
-L

4
19

7.
21

B
al

20
-M

4
19

6.
47

B
al

20
-H

4
31

16
.0

1

B
al

20
-L

5
19

7.
31

B
al

20
-M

5
19

7.
25

B
al

20
-H

5
39

0
15

5.
77

B
al

20
-L

6
19

6.
64

B
al

20
-M

6
29

10
.9

0
B

al
20

-H
6

38
16

.3
6

B
al

20
-L

7
56

1
20

3.
79

B
al

20
-M

7
19

7.
39

B
al

20
-H

7
61

6
27

1.
16

B
al

20
-L

8
19

8.
87

B
al

20
-M

8
38

1
17

8.
56

B
al

20
-H

8
19

8.
69

B
al

20
-L

9
19

7.
95

B
al

20
-M

9
31

11
.6

2
B

al
20

-H
9

37
9

16
5.

88

B
al

20
-L

10
18

3
70

.1
5

B
al

20
-M

10
83

36
.1

3
B

al
20

-H
10

52
18

.7
4

A
ve

ra
ge

89
.6

33
.5

6
A

ve
ra

ge
10

4.
70

44
.6

4
A

ve
ra

ge
22

0.
10

96
.1

2

TA
B

LE
III

C
O

M
P

U
T

A
T

IO
N

A
L

R
E

S
U

LT
S

O
F

T
H

E
B

R
A

N
C

H
A

N
D

B
O

U
N

D
A

L
G

O
R

IT
H

M
F

O
R3

0
W

O
R

K
S

T
A

T
IO

N
IN

S
T

A
N

C
E

S

In
st

an
ce

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)

B
al

30
-L

1
81

4
23

8.
39

B
30

-M
1

15
15

64
2.

69
B

30
-H

1
93

4
33

4.
64

B
al

30
-L

2
11

89
48

3.
94

B
30

-M
2

37
03

17
81

.8
5

B
30

-H
2

14
28

43
2.

83

B
al

30
-L

3
18

52
82

7.
05

B
30

-M
3

63
1

26
7.

78
B

30
-H

3
18

03
77

8.
36

B
al

30
-L

4
24

21
89

5.
53

B
30

-M
4

24
84

11
17

.4
9

B
30

-H
4

64
72

31
61

.1
3

B
al

30
-L

5
27

27
96

9.
67

B
30

-M
5

20
94

97
2.

69
B

30
-H

5
10

93
37

4.
96

B
al

30
-L

6
91

5
28

2.
92

B
30

-M
6

12
74

53
0.

13
B

30
-H

6
93

1
44

4.
11

B
al

30
-L

7
84

8
35

0.
12

B
30

-M
7

22
60

75
6.

87
B

30
-H

7
10

92
54

6.
61

B
al

30
-L

8
26

83
10

68
.6

5
B

30
-M

8
72

9
34

7.
19

B
30

-H
8

19
46

63
1.

30

B
al

30
-L

9
97

9
36

5.
02

B
30

-M
9

25
03

10
20

.6
8

B
30

-H
9

20
11

76
4.

62

B
al

30
-L

10
25

10
11

58
.0

3
B

30
-M

10
72

6
33

6.
78

B
30

-H
10

11
63

45
4.

25

A
ve

ra
ge

16
93

.8
0

66
3.

93
A

ve
ra

ge
17

91
.9

0
77

7.
42

A
ve

ra
ge

18
87

.3
0

79
2.

28

Temel Öncan anḋI.Kuban Altınel 33

TA
B

LE
IV

C
O

M
P

U
T

A
T

IO
N

A
L

R
E

S
U

LT
S

O
F

T
H

E
B

R
A

N
C

H
A

N
D

B
O

U
N

D
A

L
G

O
R

IT
H

M
F

O
R4

0
W

O
R

K
S

T
A

T
IO

N
IN

S
T

A
N

C
E

S

In
st

an
ce

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)

N
od

es
E

xp
lo

re
d

C
P

U
(s

ec
.)

B
al

40
-L

1
15

32
0

48
12

.4
4

B
40

-M
1

14
23

8
34

96
.0

3
B

40
-H

1
17

34
0

48
70

.7
1

B
al

40
-L

2
18

57
3

52
96

.6
3

B
40

-M
2

13
57

3
36

49
.7

3
B

40
-H

2
19

00
2

94
02

.4
4

B
al

40
-L

3
16

42
9

63
62

.1
8

B
40

-M
3

12
84

0
31

90
.2

3
B

40
-H

3
14

23
1

37
02

.2
5

B
al

40
-L

4
13

92
0

63
00

.4
9

B
40

-M
4

16
84

9
56

70
.4

1
B

40
-H

4
22

30
6

77
60

.4
5

B
al

40
-L

5
11

39
2

49
97

.0
9

B
40

-M
5

19
57

9
71

71
.2

7
B

40
-H

5
20

09
3

70
21

.5
7

B
al

40
-L

6
18

31
2

75
30

.9
4

B
40

-M
6

20
92

4
52

48
.2

5
B

40
-H

6
18

69
9

75
38

.7
0

B
al

40
-L

7
16

32
7

65
31

.8
6

B
40

-M
7

18
42

0
59

80
.5

9
B

40
-H

7
22

31
3

75
92

.9
1

B
al

40
-L

8
18

34
4

51
07

.4
4

B
40

-M
8

21
03

3
48

65
.3

5
B

40
-H

8
20

98
9

62
34

.9
9

B
al

40
-L

9
14

23
2

65
19

.3
6

B
40

-M
9

17
36

4
62

45
.0

0
B

40
-H

9
17

38
5

83
90

.4
5

B
al

40
-L

10
12

32
9

52
13

.6
5

B
40

-M
10

15
39

0
47

68
.3

3
B

40
-H

10
17

33
0

70
67

.2
1

A
ve

ra
ge

15
51

7.
80

58
67

.2
1

A
ve

ra
ge

17
02

1
50

28
.5

2
A

ve
ra

ge
18

96
8.

80
69

58
.1

7

TA
B

LE
V

C
O

M
P

U
T

A
T

IO
N

A
L

R
E

S
U

LT
S

O
F

T
H

E
B

R
A

N
C

H
A

N
D

B
O

U
N

D
A

L
G

O
R

IT
H

M
F

O
R5

0
W

O
R

K
S

T
A

T
IO

N
IN

S
T

A
N

C
E

S

In
st

an
ce

N
od

es
E

xp
lo

re
d

C
P

U
N

od
es

E
xp

lo
re

d
C

P
U

N
od

es
E

xp
lo

re
d

C
P

U

B
al

50
-L

1
29

93
2

12
48

2.
28

B
50

-M
1

27
42

9
12

32
6.

68
B

50
-H

1
25

36
2

66
64

.9
0

B
al

50
-L

2
25

40
5

12
10

7.
16

B
50

-M
2

28
93

0
91

12
.5

8
B

50
-H

2
24

31
0

66
69

.5
0

B
al

50
-L

3
26

43
0

14
96

0.
16

B
50

-M
3

29
34

1
14

84
9.

18
B

50
-H

3
31

06
7

14
40

3.
44

B
al

50
-L

4
25

48
6

10
08

0.
09

B
50

-M
4

25
93

6
97

03
.5

6
B

50
-H

4
30

93
5

16
54

7.
81

B
al

50
-L

5
29

50
4

15
33

8.
44

B
50

-M
5

27
30

5
74

55
.8

5
B

50
-H

5
32

30
5

10
93

9.
66

B
al

50
-L

6
27

94
2

15
29

9.
75

B
50

-M
6

26
91

0
10

75
5.

22
B

50
-H

6
29

63
6

12
51

4.
65

B
al

50
-L

7
29

15
3

13
02

6.
67

B
50

-M
7

29
02

7
13

93
3.

35
B

50
-H

7
25

29
4

10
86

9.
25

B
al

50
-L

8
25

40
4

83
13

.3
5

B
50

-M
8

28
29

5
15

46
5.

80
B

50
-H

8
29

04
2

10
99

2.
40

B
al

50
-L

9
24

19
5

67
84

.0
1

B
50

-M
9

26
53

9
81

76
.1

8
B

50
-H

9
28

33
6

16
49

3.
90

B
al

50
-L

10
28

92
5

13
04

2.
66

B
50

-M
10

31
04

2
82

83
.1

6
B

50
-H

10
27

52
0

11
78

1.
65

A
ve

ra
ge

27
23

7.
60

12
14

3.
46

A
ve

ra
ge

28
07

5.
40

11
00

6.
16

A
ve

ra
ge

28
38

0.
70

11
78

7.
72

34 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

VI. CONCLUSIONS

In this work we have developed a branch and bound
algorithm for the BUCLP. Our algorithm is specially
designed for the balanced case of the UCLP. The special
property of the cost matrix, i.e. balanced work flow
matrix, gave a considerable advantage in our lower and
upper bound computations and branching strategy. We
have also proposed a dynamic programming algorithm
for the BUCLP. The dynamic programming approach
does also use the special work flow matrix property of
the problem. However, it requires excessive computer
memory and as a result, we were able to solve instances
with up to 20 workstations. On the other hand, the branch
and bound algorithm does not require as much memory
storage as the dynamic programming algorithm. With
the branch and bound algorithm we can solve instances
with up to 50 workstations. Both of these approaches are
special purpose algorithms for the BUCLP which explore
the special structure of the problem.

We used the MR heuristic of Altınel and̈Oncan [3] as
improvement phase in computing upper bounds. We can
say that it is a remarkably efficient heuristic. Moreover,
we also propose computationally efficient dominance
rules by using the balanced work flow property of the
problem and the basic move operation. These dominance
rules are not only employed within the branch and bound
algorithm but also within the dynamic programming
approach.

The relation between the BUCLP and the Linear
Ordering Problem is implied by Afentakis [2], and Potts
and Whitehead [20]. There are many other combinatorial
optimization problems with similar structures. The per-
mutation flow–shop scheduling problem, single machine
scheduling problem and single row layout problem are
only a few of them. One research topic is the adapta-
tion of techniques developed for the BUCLP to these
relatives.

ACKNOWLEDGEMENTS

This research has been partly supported by Boğaziçi
Research Fund Grant No: 04HA301D. The first au-
thor also acknowledges the hospitality and support of
the Computational Optimization Research Center at
Columbia University during his stay as a visiting scholar.

REFERENCES

[1] T. S. Abdul-Razaq and C.N. Potts, 1988, Dynamic programming
state-space relaxation for single-machine scheduling,Journal of
the Operational Research Society, 39 (2), 141-152.

[2] P. Afentakis, “A Loop Layout Design Problem for Flexible
Manufacturing Systems”. International Journal of Flexible
Manufacturing Systems, vol. 1, no. 2, pp. 207–219, 1981.

[3] İ. K., Altınel and T. Öncan, “The Design of Optimal Unidirec-
tional Cyclic Layout”, FBE-IE-06/2004-09, Institute for Graduate
Studies in Science and Engineering, Boğaziçi University, Bebek,
İstanbul, T̈urkiye, 2004.

[4] P. Banerjee and Y. Zhou, 1995, Facilities layout design opti-
mizatin with single loop material flow path configuration,Inter-
national Journal of Production Research, 33 (1), 183-203.

[5] J. A. Bennell, C.N. Potts and J.D. Whitehead, 2002, Local search
algorithms for the min-max loop layout problem,Journal of the
Operational Research Society, 53 (10), 1109-1117.

[6] Y. A. Bozer and S.C. Rim, “Exact Solution Procedures for
the Circular Layout Problem”, Report No 89-33, University of
Michigan, USA, 1989.

[7] R.L. Francis, J.A. White and L.F. McGinnis, Facility Layout and
Location: An Analytical Approach, Prentice – Hall, New Jersey,
1991.

[8] M. Held and R.M. Karp, 1962, A Dynamic Programming
Approach to Sequencing Problems,Journal of the Society for
Industrial and Applied Mathematics, 10, 196-210.

[9] L. Hubert, P. Arabie and J. Meulman, 2001, Combinatorial Data
Analysis, Optimization by Dynamic Programming, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[10] R.M. Karp and M. Held, 1967, Finite-State Processes and
Dynamic Programming,SIAM Journal of Applied Mathematics,
15, 693-718.

[11] A.S. Kıran and S. Karabatı, 1993, Exact and Approximate
Algorithms for the Loop Layout Problem,Production Planning
and Control, 4(3), 253–259.

[12] A.S. Kıran, A.T.Ünal and S. Karabatı, 1992, A Location Prob-
lem on Unicyclic Networks: Balanced Case,European Journal of
Operational Research, 62, 194–202.

[13] P. Kouvelis, W-C. Chiang and A.S. Kıran, 1992, A Survey of
Layout Issues in the Flexible Manufacturing Systems,OMEGA
International Journal of Management Science, 20(3), 375-390.

[14] P. Kouvelis, W-C. Chiang and G. Yu, 1995, Optimal algorithms
for row layout problems in automated manufacturing systems,IIE
Transactions, 27, 99–104.

[15] P. Kouvelis and M.W. Kim, 1992, Unidirectional Loop Network
Layout Problem in Automated Manufacturing Systems,Opera-
tions Research, 40(3), 533-550.

[16] S-D. Lee, K-S. Huang and C-P. Chiang, 2001, Configuring Lay-
out in Unidirectional Loop Manufacturing Systems,International
Journal of Production Research, 39(6), 1183-1201.

[17] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial
Optimization, Wiley – Interscience, New York, 1988.

[18] J., Pickard and M. Queyranne, 1981, On the one-dimensional
space allocation problem,Operations Research, 29(2), 371–391.

[19] C.N. Potts, 1985, A Lagrangean Based Branch and Bound Algo-
rithm for Single Machine Sequencing with Precedence Constraints
to Minimize Total Weighted Completion Time,Management Sci-
ence, 31, 1300–1311.

[20] C.N. Potts and J.D. Whitehead, 2001, Workload Balancing and
Loop Layout in the Design of a Flexible Manufacturing System,
European Journal of Operational Research, 129, 326-336.

[21] G. Reinelt, 1985,The Linear Ordering Problem: Algorithms
and Applications: Research and Exposition in Mathematics, vol.
8, In: Hoffmann H.H. and Wille R, (eds.), Heldermann Verlag,
Berlin.

[22] C.B. Tansel and C. Bilen, 1998, Move Based Heuristics for the
Unidirectional Loop Network Layout Problem,European Journal
of Operational Research, 108, 36-48.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 35

Multiobjective service restoration in electric

distribution networks using a local search based

heuristic
Vińıcius Jacques Garcia∗ and Paulo Morelato França∗

∗ Faculdade de Engenharia Elétrica e de Computação

Universidade Estadual de Campinas - UNICAMP

Av. Albert Einstein, 400. C.P.: 6101 - 13083-852

Campinas, SP, Brazil

Email: {jacques,franca}@densis.fee.unicamp.br

Abstract—Contingency situations may cause

emergency states in distribution systems; these

states are defined as the interruption of power

supply. The importance of the maintenance of the

quality limits in relation frequency and duration of

interruption means that such situations should be

avoided whenever possible. The main objective of

service restoration is to minimize the number of

consumers affected by the fault, transferring them

to distribution support feeders to restore power

while maintaining electrical and operational condi-

tions, such as radial network configuration, equip-

ment and voltage drop limits. This paper presents a

new local search based heuristic for the restoration

of service which considers the minimization of the

load not restored and of the number of switching

operations involved. Computational experiments

with three network systems have shown the flex-

ibility and effectiveness of the proposed method.

Keywords—power systems operation, distribu-

tion systems, service restoration, optimization

methods.

I. Introduction

C
ONTINGENCY situations can affect power
distribution systems and lead to a blackout

state, which is caused by the interruption of the
power supply for a portion of the network. Even
if such a fault is restricted and correctly isolated,
neighboring regions will be affected, thus reducing
the indices that measure the quality of service and
causing financial loss for utility companies. These
aspects have lead them to concern with all the
issues relating to the delivery of reliable power to
customers. Technical considerations suggest that re-
liability performance is closely related to frequency
and duration of service interruption. It is precisely

these two aspects can be significantly improved via
effective service restoration procedures.

The main objective of the solution of the Service
Restoration Problem (SRP) is to minimize the num-
ber of customers faced with an interruption of power
delivery by transferring them to support feeders via
network reconfiguration, while respecting all oper-
ational and electrical constraints. One factor to be
considered is the reaction time: outage areas should
be restored as quickly as possible to avoid a lowering
of the indices based on the duration of interruption.

As shown in the survey of [6], important work has
addressed the SRP since the late 80s. The guidelines
and operational procedures inspired by many of the
first contributions were based on purely heuristic
approaches [15] or artificial intelligence techniques
(expert systems) [12]. Such heuristic approaches were
used to solve the SRP for over a decade [18].

Recent papers, however, have addressed the inher-
ently multiobjective nature of the SRP. Lee et al.
[10] has incorporated the relevance of a variety of
factors in a multiobjective methodology using fuzzy
decision making. In the same year, a multiobjective
heuristic method was introduced, made use of indices
to guide a search towards a solution [14]. These
indices made it possible to distinguish systematically
between different network switches on the basis of
analytically determined criteria. Matos and Melo
[13] then introduced the well-known Simulated An-

nealing method for the network reconfiguration and
service restoration based on minimizing the number
of switching operations and maximizing the load sup-
plied. Later, Augugliaro et al. [3] suggested a method
that combines fuzzy sets with genetic algorithms
in the consideration of two criteria: maximization
of load supplied and minimization of power losses.

36 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Moreover, Ciric and Popovic [5] developed a heuristic
approach using mixed integer programming which
was based on a single objective function involving
a number of independent criteria.

The present paper proposes a new local search
method associated with a constructive procedure to
solve the SRP for radial networks through a multi-
objective heuristic search methodology. The problem
is defined in Section II, and the method described
in Section III. Finally, computational experiments
and conclusions are presented in Sections IV and V,
respectively.

II. Problem definition

When one observes a real distribution network,
it is possible to identify three well defined states
[17]: the normal state, the emergency state and the
restoration state. In the first, all loads are supplied
within current and voltage limits. The emergency
state is characterized by the activation of protective
devices which leave some areas with no power supply.
Restoration is that state characterized by attempting
to find support feeders to reestablish the power sup-
ply to as many load as possible.

The SRP arises with the occurrence of a fault,
switching the system from the normal to an emer-
gency state in an attempt to identify support feeders
which will be able to reduce the size of the out-of-
service area, while respecting the constraints related
to current and voltage limits.

The network reconfiguration proposed by a resto-
ration plan should be minimal, since the emergency
state is transitory existing only until the fault is
eliminated. The SRP should thus be considered as
a multiobjective optimization problem, since it must
minimize both the load not supplied and the num-
ber of switching operations. The solution for this
problem is a trade-off between these two criteria.
Other aspects such as power losses and feeder load
balance could be included, but are normally better
left for consideration after normal operating condi-
tions, whereas other constraints such as the line,
power source, and voltage drop limits are included in
the calculations to avoid the activation of protective
devices.

In the following mathematical formulation based
on [5] we define the SRP to minimize the number
of switching operations and the load not restored in
a scenario which considers limits on current, voltage
and substation power, power balance constraints and
the maintenance of a radial structure. In order to

avoid negative branch currents, imaginary branches
were included (variable X

′

).

Min z1 =
∑

k∈Fcs

(1 − Xk) +
∑

k∈Fcs

(1 − X
′

k) +

+
∑

k∈Fos

Xk +
∑

k∈Fos

X
′

k (1)

Min z2 =
∑

k∈B

(1 − Zk)Lk (2)

subject to:

∑

k∈Fq

Pk ≤ Gq, ∀q ∈ S (3)

Pk − IFk

maxXk ≤ 0, P
′

k − IFk

maxX
′

k ≤ 0, ∀k ∈ F (4)

|V min
k | ≤ |Vk| ≤ |V max

k |, ∀k ∈ B (5)

∑

k∈Fi

(Pk + P
′

k) +
∑

k∈Ti

(Pk + P
′

k) ≤ LiZi, ∀i ∈ B (6)

∑

k∈Ti

(Xk + X
′

k) ≤ 1, ∀i ∈ B (7)

Xk + X
′

k ≤ 1, ∀k ∈ F (8)

where on this problem:

• Zk is an integer variable denoting energizing of
load k (1) or its lack (0);

• Xk is an integer variable denoting use of branch
k (1) or its lack (0);

• X
′

k is an integer variable denoting use of imagi-
nary branch k (1) or its lack (0);

• Pk is a variable denoting the power flow in
branch k;

• P
′

k is a variable denoting the power flow in
imaginary branch k;

• B is the set of all buses;
• F is the set of all branches;
• S is the set of all source nodes in the network;
• Fi is the set of all branches whose initial node is

i;
• Ti is the set of all branches whose terminal node

is i;
• Fos is the set of all switches which are normally

open;
• Fcs is the set of all switches which are normally

closed;
• Lk is the load of bus k;
• Gq is the available power at source q;

Vińıcius Jacques Garcia and Paulo Morelato França 37

• Vk is the voltage at bus k;
• IFk

max is the flow capacity at branch k;
• V min

k /V max
k is the minimum/maximum accept-

able voltage drop at bus k.

In this multiobjective formulation, equation 1
refers to the minimization of the number of switching
operations involved and equation 2 to the minimiza-
tion of the load not supplied. The corresponding
constraints are the equations 3-8. Substation limits
are included in equation 3, whereas the equations
4 and 5 refer to the branch and voltage drop lim-
its, respectively. Power balance between supply and
demand is included in equation 6 and the radial
configuration is guaranteed by equation 7. Finally
equation 8 only permits the use of the real or of the
imaginary branch.

A feasible solution for the SRP must maintain
all network switch status so that the configuration
implemented not violate any of these constraints. In
fact, it is possible that there will be no restoration
plan capable of energizing any of the out-of-service
areas. When this happens the network configuration
implemented by the activation of protective devices
will be maintained until the fault is eliminated.

III. The local search based heuristic

method

In this paper a multiobjective heuristic search
method is proposed for the exploration of the search
space of the SRP, denoted by all post-fault network
configurations. This is a neighborhood-based method
which systematically generates solutions from the
transformation of others. The solutions generated,
called neighbor solutions, are derived by a specific
solution-generation mechanism.

Multiobjective optimization problems involve the
simultaneous minimization (or maximization) of a set
of conflicting criteria, while simultaneously satisfying
a certain set of constraints [19]. This optimization
procedure is based on a dominance relation in which,
given two criteria vectors z1 and z2, one says that z1

dominates z2 if z1
j ≤ z2

j for all of j objectives con-
sidered and z1

j < z2
j for at least one j. When a point

is not dominated by any other point, it is considered
non-dominated ; the set of all non-dominated points
is known as Pareto set or an efficient solution set.

Some assumptions must be done about the SRP:
(1) the distribution system is radial; (2) the pre-fault
system state is known; and (3) the faults have been
isolated.

Under these circumstances, the SRP is character-
ized by the occurrence of loads without a power

Light area

Black area

: Substation transformer.

: Load with power supply.

: Load without power supply.

: Linking arc
(branch with switch).

: Branch without switch.

Source node

Fig. 1. SRP graph representation for an hypothetical network.

supply, leading to their disconnection from the en-
ergized network. In a graph representation [1] there
is a light area, composed of all the loads where the
power supply has been maintained, and a black area,
including loads without power supply. Therefore, an
SRP instance corresponds to a forest graph, with one
tree for the light area and at least one other for the
black area. The best case solution is to reestablish
power supply for all loads in the black area.

Specially for solving the SRP, many other ap-
proaches have used evolutionary algorithms like Aoki
et al. [2], Hsu and Kuo [9], and Augugliaro et al. [3].
The major concern is related to the maintenance of
feasibility, since the problem has several constraints
which are not easy to be included into evolutionary
operators. Therefore, the proposed method attempts
to overcome this obstacle by adopting a local search
procedure with almost the same structure as de-
scribed in Ehrgott and Gandibleux [7]. In addition,
the initial non-dominated points are given by a con-
structive heuristic that considers one objective at a
time; however in the local search phase all objectives
are improved simultaneously. In order to promote
better diversity, a certain number of neighborhoods
are generated at the same iteration of the local
search, like in Hansen [8].

The proposed method makes use of an other very
important concept [20]: source nodes. These belong
to the light area, with each one having at least
one switch to connect it to the black area. These
switches, or linking arcs, are included in the graph
representation. Figure 1 shows the light and black
areas, the source nodes and the linkings arc for an
hypothetical network obtained after fault isolation.

This method of resolution is based on the appro-
priate use of source nodes to connect loads to the

38 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

MOLocalSearchBasedHeuristic(ITC , ITL, Nsol, Gop)
1. PS = Constructive(ITC , Gop);
2. PS = LocalSearch(ITL, Nsol, PS);
3. return(PS)

Fig. 2. Multiobjective heuristic search procedure.

light area, always respecting the problem constraints.
The feasibility of the solutions is maintained for every
load connected by using a backward-forward sweep

power flow method [4]. The algorithm illustrated in
Figure 2 shows how the constructive and improve-
ment phases are managed in the search process.

The algorithm considers three parameters, as well
as the pre-fault configuration(Gop): the first two
parameters correspond to the maximum number of
iterations of the constructive phase (ITC) and of
the local search phase (ITL), respectively; the third
(Nsol) refers to the number of solutions for which the
search will be conducted in parallel in the local search
phase.

The first two steps refer to the phases in the
solution of the problem, both requiring a specific
solution representation. Step 1 involves the creation
of initial solutions, whereas the Step 2 involves their
improvement. These two steps will be discussed in
the following sections, as well as the solution repre-
sentation adopted. Finally, in Step 3, the Pareto set
PS is returned as the result.

A. Solution representation

One of the most common ways to represent
a distribution system configuration is through its
switch states. A vector containing the status of all
switches can be used to denote such a configuration:
[x1, x2, . . . , xn], where xi = 1 if the switch i is closed
or xi = 0 if it is open. This approach has been
adopted by two well-known papers, those of Morelato
and Monticelli [15] and Hsu and Kuo [9]. One disad-
vantage of this representation is the difficulty of pre-
serving a feasible configuration when a search space
of 2n combinations is considered. Even approaches
such as that proposed by Aoki et al. [2], which try
to reduce this number of combinations by adopting
heuristic techniques to manipulate the switches, may
have trouble in overcoming large outage areas.

In this paper we propose a forest graph [1] to
represent the radial distribution system. Such a rep-
resentation is obtained from consideration of the
system switches as graph arcs and of the system buses
as graph nodes. However, neither the constructive
heuristic nor the local search algorithm consider the

32

1

4

6 7

5

8

0

0

1

1

2 1

5 4

7
69 8

3

Fig. 3. Sample Network.

TABLE I

Representation for the sample network.

Nodes
1 2 3 4 5 6 7 8

N(i) 2 3 0 6 8 7 0 0
P (i) 0 1 1 0 0 4 4 5
D(i) 0 1 1 0 0 1 1 1
T (i) 1 1 1 2 3 2 2 3

Trees
1 2 3

R(a) 1 4 5

search space of the nodes, but rather that of sectors,
in which configuration cannot change because there
are no switches. Such an approach can reduce the
processing time, since the search space of sectors is
smaller than that of nodes.

Figure 3 and Table I show a sample forest graph
network and its correspondent representation. The
system configuration is managed by five lists: List
N(i) providing the next node for node i when the
graph is traversed in preorder [1]; List P (i) indicating
the predecessor node of node i; List D(i) furnishing
the depth of node i; and List T (i) determining the
tree to which node i belongs. The fifth list, R(a),
is needed to indicate the root of the trees, with the
number 1 conventionally referring to the light area.

In order to reduce computational time, we have
adopted a special structure for storing the sectors
of the distribution system and for facilitating the
manipulation of these sectors. The algorithms of
the method make use of this structure especially
when a sector is included in a single tree. Since the
representation stores all the nodes of the graph, it
is advantageous to maintain a structure that helps
add all the nodes of a single sector to a given tree,
thus preventing unnecessary search across those arcs
which are outside the sector. Such a structure is
shown in Figure 4 for the sample network in Figure 3.

Vińıcius Jacques Garcia and Paulo Morelato França 39

The list S(i) attempts to store the relation between
nodes and sectors, in such a way that it is possible
to identify the sector in which a node is located at
the time O(1) [11]. Given the sector of a node, the
adjacency list of this sector can also be retrieved for
this same time O(1). With this information in hand,
the next step is to determine the node in which the
sector tree will be rooted, thus making it possible to
traverse the adjacency list of the sector.

2

3

2

1

3

2 3

1

1

1

1 2 3 4 5 6 7 8

2

3

6

4

7

2 3

1

1

1

2

2

1

1 5

8

S(i) S1 S1 S1 S2 S3 S2 S2 S3

S1 S2 S3

Fig. 4. Data structure for storage of sectors of the distribution
system.

Given the representation and the data structure
adopted, it is possible to define the algorithms that
use them. The next two sections describe the con-
structive and local search algorithms used by the
procedure developed.

B. Constructive phase

The constructive phase is carried out by a random
version of the well-known Prim algorithm [1]. Two
versions were originally developed, one for minimiz-
ing the load not supplied and the other for mini-
mizing the number of switching operations, with the
first consisting of a breadth-first search and the latter
a depth-first search. These two search algorithms
attempt to produce solutions topologically different
from each other.

The constructive algorithm is shown in Figure 5.
Two parameters are included: ITC corresponding to
the number of iterations for which the algorithm is
repeated; and Gop being the network graph after the
system fault has been isolated. The first two steps
refer to the initialization of the set PS (Step 1) and
of the iteration count it (Step 2). The loop between
Steps 3 and 23 includes the construction of the source
node list (Step 4) and the execution of two other
loops: one for minimization of the load not supplied
(Steps 6-13) and the other for minimization of the
number of switching operations involved (Steps 15-
22). Before each one, the solution Gsol is set to the
same configuration of Gop, Steps 5 and 14.

Constructive(ITC , Gop)
1. PS = ∅;
2. it = 0;
3. while(it < ITC) do

4. SNL1 = SNL2 = CreateSourceNodes(Gop);
5. Gsol = Gop;
6. while(size(SNL1) 6= 0) do

7. ADJ = AdjcentNodes(SNL1[0], Gsol);
8. if(size(ADJ) 6= 0) do

9. i = LoadBasedRandom(ADJ,Gsol);
10. AddToEnd(i, SNL1);
11. if(Include((SNL1[0], i), Gsol)) then

12. Update(PS, Gsol);
13. else RemoveFirst(SNL1);
14. Gsol = Gop;
15. while(size(SNL2) 6= 0) do

16. ADJ = AdjcentNodes(SNL2[0], Gsol);
17. if(size(ADJ) 6= 0) do

18. i = SwitchBasedRandom(ADJ,Gsol);
19. AddToBeginning(i, SNL2);
20. if(Include((SNL2[0], i), Gsol)) then

21. Update(PS, Gsol);
22. else RemoveFirst(SNL2);
23. it = it + 1;
24. return(PS);

Fig. 5. Constructive algorithm developed.

The breadth-first search conducted in the loop
between Steps 6 and 13 attempts to minimize the
load not supplied. First a list of adjacent nodes of
the first node in the SNL1 list is generated (Step 7).
If this list is empty means that the current source
node has no successor nodes to connect with it and
then this node is removed from the search list SNL1.
Otherwise, if the list ADJ is not empty, one node
i is chosen according to a roulette wheel selection
function weighted by node loads (Step 9). Next, this
node i is included in end of list SNL1 (Step 10). At
this point the arc to be included in the solution graph
Gsol is already defined: between nodes SNL1[0] and
i. In Step 11 this inclusion is carried out but it is
only completed if the solution Gsol remains feasible
after that. The approximated Pareto set PS is only
updated (Step 12) if this inclusion has occurred. This
loop will be repeat until the search list SNL1 is
empty. The depth-first search is conducted as the
same manner as the breadth-first search (Steps 15-
22), except by Steps 18 and 19: the adjacent node
i is chosen on the basis of a roulette wheel selection
function weighted by switch status in Step 18; in Step
19 this node i is included in the beginning of the list.
The algorithm finishes when the maximum number
of iterations (ITC) has been reached.

The constructive algorithms can be understood
better by considering Figure 3. The black area in-

40 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

cludes nodes 4-8, while nodes 2 and 3 are the source
nodes. Suppose that all arcs are switches and that
node of the switches associated with arcs 3, 4 and 5
can support the power load for the entire black area
(nodes 4-8), and further that L(4) > L(6) > L(7) >
L(5) > L(8), where L(i) corresponds to the load of
node i. Therefore, the only way to restore nodes 4-8
is to connect some of the nodes to the source node
2 and the others to node 3. When executing the
constructive algorithm for minimizing the load not
supplied, suppose that the source node 2 is the first
chosen. Its adjacent nodes are nodes 4 and 5. Since
L(4) > L(5), node 4 is first included in the light area
and its adjacent nodes will only be considered after
the evaluation of node 5, as shown in Figure 6(a).
Given the power flow limits on the arcs 4 and 5, the
final configuration will involve the inclusion of nodes
4, 5 and 6 in the light area, by closing switches 4,
5 and 9. Figures 6(b) e 6(c) shows the inclusion of
nodes 5 and 6.

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(a) Node 4.

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(b) Node 5.

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(c) Node 6.

Fig. 6. Inclusion of nodes to the light area following the
constructive algorithm for minimizing the load not supplied.

The second algorithm follows the same basic pro-
cedure, except that it uses a depth-first search and
selects the nodes according to the number of switch-
ing operations involved when current status is com-
pared to the pre-fault configuration. Making the same
assumptions as in the previous example and further
switches 6, 8 and 9 were closed in the pre-fault config-
uration, the network configurations reached after ex-
ecuting the second constructive algorithm are shown
in Figures 7(a)-7(e). The construction begins with
the choice of node 3 as the first source node. From
that it is possible to connect only node 5 (Figure
7(a)). After, node 8 is chosen due the switch status
in arc 6 (Figure 7(b)). Since there are no successors
from node 8, node 7 is then considered (Figure 7(c)).
Remembering the limits in arcs 3, 4 and 5, no further
inclusions are feasible. Therefore, source node 2 is
chosen and nodes 4 and 6 are included one at a time
as shown in Figures 7(d) and 7(e).

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(a) Node 5.

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(b) Node 8.

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(c) Node 7.

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(d) Node 4.

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(e) Node 6.

Fig. 7. Inclusion of nodes to the light area following the
constructive algorithm for minimizing the number of switching
operations involved.

C. Local search phase

The local search phase tries to improve on the
initial solutions by using a multiobjective search
procedure, which generates neighbor solutions by
changing the source node for each node or sector
in the black area. Moreover, after defining the node
or sector and the new source node is needed to
choose the path between them. In order to find well
distributed solutions in the objective space, a subset
of them is explored in parallel, employing Pareto
dominance as the optimization criterion.

For a better understanding of the procedures in-
volved in this phase, consider Figure 3 and arcs 3, 4,
5 and 7 as the only switches in the network. With
this assumptions three sectors are obtained, one cor-
responding to the light area and the other two to the
black area: sector 1 (light area) including nodes 1-3;
sector 2 (black area) including nodes 4, 6 and 7; and
sector 3 (black area) including nodes 5 and 8. Given
a solution with all switches open, the corresponding
neighbor solutions are presented in Table II. Each
line represents a solution (first column) generated by
changing the source node (third column) of a sector
(second column) through a path (fourth column)
between them.

Figure 8 explains how the multiobjective local
search is conducted. The parameters include the
maximum number of iterations (ITL), the number
of solutions to be explored in parallel (Nsol), and
the approximate Pareto set (PS). Two other sets are
also used during the procedure : the first containing
the non-dominated solutions generated during the

Vińıcius Jacques Garcia and Paulo Morelato França 41

TABLE II

Neighbor solutions for the network given in

Figure 3.

Solution Sector Source Node Path

1 2 2 4-2
2 2 2 7-5-2
3 2 3 7-5-3
4 3 2 5-2
5 3 2 5-7-4-2
6 3 3 5-3

current iteration (PSi); and the second containing
the representative solutions chosen for exploration
(PSr). The loop between Steps 2 and 15 is repeated
for all the iterations (ITL). Steps 3 and 4 attempt to
reduce the PS by using a clustering procedure [16],
which extracts the Nsol most representative solutions
from PS and stores them in PSr, while the remaining
solutions stay in PS. For each solution of the set
PSr a neighborhood is generated by changing the
source node for each black area node or sector (Steps
6-13), also considering all the paths between the
given node or sector and the reachable source nodes.
Each iteration of the loop of Step 8 includes the
initialization of solution s, the disconnection of the
node or sector from the current source node (Step
10) and further its connection to the new source node
obtained from the given path ck (Step 11). In case of
feasibility of solution s, it is used to update the set of
non-dominated solutions of the iteration i (Steps 12
and 13). After the loop between Steps 6-13, the PSi

set is used to update the main set of non-dominated
solutions PS (Step 14). This updated PS set is then
used for the next iteration for the selection of further
representative solution. Finally the iteration counter
is incremented in Step 15 and the PS set is returned
as the result in Step 16.

For example, consider Figure 9(a) and suppose
that node 4 is chosen by the local search to be
connected to the source node 3 through the path
4-8-7-5-3. Also consider that arcs 3, 4, 5 and 7 are
the only switches in the network. First, node 4 is
disconnected from source node 2, by opening switch
5, as shown in Figure 9(b). Since node 4 is included
in the sector with nodes 6 and 7, all of them should
be connected with node 4 to the source node 3.
Figure 9(c) shows the network configuration after
this connection. Note that nodes 5 and 8 are also
included into the light area because they are on the
path between node 4 and the source node 3. The same
procedure will be conducted to the other sector in the

LocalSearch(ITL, Nsol, PS)
1. it = 0;
2. while(it < ITL) do

3. if(|PS| > Nsol) then

4. PSr = Reduce(PS,Nsol);
5. PSi = ∅;
6. for each si ∈ PSr do

7. for each sector tj in the black area of si do

8. for each path ck between tj and a source node do

9. s = si;
10. Disconnect(tj , current source node, s);
11. Connect(tj , ck, s);
12. if s is feasible then

13. Update(s, PSi);
14. Update(PSi, PS);
15. it = it + 1;
16. return(PS);

Fig. 8. Multiobjective local search procedure.

black area.

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(a)

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(b)

32

1

4

6 7

5

8

2 1

5 4

7
69 8

3

(c)

Fig. 9. Example of changing of source node in the local search
procedure.

IV. Computational results

The proposed multiobjective local search based
heuristic method was applied to three distribution
systems, as shown in Table III. The former was
obtained from the paper of Baran and Wu [4]; the
second was presented by [3], and the latter corre-
sponds to an actual Brazilian distribution system.
The programming language used was C++, on a
Pentium 4 PC with 2.8 GHz running Linux 2.6.

In order to evaluate the performance of the pro-
posed method, it was developed a randomly exhaus-
tive enumeration which generates arrangements at
random, considering the nodes to connect to the light
area as well as their respectively paths up to the
source nodes. After several hours of cpu time, it was
obtained one front for each system considered.

The proposed method has four parameters: the
number of iterations for the constructive phase; the
number of iterations for the local search phase; the
number of neighborhoods to generate at each itera-
tion of the local search; and the pre-fault configura-
tion. For the first one it was established a value of

42 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE III

Distribution systems considered.

System # substations # nodes # sectors # arcs # switches total load (kW) black area load (kW)

1 1 34 1 40 40 3,715 1,490
2 5 90 1 112 113 28,612 3,814
3 1 1,057 42 1,078 63 11,542 3,343

n2/2, where n is the number of switches in the black
area. For the second and third ones were generated a
certain number of combinations in order to evaluate
the influence they have in the final result. As the last
parameter corresponds to the SRP instance, it was
taken one for each system described in Table III.

Table IV shows the results after executing the pro-
posed method in three blocks, one for each system.
The first line of each block contains the initial front
obtained after executing the constructive phase. The
column information is as follows: the first contains
the system; the second contains the number of it-
erations for the local search phase; the third con-
tains the number of neighborhoods generated at each
iteration of the local search; the fourth containing
the computational time, in seconds, for executing the
method; and last containing the final front obtained
after executing the proposed heuristic. The solution
values are present in pairs (x; y), where x refers to the
load not supplied and y to the number of switching
operations involved.

When considering the results for the first two
systems, it can be noted that there was not differ-
ence between the fronts obtained after executing the
method with each combination of parameter values.
However, in both cases the contribution of the second
phase is clear, since it tries to approximate the front
obtained to the optimal Pareto front.

The results for the system 3 presented in Table IV
show a clear influence of both parameter values in
the quality of the final Pareto front. In general, the
proposed heuristic obtained the best results for the
large number of iterations and the large number of
neighborhoods explored at a time.

Figures 10-12 summarize the results of Table IV
when considering two combinations of parameter
values for each system: 150 iterations (It) and 2
neighborhoods generated at a time (Nghd) and 150
iterations and 4 neighborhoods generated at a time.
The optimal front obtained by randomly exhaustive
enumeration is also included. For all systems the
proposed method was able to reach near optimal
fronts, including solutions that were not obtained by
the randomly exhaustive enumeration, for instance

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500 600 700 800 900 1000 1100

It=150,N =2
It=150,N =4

initial front
best front.

ghd

ghd

Power not supplied (kW).

N
u
m

.
sw

it
ch

in
g

o
p
er

a
ti
o
n
s

Fig. 10. Fronts obtained for system 1.

 0

 1

 2

 3

 4

 5

 6

 7

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900

It=150,N =2
It=150,N =4

initial front
best front.

ghd

ghd

Power not supplied (kW).

N
u
m

.
sw

it
ch

in
g

o
p
er

a
ti
o
n
s

Fig. 11. Fronts obtained for system 2.

solutions (1368; 3), (518; 5) and (0; 6) for system 3.
After all, for all systems, the non-dominated solu-
tions were relatively well distributed over the front
obtained and the computational time required was
minimal.

V. Conclusions

This paper has presented a multiobjective local
search based heuristic method to solve the Service
Restoration Problem (SRP) in electrical distribution
systems. The mathematical formulation presented
considers the minimization of the load not supplied

Vińıcius Jacques Garcia and Paulo Morelato França 43

TABLE IV

Test results.

Initial front
(1070;0) (1010;1) (950;2) (890;3) (770;4) (630;5) (570;6)
(470;7) (420;8) (360;9) (150;10)

iterations # neigh. time(s) Front obtained

50 2 0.03
(1070;0) (1010;1) (950;2) (830;3) (770;4) (590;5) (530;6)
(470;7) (350;8) (150;10)

100 2 0.05
(1070;0) (1010;1) (950;2) (830;3) (770;4) (590;5) (530;6)
(470;7) (350;8) (150;10)

System 1 150 2 0.06
(1070;0) (110;1) (950;2) (830;3) (770;4) (590;5) (530;6)
(470;7) (350;8) (150;10)

50 4 0.04
(1070;0) (1010;1) (950;2) (830;3) (770;4) (590;5) (530;6)
(470;7) (350;8) (150;10)

100 4 0.05
(1070;0) (1010;1) (950;2) (830;3) (770;4) (590;5) (530;6)
(470;7) (350;8) (150;10)

150 4 0.06
(1070;0) (1010;1) (950;2) (830;3) (770;4) (590;5) (530;6)
(470;7) (350;8) (150;10)

Initial front (3814;0) (2765;2) (2676;3) (1627;4) (734;6)

iterations # neigh. time(s) Front obtained

50 2 0.07 (3814;0) (2765;2) (2299;3) (1250;4) (357;6)

100 2 0.11 (3814;0) (2765;2) (2299;3) (1250;4) (357;6)

System 2 150 2 0.14 (3814;0) (2765;2) (2299;3) (1250;4) (357;6)

50 4 0.07 (3814;0) (2765;2) (2299;3) (1250;4) (357;6)

100 4 0.10 (3814;0) (2765;2) (2299;3) (1250;4) (357;6)

150 4 0.14 (3814;0) (2765;2) (2299;3) (1250;4) (357;6)

Initial front
(3343;0) (2825;2) (2222;3) (1704;4) (1431;6) (1327;7)
(809;8) (728;9) (0;10)

iterations # neigh. time(s) Front obtained

50 2 1.32
(3343;0) (2825;2) (2222;3) (1704;4) (1431;5) (1169;6)
(1042;7) (543;8) (281;9) (0;10)

100 2 1.87
(3343;0) (2374;2) (2222;3) (1704;4) (1253;5) (735;6)
(462;7) (200;8) (0;10)

System 3 150 2 2.52
(3343;0) (2374;2) (2222;3) (1704;4) (1253;5) (735;6)
(462;7) (200;8) (0;10)

50 4 1.35
(3343;0) (2825;2) (2222;3) (1704;4) (976;5) (587;7) (88;8)
(0;10)

100 4 1.92
(3343;0) (2367;1) (1849;3) (1246;4) (728;5) (711;6)
(193;7) (0;8)

150 4 2.53 (3343;0) (2344;2) (1368;3) (518;5) (0;6)

and of the number of switching operations, while
respecting voltage, current and feeder capacity con-
straints.

The methodology has proven suitable for the SRP,
due to the interaction of constructive and local search
algorithms in the selection of source nodes. Especially
related to the data structures and neighborhood
used, they indeed contribute to maintain the com-
putational time in the minimal standards shown as
well as improve the ability for exploring the search
space.

Moreover, the method has proved its flexibility in
reaching to a variety of possible well distributed so-
lutions throughout the Pareto front, while requiring

minimal computational time.

Further studies should investigate the inclusion of
more objective functions and more tests with a large
variety of distribution networks.

Acknowledgements

The authors would like to thank to the Fundação
de Amparo à Pesquisa do Estado de São Paulo
(FAPESP) and to the Conselho Nacional de Desen-
volvimento Cient́ıfico e Tecnológico (CNPq) for the
financial support provided.

44 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300

It=150,N =2
It=150,N =4

initial front
best front.

ghd

ghd

Power not supplied (kW).

N
u
m

.
sw

it
ch

in
g

o
p
er

a
ti
o
n
s

Fig. 12. Fronts obtained for system 3.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows:
Theory, Algorithms and Applications. Prentice Hall,
Englewood Cliffs, 1993.

[2] K. Aoki, K. Nara, M. Itoh, T. Satoh, and H. Kuwabara,
“A new algorithm for service restoration in distribution
systems,” IEEE Transactions on Power Delivery, vol. 4,
no. 3, pp. 1832–1839, 1989.

[3] A. Augugliaro, L. Dusonchet, and E. R. Sanseverino,
“Evolving non-dominated solutions in multiobjective ser-
vice restoration for automated distribution networks,”
Electric Power Systems Research, vol. 59, pp. 185–195,
2001.

[4] E. Baran and F. Wu,“Network reconfiguration in distribu-
tion systems for loss reduction and load balancing,” IEEE
Transactions on Power Delivery, vol. 4, no. 2, pp. 1401–
1407, April 1989.

[5] R. Ciric and D. Popovic, “Multi–objective distribution
network restoration using heuristic approach and mix in-
terger programming method,”Electrical Power and Energy
Systems, vol. 22, pp. 497–505, 2000.

[6] S. Curcic, C. Ozveren, L. Crowe, and P. Lo, “Electric
power distribution network restoration: a survey of papers
and a review of the restoration problem,” Electric Power
Systems Research, vol. 35, pp. 73–86, 1996.

[7] M. Ehrgott and X. Gandibleux, “Approximative solution
methods for multiobjective combinatorial optimization,”
TOP (Spanish journal of operations research), vol. 12,
no. 1, pp. 1–90, June 2004.

[8] M. Hansen, “Metaheuristics for multiple objective com-
binatorial optimization,” Report, Technical University of
Denmark, 1998.

[9] Y. Hsu and H. Kuo,“A heuristic based fuzzy reasoning ap-
proach for distribution system service restoration,” IEEE
Transactions on Power Delivery, vol. 9, no. 2, pp. 948–953,
1994.

[10] S.-J. Lee, S.-I. Lim, and B.-S. Ahn, “Service restoration
of primary distribution systems based on fuzzy evaluation
of multi-criteria,” IEEE Transactions on Power Systems,
vol. 13, no. 3, pp. 1156–1163, August 1998.

[11] H. Lewis and C. Papadimitriou, Elements of the Theory of
Computation. Prentice-Hall International, 1981.

[12] C. Liu, S. Lee, and S. Venkata, “An expert sytem opera-
tional aid for restoration and loss reduction of distribution

systems,” IEEE Transactions on Power Delivery, vol. 3,
no. 2, pp. 619–626, 1988.

[13] M. Matos and P. Melo, “Multiobjective reconfiguration for
loss reduction and service restoration using simulated an-
nealing,” in Proceedings of IEEE Budapest Power Tech’99.
IEEE Service Center, 1999.

[14] K. Miu, H.-D. Chiand, B. Yuan, and G. Darling, “Fast ser-
vice restoration for large-scale distribution systems with
priority customers and constraints,”IEEE Transactions on
Power Delivery, vol. 13, no. 3, pp. 789–795, 1998.

[15] A. Morelato and A. Monticelli, “Heuristic search approach
to distribution system restoration,” IEEE Transactions on
Power Delivery, vol. 4, no. 4, pp. 2235–2241, October 1989.

[16] J. N. Morse, “Reducing the size of the nondominated
set: Pruning by clustering,” Computers and Operations
Research, vol. 7, no. 1–2, pp. 55–66, 1980.

[17] L. Murphy and F. Wu, “A comprehensive analysis of dis-
tribution automation systems,” University of California,
Berkeley, Tech. Rep. M90/72, 1990.

[18] D. Shirmohammadi, “Service restoration in distribution
networks via network reconfiguration,” IEEE Transactions
on Power Delivery, vol. 7, no. 2, pp. 952–958, April 1992.

[19] R. Steuer, Multiple Criteria Optimization: Theory, Com-
putation and Application. New York: Wiley, 1986.

[20] S. Toune, H. Fudo, T. Genji, Y. Fukuyama, and Y. Nakan-
ishi,“Comparative study of modern heuristic algorithms to
service restoration in distribution systems,” IEEE Trans-
actions on Power Delivery, vol. 17, no. 1, pp. 173–181,
January 2002.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 45

The Traveling Salesman Problem with
Time-Dependent Costs: an exact approach

Jośe Albiach∗ †, Jośe Maŕıa Sanchis∗ and David Soler∗
∗Universidad Polit́ecnica de Valencia/Departamento de Matemática Aplicada

Camino de Vera s/n, 46022 Valencia (Spain)
Emails: jalbiach@mat.upv.es, jmsanchis@mat.upv.es, dsoler@mat.upv.es

† Corresponding author

Abstract— In this paper we deal with a problem which
generalizes the Traveling Salesman Problem with Time
Windows (TSPTW). The generalization consists of the
time-dependence of the travel times and costs, for a more
accurate fitting of some routing problems inside large
cities, where the time or cost of traversing some streets
(e.g. main avenues) depend on the moment of the day (for
example rush-hours).

In contrast to other existing papers about routing
problems with time-dependent costs, we focus on an exact
approach to this new problem. To do this we transform
it in pseudo-polynomial time into a classical Asymmetric
Traveling Salesman Problem for which several exact and
heuristic algorithms exist, even for large-scale instances.
Computational results are presented on a set of 270
adapted instances from benchmark TSPTW instances.

Keywords— Traveling Salesman Problem, time window,
time-dependence.

I. I NTRODUCTION

T HE Traveling Salesman Problem with Time Win-
dows (TSPTW) is a well-known optimization rout-

ing problem that can be defined as follows:
Given a directed graphG = (V, A) with nonnegative

costs associated with its arcs, such that each vertexi
has associated a time window[ai, bi], one of the vertices
(say i0) is considered as a depot, and traversing arc
(i, j) ∈ A implies a travel timetij > 0, find a minimum
cost circuit in G starting in i0 at time ai0 and passing
through each vertex exactly once, such that the circuit
leaves each vertex in its associated time window and
ends ini0 before bi0 . Note that it is allowed to arrive
at vertex i before ai (waiting time), but in this case,
the circuit will leave i at time ai. For simplicity, if a
service time is necessary at one vertex,i this time will
be included in the travel timestji j 6= i.

The TSPTW has important applications, especially in
sequencing and distribution problems. For this reason
many papers have studied this topic in the last decade.
See for example [1], [2], [4], [12], [16], [18] and [23].

Like in most routing problems found in the OR litera-
ture, in the TSPTW the arc costs or times are considered
constant throughout the day. This assumption may result
in a weak approximation to real-world conditions, at
least in distribution problems inside large cities, where
the time or cost of traversing some streets (e.g. main
avenues) depend on the moment of the day (for example
at rush-hours).

Despite the occurrence of traffic jams in large cities
at certain times and in certain areas, routing problems
with time-dependent costs have hardly been studied
because they are more difficult to model and to solve;
however more and more, works on optimization vehicle
routing problems are taking into account time-dependent
travel costs for a more accurate approximation of the
mathematical models to the real problems. The work
in [17] includes a detailed review of the literature on
time-dependent routing problems, and as recent papers
we may cite [15] and [24]. These works are based
on heuristic procedures to solve multivehicle routing
problems with different kinds of time-dependent travel
times.

With respect to single vehicle routing problems includ-
ing time-dependent travel times, we must cite the works
[20] and [21]. These works study the Time-Dependent
Traveling Salesman Problem (TDTSP), a problem sim-
ilar to the one presented here, but with considerable
differences which will be commented following the defi-
nition of our problem. These authors focused on heuristic
procedures for the TDTSP without time windows, tested
on instances with up to 55 vertices. In none of these
instances the optimality of the solution was proved.

In this paper we present a generalization of the
TSPTW in which, in addition to time windows, the cost
and the travel time of each arc depend on the moment
at which we start traversing it. Because of this, waiting
times are allowed in a more general way than in the
TSPTW: for total travel cost minimization, if the vehicle
arrives at a vertexi at time t1i < bi, it can wait and

46 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

leave vertexi at time t2i with max{ai, t
1
i } ≤ t2i ≤ bi.

Moreover, due also to the time-dependence of costs and
travel times, the circuit can start at the depot nodei0 at
time ti0 > ai0 . For example, if timeai0 belongs to a rush-
hour, instead of starting the route atai0 , if possible, we
can be working inside the warehouse for a short period
of time until the traffic be moving quite freely.

The main difference of this work with respect to the
above mentioned papers is that we focus on an exact
approach to the problem; through a graph transformation
we find a way to solve the new problem by transforming
it into the classical Asymmetric Traveling Salesman
Problem (ATSP), for which several heuristic and exact
procedures have been successfully tested, even for large-
scale instances with several thousands of vertices (see for
example [3], [5], [6] and [19].

To transform the new problem into an ATSP, we
first transform it into another combinatorial optimization
problem studied in the OR literature, the Asymmetric
Generalized Traveling Salesman Problem (AGTSP). The
AGTSP consists of:

Given a directed graphG = (V, A) with nonnegative
costs associated with its arcs, such thatV is partitioned
into k nonempty subsets{Si}

k
i=1, find a minimum cost

circuit passing through exactly one vertex of each subset
Si ∀i ∈ {1, . . . , k}.

To solve the AGTSP several polynomial time trans-
formations of this problem into an ATSP have been
described in the literature. The most efficient seems to
be the transformation defined in [22]. As we will use
this transformation, let us describe it briefly:

From G construct a new directed graph with the same
vertex set but order the vertices of eachSi consecutively
in an arbitrary way{vi

1, . . . , v
i
l(i)} l(i) being the number

of vertices inSi. For j = 1, . . . , l(i) − 1 define the cost
ci
j,j+1 of arc (vi

j , v
i
j+1) as zero, defineci

l(i),1 as zero and
for everyvi

j ∈ Si and everyw /∈ Si set cvi
j ,w

equal to
the cost inG of the arc fromvi

j+1(mod l(i)) to w plus a
fixed positive large quantityM if |Si| > 1 and equal to
the cost inG of the arc fromvi

j to w plusM if |Si| = 1,
any other arc has infinite cost.

Solving the AGTSP inG is equivalent to solving the
ATSP in the new digraph.

Finally, as our aim is an optimal approach to the
new problem, we will use the exact algorithm for the
Mixed General Routing Problem (MGRP) described in
[9] to solve the resulting ATSP instances. The MGRP
basically consists of finding a minimal closed walk on
the edges and arcs (links) of a mixed graphG (G has
simultaneously edges and arcs) which traverses a given
subset of “required” links and a given subset of “re-

quired” vertices. This problem contains a large number
of important arc and node routing problems as particular
cases. For example, ifG is a directed graph, the subset of
required arcs is empty and all the vertices are required;
in such case we will be dealing with the Graphical
Asymmetric Traveling Salesman Problem (GATSP) (see
[7]). This last problem, introduced in [13], [14] and [10]
in the undirected version, is a generalization of the pure
ATSP in which graphG does not need to be complete
(few variables are needed) and then, the solution does not
need to be a Hamiltonian cycle (i.e. passing through each
vertex exactly once) but a closed walk passing through
each vertex at least once. Note that an ATSP instance
can be transformed into a GATSP instance by simply
adding a large positive numberL to each arc cost in order
to assure the occurrence of a Hamiltonian cycle in the
optimal solution. Therefore, as the GATSP is a particular
case of the MGRP, the exact algorithm in [9] can be
used to optimally solve the ATSP, even for large-scale
ATSP instances, as we will see next. It is a cutting-plane
algorithm based on the polyhedral study of the MGRP
presented in [8] and [9] in which branch-and-bound is
invoked when violated inequalities are not found.

The rest of the paper is organized as follows. In Sec-
tion 2 we define the new problem, which we have called
the Traveling Salesman Problem with Time Dependent
Costs (TSPTDC), and we show the construction of an
auxiliary digraph from a TSPTDC instance. In Section
3 we prove that the TSPTDC can be transformed in
pseudo-polynomial time into an AGTSP on the auxiliary
digraph. The size of the auxiliary digraph is then con-
siderably reduced in order to make this transformation
more competitive. In Section 4 we present computational
results on the exact resolution on a set of 270 TSPTDC
instances obtained by modifying benchmark TSPTW
instances (see for example [4], [12] and [18]). The
results obtained show that the MGRP algorithm [9] is an
efficient tool to solve optimally real TSPTDC instances.
Finally, Section 5 presents some conclusions about this
work.

II. D EFINITION OF THE TSPTDCAND AUXILIARY

DIGRAPH

We define the Traveling Salesman Problem with Time
Dependent Costs (TSPTDC) in the following way:

Let G = (V, A) be a simple directed graph,V =
{vi}

n
i=0 being its set of vertices, wherev0 is the depot

vertex, each vertexvi has associated a time window
[ai, bi] verifying that ai, bi ∈ Z

+ ∪ {0} and [ai, bi] ⊆
[a0, b0] ∀i ∈ {1, . . . , n}. Every time window[ai, bi]
has associated pi = bi − ai + 1 instants of time
{ai + k − 1}pi

k=1 . For simplicity we will denotetki =

Jośe Albiach et al. 47

ai + k − 1 and therefore,tki ∈ Z
+ ∪ {0}. Each instant

of timetki with i > 0 has also associated a waiting time
window [wk

i , tki], wk
i ∈ (Z+ ∪ {0}) ∩ [a0, t

k
i].

On the other hand, the time and the cost of traversing
an arc (vi, vj) ∈ A depend on the instant of timetki
(k ∈ {1, . . . , pi}) at which we start traversing it. Let
denote bytki,j ∈ Z

+ and ck
i,j ≥ 0 the time and the cost

respectively of traversing arc(vi, vj) starting at instant
tki . Moreover, a waiting timet ∈ Z

+ at vertex i has
associated a costcwti(t).

Find a Hamiltonian circuit inG, starting and ending
at v0 at integer instants of time inside[a0, b0] such that:
the sum of the costs of traversing arcs and waiting times
be minimum, the circuit leaves each vertexvi ∈ V
i > 0 inside its associated time window and if the circuit
arrives to vertexvi with i > 0 in the time window
[wk

i , tki], it is allowed an integer waiting time in vertex
vi and to leavevi at time tki .

Some relevant aspects of this definition are:
- This definition allows the circuit to start after instant

a0. This is very important to minimize costs; for instance,
if a0 belongs to a rush-hour, if possible, we can work
for a short period of time inside the warehouse until the
traffic be moving quite freely.

- This definition also allows a waiting time at each
vertexvi if due to the traffic conditions, it is preferable
to wait in order to minimize the cost of the circuit. This
waiting time has an associated cost which normally is
given by a linear function.

- As usual in vehicle routing problems, we assume
that the time of traversing an arc(vi, vj) with j > 0
includes the service time atvj .

- From a practical point of view, the fact that the travel
times must be integer values does not involve a strong
restriction with respect to the continuous case, because
we can define an appropriate and as-small-as required
unit of time for each instance.

- In contrast to other papers, this definition distin-
guishes between two magnitudes: the time-dependent
travel time and the time-dependent cost (which could be
equal), focusing on cost minimization. In the particular
case of the TSPTDC in whichtkij = tsij = ck

ij = cs
ij

∀k, s ∈ {1, ..., pi} and ∀(vi, vj) ∈ A with i 6= 0,
ck
0,j = ∞ ∀k > 1 and ∀j > 0 (the circuit must start

at timea0), and∀i > 0 [wk
i , tki] = [a0, ai] if k = 1 and

[wk
i , tki] = {tki } if k > 1, we obtain a TSPTW. Thus, the

TSPTDC is a NP-hard problem.
In comparison to the problem studied in [20] and [21],

some important differences are: in the TDTSP the circuit
must start from the depot at exactly instanta0; it can not
arrive to any customervi before ai; and the objective
function is the difference between the return time and

the starting time of the circuit solution. In addition,
the heuristics used work only on TDTSP without time
windows. On the other hand, the main difference is that
we focus on an optimal approach to the problem. In
fact, although the TDTSP is not exactly a particular
case of the TSPTDC, it can also be optimally solved
with the procedure presented here, except for some small
differences in the construction of the auxiliary digraph
given next.

Consider then a TSPTDC defined on a directed graph
G = (V, A) with all the corresponding data. We con-
struct a directed auxiliary graphG′ = (V ′, A′) in the
following way:

- For each vertexvi with i ∈ {0, ..., n} and for each
instant of timetki for all k ∈ {1, ..., pi} create a vertex
vk
i .
- For each pair of verticesvk

i , vl
j ∈ V ′ with i 6= j and

such thattki + tkij ∈ [wl
j , t

l
j] if j 6= 0 and tki + tkij = tlj

if j = 0, add toG′ an arc(vk
i , vl

j) with cost equal to
ck
i,j + cwtj(tlj − (tki + tkij)). Note thatwl

j ≤ tki + tkij < tlj
implies a waiting time at vertexvj ∈ G if the circuit
takes arc(vi, vj) at time tki and leavesvj at time tlj .

- Divide {1, ..., p0} into four subsetsI1, I2, I3, I4 in
the following way:

1) k ∈ I1 if vk
0 has only leaving arcs in

G′. In this case, replace also namevk
0 by vk

0s

(starting vertex).
2) k ∈ I2 if vk

0 has only entering arcs in
G′. In this case, replace also namevk

0 by vk
0e

(ending vertex).
3) k ∈ I3 if vk

0 has both entering and
leaving arcs inG′. In this case, splitvk

0 into
two verticesvk

0s andvk
0e such thatvk

0s will be
only incident with the leaving arcs fromvk

0

in G′ and vk
0e will be only incident with the

entering arcs tovk
0 in G′.

4) k ∈ I4 if vk
0 has neither entering arcs

nor leaving arcs inG′. Then, deletevk
0 from

G′ for all k ∈ I4.

- Add to G′ a new vertexvd, which will be the depot,
with the next arcs, all of them with zero cost:

For eachk ∈ I1 ∪ I3, an arc(vd, v
k
0s).

For eachk ∈ I2 ∪ I3, an arc(vk
0e, vd).

A TSPTDC example withn = 3 illustrates the
construction of this auxiliary digraph. In order to clearly
show the whole transformed directed graph, in this
example we will suppose that∀i > 0 [wk

i , tki] = [a0, ai]
if k = 1 and [wk

i , tki] = {tki } if k > 1, that is, a waiting
time atvi is only allowed if we arrive atvi before time
ai and we leavevi at timeai (like in the TSPTW). We

48 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

will also suppose in this example that waiting times have
zero cost. The time windows are given in Figure 1.

Fig. 1. GraphG

Table I shows the time-dependent costs corresponding
to this example. From this table we can easily obtain
the travel times, depending on the time instant at which
we start traversing the arcs because eachtki has in
brackets its corresponding instant of time. For example,
the element(t10, t

2
1) means that if we traverse arc(v0, v1)

starting at period of timet10, which corresponds to instant
1, c1

0,1 = 70 and t10,1 = 2 because we arrive atv1 at
t21, which corresponds to instant 3. The element(t10, t

1
2)

means that if we traverse edge(v0, v2) starting at period
of time t10 we arrive atv2 at most at timet12 = a2 (then
we may have a waiting time here). A dash inside a cell
(tki , t

l
j) means that if we traverse edge(vi, vj) starting

at time tki we will not arrive atvj at time tlj if l > 1 or
that we will arrive afteraj if l = 1. Note that the table
does not include the rows and columns with no possible
paths.

Figure 2 shows the corresponding auxiliary digraphG′

in which the vertices are denoted by numbers, indicating
the order of the time instants in their corresponding
time window; the vertices are clustered into subsetsSi

corresponding to original verticesvi. The arc costs have
been omitted in this figure; they can be easily obtained
from Table I and from the construction ofG′.

III. T RANSFORMATION OF THETSPTDCINTO AN

ATSP

Once the auxiliary digraphG′ has been defined, we
present a way to solve the TSPTDC by first transforming
it into an AGTSP and then transforming the obtained
AGTSP into an ATSP using the transformation in [22]
that does not increase the size of the graph.

Theorem 1:The TSPTDC can be transformed in
pseudo-polynomial time into an AGTSP defined in the
auxiliary digraph.

TABLE I

TIME DEPENDENT COSTS OF GRAPHG. tk

i (t) MEANS THAT

INSTANT tk

i IS EQUAL TO t.

t21(3) t31(4) t12(2) t22(3) t13(4) t23(5) t33(6)

t10(1) 70 - 55 - 93 - -

t20(2) 55 - - 39 66 - -

t30(3) - 53 - - - 68 -

t40(4) - - - - - 40 -

t50(5) - - - - - - 40

t30(3) t40(4) t50(5) t22(3) t13(4) t23(5)

t11(2) 43 - - 40 63 -

t21(3) - 40 - - 31 -

t31(4) - - 31 - - 36

t30(3) t40(4) t21(3) t31(4) t13(4)

t12(2) 35 - 37 - 70

t22(3) - 36 - 38 36

t50(5) t60(6)

t13(4) 32 -

t23(5) - 33

Proof: Let G = (V, A) be the digraph where a
TSPTDC is defined and letG′ = (V ′, A′) be its auxiliary
digraph. Consider an AGTSP inG′ corresponding to the
partition of V ′ into the following subsets:Sd = {vd},
Si = {vk

i }
pi

k=1 ∀i ∈ {1, . . . , n}, S0s = {vk
0s}k∈I1∪I3

and
S0e = {vk

0e}k∈I2∪I3
, that is,n + 3 subsets.

By construction ofG′ there is a one-to-one corre-
spondence between the set of feasible AGTSP solutions
in G′ and the set of feasible TSPTDC solutions inG.
It is enough to identify the circuit AGTSP solution in
G′ T ′ = {vd, v

k0

0s , v
k1

i1
, vk2

i2
, . . . , vkn

in
, v

kn+1

0e , vd} with the
feasible TSPTDC solutionH in G consisting of the
Hamiltonian circuit{v0, vi1 , vi2 , . . . , vin

, v0} starting at
v0 at time k0 ∈ [a0, b0], leaving vertexvir

at time
tkr

ir
= air

+ kr − 1 ∈ [air
, bir

] ∀r ∈ {1, . . . , n} and
ending atv0 at time a0 + kn+1 − 1 ∈ [a0, b0] (note
that two feasible TSPTDC solutions inG with the same
Hamiltonian circuit but at least one different leaving
instant of timetki are taken as different solutions). Both
T ′ and H have the same cost; so an optimal AGTSP
solution in G′ gives rise in an easy way to an optimal
TSPTDC solution inG.

As |V ′| depends on the width of the time win-
dows besides|V | (|V ′| is O((n + 1)p∗) where p∗ =
max0≤i≤n(bi − ai + 1)), we conclude that this transfor-
mation is pseudo-polynomial.

Jośe Albiach et al. 49

Fig. 2. Auxiliary digraphG′

In this way, the TSPTDC can be solved from a theoret-
ical point of view. Nevertheless, the size of the auxiliary
digraph could be too large to apply known procedures
to solve its associated ATSP in some real distribution
problems inside large cities: the servicing time windows
of the customers could have a relatively small size (for
example one or two hours) after preliminary studies
and negotiations, but the depot time window should
be opened during the entire working day. If there are
customers to be serviced early and customers to be
serviced at the end of the working day, each one of the
setsS0s and S0e will contain aboutb0 − a0 vertices.
For example, with this condition, in an 8-hour working
day with a unit of time equal to 1 minute (this is the
smallest time unit normally considered in real vehicle
routing problems inside large cities), the depot could give
rise to about8 × 60 × 2 = 960 vertices in the auxiliary
digraph.

Although nowadays there are exact procedures capable
of solving large-scale ATSP instances with thousands
of vertices, as we mentioned in the introduction, this
transformation does not seem very attractive to solve the
TSPTDC because of the size of the depot time window.

We show next that the size of the auxiliary digraph
can be considerably reduced thus becoming more com-
petitive. In fact, in the “reduced” auxiliary digraph, the
number of vertices generated from the depot will always
be one, independently of the size of the depot time
window. Thus, in the example given above, we would
only have 1 vertex vs the about 960 vertices (a very
considerable reduction), and in our example of Figure 1,
we would have 1 vertex vs the 10 vertices in Figure 2.

Let then G′ = (V ′, A′) be the auxiliary digraph
obtained from the original TSPTDC instance. FromG′

we construct a reduced auxiliary digraphG” = (V ”, A”)
in the following way:

- Remove all vertices ofG′ corresponding to the
subsetsS0s andS0e.

- Maintain the rest of vertices ofG′ including vd.
- For every vertexv ∈ G” different from vd do

cost(vd, v) = min
k

{cost(vk
0s, v)}.

- For every arc(v, vk
0e) with finite cost in G′ do

cost(v, vd) = cost(v, vk
0e).

- Maintain the arc costs between vertices belonging to
different setsSi with i ∈ {1, ..., n}.

- Remove all verticesvk
i ∈ G” verifying one of the

three following conditions, understanding that an arc
(u, v) exists inG” if it has been assigned before a finite
value tocost(u, v):

i) d+(vk
i) = 0 or d−(vk

i) = 0.
ii) d+(vk

i) = d−(vk
i) = 1 corresponding to

arcs(vd, v
k
i) and (vk

i , vd).
iii) d−(vk

i) ≥ 1, d+(vk
i) = 1 corresponding

to arc (vk
i , vd) and it exists at least one index

j j 6= i verifying thatai + k − 1 ≤ aj .

Figure 3 shows the reduced auxiliary digraphG” from
G′ in Figure 2 corresponding to our example. As we have
said, the number of vertices generated from the depot is
1 vs 10 vertices in Figure 2, and verticesv1

1 andv3
3 have

been removed, soG” has 7 vertices whileG′ has 18
vertices.

Fig. 3. Reduced auxiliary digraphG”

We define inG” an AGTSP in the same terms as
the AGTSP defined inG′ (see the proof of Theorem 1),
except that the subsetsS0s andS0e have been removed

50 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

and that someSi may contain fewer elements than inG′

(the removed vertices).
Theorem 2:Solving the AGTSP inG′ is equivalent

to solving the AGTSP inG”.
Proof: Given a feasible AGTSP solution inG′, if we

replace its initial sequence{vd, v
k
0s, v} by the sequence

(arc) {vd, v} in G” and we replace its final sequence
{u, vm

0e, vd} by the sequence (arc){u, vd} in G”, it
is evident that we have a feasible AGTSP solution in
G”. Moreover, the costs of{u, vm

0e, vd} and{u, vd} are
the same and in an optimal solution inG′, the cost
of {vd, v

k
0s, v} must necessarily bemin

k
{cost(vk

0s, v)},

which is the cost of{vd, v} in G”.
On the other hand, there is no feasible AGTSP solution

in G′ containing a vertexvk
i satisfying one of the

conditions (i), (ii) and (iiii) given above: it is evident
for condition (i); it is evident for condition (ii) except
for the trivial casen = 1 that should not be considered
as an AGTSP; and condition (iii) means that subsetSj

will not be visited by the solution.
Thus, an optimal AGTSP solution inG′ gives rise to a

feasible AGTSP solution inG” with the same cost, and
with the same reasoning, a feasible AGTSP solution in
G” gives rise to a feasible AGTSP solution inG′ with
the same cost, and so, an optimal AGTSP solution inG′

results in an optimal AGTSP solution inG” and vice
versa.

Therefore, we can solve a TSPTDC in graphG by
solving an AGTSP inG”. Following with our exam-
ple, once we have the reduced auxiliary digraphG”,
according to the transformation ofG” given by Noon
and Bean, in Figure 4 we show the ATSP optimal
solution corresponding to our example, from which we
easily obtain the AGTSP optimal solution toG” given
in Figure 5 and then, the TSPTDC optimal solution inG
given in Figure 6(v0, v2, v1, v3, v0) with time sequence
(2, 3, 4, 5, 6) and with cost39+38+36+33 = 146. Note
that there are no waiting times in this circuit solution
because it leaves each vertexvi i > 1 after time ai;
remember that in this example we have supposed that
[wk

i , ai + k − 1] = {ai + k − 1} if k > 1. But also note
that this optimal circuit does not start at timea0, which
is equal to 1 in this case (there is a waiting time in the
warehouse).

IV. COMPUTATIONAL EXPERIMENTS

In order to check the efficiency of this transformation,
some computational experiments were performed on 270
instances obtained by modifying benchmark TSPTW
instances (see for example [4], [12] and [18]) as follows:

Fig. 4. ATSP optimal solution

Fig. 5. AGTSP optimal solution inG”

Fig. 6. TSPTDC optimal solution inG

Jośe Albiach et al. 51

- As it occurs in the TSPTW, in these instances it is
allowed to arrive at a vertexi beforeai (waiting time
with zero cost); but in this case, the circuit will leave
i at time ai and no waiting time is allowed inside a
time window, except for the depot, that is, in order to
minimize the cost, instead of starting the circuit at time
a0 it is allowed to wait for a period of time with zero
cost and start at a timet0 > a0. This waiting time may
be very important to minimize the cost ifa0 belongs to a
rush-hour, as it will occur in all these instances. During
this initial waiting time the driver can work inside the
warehouse.

- Since in the TSPTDC the travel time of each arc
(

vk
i , vl

j

)

is greater than or equal to a unit of time (5,
2 or 1 minute in these instances), and some original
TSPTW instances have several vertices with the same or
similar tight time windows, these instances may have no
TSPTDC solution; this will happen if it is impossible to
visit all vertices in their time windows consuming at least
one time unit each time an arc is traversed, especially
for 5-minute time unit. Therefore, in order to guarantee
a priori the existence of a solution in the generated
TSPTDC instances, we decided to remove some vertices
from each original instance.

- We weighted the time windows corresponding to a
working day from 8:00h. till 20:00h. in a department
store in all the generated instances, such that for alli, ai

and bi be divisible by all the time units considered (5,
2 and 1) and then by 10. Table II shows an example of
this weighting of the time windows, with one depot and
two customers.

TABLE II

EXAMPLE OF WEIGHTING OF THE TIME WINDOWS

Original windows Weighted windows

ai bi ai bi

0 547 0 720

139 147 180 190

62 83 80 110

- Finally, in all these TSPTDC instances we consid-
ered the cost and the travel time of traversing an arc
(vi, vj) at timetki as the integer part ofp(tki)·| (vi, vj) |, p
being a weight function that depends on the time interval
to which tki belongs, and| (vi, vj) | being the Euclidean
distance betweenvi and vj . We established the time
intervals range shown in Table III, considering traffic
density in a large city of Spain, i.e. the rush-hours, such
as leaving from or going to school or work.

We constructed TSPTDC instances with 10, 20, 30,

TABLE III

TIME INTERVALS AND ITS WEIGHTS

Time interval p(tk

i
)

[8:00, 9:40[p(tk

i
) = 1

[9:40, 11:40[p(tk

i
) = 0.5

[11:40, 12:40[p(tk

i
) = 0.75

[12:40, 13:30[p(tk

i
) = 0.65

[13:30, 15:20[p(tk

i
) = 1

[15:20, 16:20[p(tk

i
) = 0.5

[16:20, 18:40[p(tk

i
) = 0.75

[18:40, 20:00[p(tk

i
) = 1

40, 50 and 60 vertices taking into account three different
maximum widths of the time windows in the original
TSPTW instances (20, 40 and 60) and three time units
(5, 2 and 1 minute). With all these data we generated
sets of five instances for each number of vertices, each
maximum width and each time unit, i.e. a total of5 ×
6× 3× 3 = 270 TSPTDC instances, grouped into 3 sets
of 90 instances depending on the time unit.

For each one of these 270 instances we first con-
structed the auxiliary digraphG′, then the reduced aux-
iliary digraph G”; in G” we defined the corresponding
AGTSP; using Noon and Bean transformation, we con-
structed the ATSP instance to be solved, and finally we
transformed the ATSP instance into a GATSP instance
by adding a large positive number to each arc cost in
order to assure the occurrence of a Hamiltonian cycle in
the optimal solution provided a Hamiltonian cycle exists
(note that from a TSPTDC instance we obtain an ATSP
instance whose digraph is far from being a complete
digraph).

As the GATSP is a particular case of the MGRP
and encouraged by the structure of our ATSP instances
(few arcs with respect to the complete digraphs) and
preliminary results, we used the exact algorithm for
the MGRP given in [9] to solve optimally our ATSP
instances. Remember that this algorithm is a cutting-
plane procedure based on the polyhedral study on the
MGRP presented in [8] and [9] in which the branch-and-
bound option of CPLEX [11] is invoked when violated
inequalities are not found. The algorithm is coded inC
and run on a PC with a 1.8 GHz Pentium IV processor,
using CPLEX 8.0 as an LP solver.

In tables IV to VI each row corresponds to a set of
similar instances, with the following notation:

- V: number of vertices in the TSPTDC instance
including the depot.

- W: maximum width of the time windows in the orig-

52 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

inal TSPTW instance from which the TSPTDC instance
has been constructed.

- I: number of instances in the set.
- VG”: average number of vertices inG” rounded to

integer.
- ANA: average number of arcs in the GATSP in-

stances obtained fromG” rounded to integer.
- O: number of instances optimally solved in less than

three hours.
- AT: average time in seconds to obtain the optimal

solution in the solved (in less than three hours) GATSP
instances obtained fromG”.

- WT: worst time in seconds to obtain the optimal
solution in the solved GATSP instances obtained from
G”.

TABLE IV

COMPUTATIONAL RESULTS WITH THE5-MINUTE TIME UNIT

V W I V G” ANA O AT WT

10 20 5 45 320 5 1.06 1.37

10 40 5 76 564 5 1.02 1.10

10 60 5 100 766 5 1.34 1.59

20 20 5 94 1166 5 2.10 3.68

20 40 5 156 1926 5 3.85 6.04

20 60 5 211 2727 5 9.75 21.70

30 20 5 138 2409 5 3.33 4.40

30 40 5 225 4051 5 16.13 27.41

30 60 5 253 4600 5 36.31 86.24

40 20 5 184 4192 5 7.90 13.84

40 40 5 314 7278 5 46.68 67.99

40 60 5 447 10384 5 918.31 2135.61

50 20 5 239 6678 5 18.95 24.39

50 40 5 386 11007 5 180.07 365.97

50 60 5 513 14711 5 468.36 1010.69

60 20 5 297 9805 5 39.58 51.02

60 40 5 476 16052 4 2929.64 5450.47

60 60 5 622 20956 4 1128.59 1438.70

As expected, the running time of this exact and expo-
nential algorithm increases with the number of vertices
in the TSPTDC instance, with the width of the time
windows and with a smaller time unit, because all of
them increase the number of vertices and the number of
arcs in the corresponding GATSP instance to be solved
by the algorithm.

We point out that instances with 10 vertices are
optimally solved in less than one second or within few
seconds, even for 1-minute time unit and instances with

TABLE V

COMPUTATIONAL RESULTS WITH THE2-MINUTE TIME UNIT

V W I V G” ANA O AT WT

10 20 5 90 668 5 1.16 1.76

10 40 5 165 1240 5 1.40 1.81

10 60 5 224 1687 5 1.99 2.42

20 20 5 184 2295 5 2.71 4.12

20 40 5 342 4206 5 6.01 7.52

20 60 5 498 6370 5 28.05 67.34

30 20 5 269 4699 5 10.18 21.04

30 40 5 493 8775 5 38.77 71.46

30 60 5 574 10325 5 83.56 219.21

40 20 5 360 8129 5 15.03 24.16

40 40 5 690 15792 5 277.78 822.12

40 60 5 1041 24676 5 1997.25 6937.36

50 20 5 474 13120 5 39.81 46.96

50 40 5 850 23973 5 1017.48 2878.21

50 60 5 1200 33893 5 2039.66 5197.22

60 20 5 601 19722 5 112.05 162.36

60 40 5 1053 35066 4 3601.94 6295.39

60 60 5 1454 48290 3 3892.22 5484.04

TABLE VI

COMPUTATIONAL RESULTS WITH THE1-MINUTE TIME UNIT

V W I V G” ANA O AT WT

10 20 5 180 1438 5 1.68 3.13

10 40 5 314 2349 5 2.29 2.75

10 60 5 422 3113 5 4.45 5.27

20 20 5 357 4415 5 4.74 8.41

20 40 5 707 8603 5 18.31 30.54

20 60 5 970 12266 5 94.49 146.38

30 20 5 517 8789 5 12.68 16.86

30 40 5 940 16582 5 114.08 228.28

30 60 5 1113 19813 5 182.58 354.76

40 20 5 741 16676 5 45.72 84.09

40 40 5 1316 29704 5 895.57 1670.34

40 60 5 1943 43937 5 3049.60 5497.44

50 20 5 909 24869 5 96.04 135.89

50 40 5 1631 45368 5 1740.35 3283.83

50 60 5 2343 65114 5 5916.77 8936.43

60 20 5 1465 47554 4 210.86 233.22

60 40 5 2021 66419 4 7735.53 10252.78

60 60 5 2810 91552 0 - -

Jośe Albiach et al. 53

30 vertices are solved in less than one minute or few
minutes. Furthermore, we have been able to optimally
solve instances with up to 60 vertices, although with
larger running times. From the tables we can see that
the instances with 60 vertices produce very large-scale
GATSP instances, even with more than 2,000 vertices
and 60,000 arcs. Nevertheless, only 12 out the 45 in-
stances with 60 vertices were not solved after 3 hours of
running time. Note that for a real delivery route inside a
large city with traffic problems, it seems very improbable
to serve more than 50 or 60 customers in a working day.

In addition, upon comparing the average number of
vertices and the average number of arcs in the ATSP
instances (see columns 4 and 5 in the tables), it is evident
that their corresponding digraphs are very far from being
complete, then, it seems suitable to treat them as GATSP
instances.

Therefore, we believe that the exact procedure for the
MGRP proposed in [9] is a very good tool to optimally
solve at least real TSPTDC instances with several dozens
of customers within a reasonable time, even with a time
unit equal to 1 minute, which is the smallest time unit
normally considered in real vehicle routing problems
inside large cities.

V. CONCLUSIONS

Despite the presence of traffic jams in large cities at
certain times and in certain areas, routing problems with
time-dependent costs have hardly been studied because
they are very difficult to model and to solve. In this paper
we have presented a generalization of the well-known
TSPTW in which the time and the cost of traversing
an arc depend on the period of time at which we start
traversing it; in this way more accurate solutions can
be obtained for some real vehicle routing problems
inside large cities, where the time or cost of traversing
some streets depend on the moment of the day. This
generalization can be transformed into an AGTSP and
then into the classical ATSP for which several heuristic
and exact procedures exist, even for large-scale instances
with several thousands of vertices.

We have presented a computational experience on
optimal resolution on a set of 270 TSPTDC instances
adapted from benchmark TSPTDC instances. To obtain
the optimal solutions we have applied the exact algorithm
for the MGRP in [9] to the instances conveniently
modified. Based on our findings, we believe that this
exact algorithm is a very good tool to optimally solve
real TSPTDC instances with several dozens of costumers
within a reasonable time -as no more customers are likely
to be served in a working day- even with a time unit
equal to 1 minute.

We are convinced that as computer power and speed
increase, more and more the works on optimization
vehicle routing problems will take into account time-
dependent costs in order to approach more closely the
mathematical models to the real problems. Recent works
cited here justify our intuition. In this way, the theoretical
results presented in this work can be used in the future
as ideas or tools to check the efficiency of specific
procedures to solve vehicle routing problems with time-
dependent costs.

ACKNOWLEDGEMENTS

Authors would like to thank Gendreau, Hertz, Laporte
and Stan for providing us the set of benchmark TSPTW
instances.

J.M. Sanchis wish to thank the Ministerio de Ciencia
y Tecnoloǵıa of Spain (project TIC2003-05982-C05-01)
and the Generalitat Valenciana (Ref: GRUPOS03/189)
their support.

REFERENCES

[1] N. Ascheuer, M. Fischetti, and M. Grötschell, “A polyhedral
study of the asymmetric traveling salesman problem with time
windows,” Networks, vol. 36, pp. 69-79, 2000.

[2] N. Ascheuer, M. Fischetti, and M. Grötschell, “Solving the
asymmetric travelling salesman problem with time windows by
branch-and-cut,”Mathematical Programming, Ser A, vol. 90,
pp. 475-506, 2001.

[3] M. Blais and G. Laporte, “Exact solution of the generalized
routing problem through graph transformations,”Journal of the
Operational Research Society, vol. 54, pp. 906-910, 2003.

[4] R.W. Calvo, “A new heuristic for the traveling salesman prob-
lem with time windows,”Transportation Science, vol. 34, pp.
113-124, 2000.

[5] G. Carpaneto, M. Dell’Amico, and P. Toth, “Exact solution
of large-scale, asymmetric traveling salesman problems,”ACM
Transactions on Mathematical Software, vol. 21, pp. 394-409,
1995a.

[6] G. Carpaneto, M. Dell’Amico, and P. Toth, “Algorithm 750:
CDT: A subroutine for the exact solution of large-scale, asym-
metric traveling salesman problems,”ACM Transactions on
Mathematical Software, vol 21, pp. 410-415, 1995b.

[7] S. Chopra and G. Rinaldi, “The graphical asymmetric traveling
salesman polyhedron: symmetric inequalities,”SIAM J. Discrete
Math., vol. 9, pp. 602-624, 1996.

[8] A. Corbeŕan, A. Romero, and J.M. Sanchis, “The mixed general
routing polyhedron,”Mathematical Programming Ser. A, vol.
96, pp. 103-137, 2003.

[9] A. Corbeŕan, G. Mej́ıa, and J.M. Sanchis, “New results on the
mixed general routing problem,”Operations Research, vol. 53,
pp. 363-376, 2005.

[10] G. Cornúejols, J. Fonlupt, and D. Naddef, “The traveling sales-
man problem on a graph and some related integer polyhedra,”
Mathematical Programming, vol. 33, pp. 1-27, 1985.

[11] ILOG S.A., ILOG CPLEX 8.0, 2002.
[12] Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon, “An

optimal algorithm for the traveling salesman problem with time
windows,” Operations Research, vol. 43, pp. 367-371, 1995.

54 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

[13] B. Fleischmann, “A cutting plane procedure for the traveling
salesman problem on road networks,”European Journal of
Operations Research, vol. 21, pp. 307-317, 1985.

[14] B. Fleischmann, “A new class of cutting planes for the symmet-
ric traveling salesman problem,”Mathematical Programming,
vol. 40, pp. 225-246, 1988.

[15] B. Fleischmann, M. Gietz, and S. Gnutzmann, “Time-varying
travel times in vehicle routing,”Transportation Science, vol. 38,
pp. 160-173, 2004.

[16] F. Focacci, A. Lodi, and M. Milano, “A hybrid exact algorithm
for the TSPTW,”INFORMS Journal on Computing, vol. 14, pp.
403-417, 2002.

[17] S. Ichoua, M. Gendreau, and J.Y. Potvin, “Vehicle dispatching
with time-dependent travel times,”European Journal of Oper-
ational Research, vol. 144, pp. 379-396, 2003.

[18] M. Gendreau, A. Hertz, G. Laporte, and M. Stan, “A generalized
insertion heuristic for the traveling salesman problem with time
windows,” Operations Research, vol. 46, pp. 330-335, 1998.

[19] S.H. Kwon, H.T. Kim, and M.K. Kang, “Determination of
the candidate arc set for the asymmetric traveling salesman
problem,”Computers & Operations Research, vol. 32, pp. 1045-
1057, 2005.

[20] C. Malandraki and M.S. Daskin, “Time dependent vehicle
routing problems: Formulations, properties and heuristic algo-
rithms,” Transportation Science, vol. 26, pp. 185-200, 1992.

[21] C. Malandraki and R.B. Dial, “A restricted dynamic pro-
gramming heuristic algorithm for the time dependent traveling
salesman problem,”European Journal of Operational Research,
vol. 90, pp. 45-55, 1996.

[22] C.E. Noon and J.C. Bean, “An efficient transformation of the
generalized traveling salesman problem,”INFOR, vol. 31, pp.
39-44, 1993.

[23] G. Pesant, M. Gendreau, J.Y. Potvin, and J.M. Rousseau, “An
exact constraint logic programming algorithm for the traveling
salesman problem with time windows,”Transportation Science,
vol. 32, pp. 12-29, 1998.

[24] J.Y. Potvin, Y. Xu, and I. Benyahia, “Vehicle routing and
scheduling with dynamic travel times,”Computers & Opera-
tions Research, in press, 2006.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 55

Dimensioning and designing shifts in a call center
Cyril Canon∗†, Jean-Charles Billaut† and Jean-Louis Bouquard†

∗Vitalicom, 643 av du Grain d’Or, 41350 Vineuil, France
Email: ccanon@vitalicom.fr

†Universit́e François-Rabelais de Tours, Laboratoire d’Informatique, 64 av. Jean Portalis, 37200 Tours,
France

Email: {jean.billaut, jean-louis.bouquard}@univ-tours.fr

Abstract— In a Call Center, the critical phases of plan-
ning are dimensioning and shifts creation. The dimension-
ing problem consists in the determination of the ideal
number of employees needed to face the demand. In
this paper, this problem is modeled using a deterministic
approach as a multi-purpose machine scheduling problem.
A mixed integer linear program, with constraints propaga-
tion techniques and a constraint programming approach
are proposed to solve this problem. The shift design
problem consists in assigning employees to the shifts. A
Tabu search algorithm is presented to solve this problem.
Computational results are conducted and discussed, both
in terms of computation time and of solutions quality.

Keywords— Call Center, dimensioning, Shift Design
Problem, scheduling, Tabu Search

INTRODUCTION

CALL Centers are used by organizations as an
important channel of communication and transac-

tion with their customers. The most prevalent form of
communication is the telephone, even if the proliferation
of the Internet allows to use new communication medias
such as e-mail, chat, etc. When several types of commu-
nications are offered by a company, we call it acustomer
contact center, whereas when only the telephone is used,
we call the company acall center. These new services
have been expanding worldwide in both volume and
scope, giving what is called nowthe call center industry.
In [15], it is mentioned that “the number of call centers
in Europe will grow from 12750 in 1999 to 28289
in 2006” and “Europe’s call center market is around
$9 billions”, proving their socioeconomic importance in
today’s business landscape.

For this type of industry, personnel costs account
for around 70% of the cost of running a typical call
center. Increasing the service quality can be done, but
also with an important personnel cost increase. Thus,
there is a compromise to reach between service quality
and costs. It is essential to efficiently manage telephone
call centers, so that the customer requests are met

without excess staffing. In short, two questions are
essential for a call center. The first question is:How
many agents are to be staffed in order to provide the
required service quality?, the related problem is called
the staffing problemin the following. After answering
this question, the number of needed agents is found
for every time slot of the planning period. Then, the
second question is:How designing the assignment of
shifts to agents?, also called theshift design problemin
the following. When solving this problem, a set of legal
constraints have to be considered, respecting labor code
and collective agreements. In this paper, we answer
these two questions.

A lot of research studies have focused on staffing
problems (see [4], [7], [18], etc.). From a modeling
point of view, a call center can be viewed as a large
system, operating in a stochastic environment, that is
generally modeled as aM/M/N system, also called the
Erlang-C model. This is “the most prevalent model that
supports call center staffing” [4]. In [12], the authors
present a state-of-the-art survey on possible models of
a call center. They present the well known Erlang-C
formulas and model a call center as a Markov Chain.
They modify the classical model by adding some con-
straints like abandonment and retrial, for instance. In
[17], the author concentrates on performance analysis
and optimization using queueing models and describes
mathematical methods and algorithms to relate these
decision variables to technical as well as economic
performance measures. In [1] the authors present an
algorithm which gives the number of agents to hire in
order to minimize a cost function. This cost function
takes into account the price of an agent and the bonus
and malus due to good or bad quality of service. In [10]
the authors present a linear program in order to determine
the number of agents to hire, considering learning phases
and turnover. They present some particularities of the
problem and a heuristic algorithm to solve quickly the
mixed integer linear program.

56 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

In the literature, several approaches have been used to
solve the shift design problem, most of them are heuristic
algorithms. In [14], the authors propose a Tabu Search
algorithm in order to create the shifts according to the
agents constraints. In the problem tackled by the authors,
breaks and annualized hours constraint are not consid-
ered. The annualized hours constraint implies that the
number of work hours in a year can be irregularly spread
over the weeks, but the annual amount of work hours is
fixed. The main constraint in the problem tackled by
the authors is to satisfy a workload curve. In [9], the
authors propose a Simulated Annealing based method
in order to choose the best shifts for the agents. The
objective function is to maximize the quality of service.
In [16], the author proposes a mixed method: shifts are
chosen using integer programming and then are assigned
to agents for each week using constraint programming.
In the two methods, all the possible shifts are enumerated
and the author assigns agents to the shifts. In the problem
that we consider, the number of shifts is exponential and
such a method cannot be applied. In [2], the authors
present a three-step approach to assign shifts to agents
considering the annualized hours constraint. The authors
respect the Swiss law, which is less restrictive than the
French one.

To the best of our knowledge, a deterministic
approach has never been proposed to deal with the
dimensioning problem. Furthermore, as far as we know,
the shift design problem tackled in this paper has never
been treated before.

The paper is organized as follows. In Section I the
staffing problem is presented, the deterministic model
is explained, a mixed integer linear programming for-
mulation and a constraint programming formulation
are proposed. In Section II, the shift design problem
is presented and solved by a Tabu search algorithm.
Computational experiments show the efficiency of the
proposed methods.

I. STAFF DIMENSIONING

We consider an inbound call center, it means a call
center that only receives calls. The outgoing calls are not
considered, the staff required for these calls is assumed
to be fixed by the client that ordered the calls to the call
center. The first stage of the process is to determine the
temporal requirements, i.e. to determine the number of
required employees of each qualification for every period
of the planning horizon.

The staff dimensioning problem can be set as follows:
the whole horizon is split intoT identical periods of

size τ . Generally, each period corresponds to a quarter
of hour. For each periodt, we know the number of
expected incoming calls. These calls are of several types,
depending on the client and on the activity. For instance
hot line services, declarations of loss or robbery of credit
cards, are different types of activities for which the mean
duration of a call may differ. We denote byNk(t) and
Pk(t) the number and the duration of expected calls of
type k (1 ≤ k ≤ K) at periodt respectively.

The staffing levels are generally determined from a
service level perspective. Indeed, when a client entrusts
an activity to a call center, he provides the forecasted
calls for each period and the call center has to reach
an objective in terms ofquality of service. The quality
of service is defined by a quantitative measure related
to the service accessibility: in this paper, the quality
of service is equal to the percentage of the average
number of incoming calls taken in less than a given
time, over the horizon. The quality of service depends
on the activity. For instance, one client imposes a mean
quality of service greater than or equal to 85% of
incoming calls taken in less than 20 seconds during
one week. This quality of service is a constraint for the
staff dimensioning problem. We denote byRk andQSk

the ratio and the time indicated in the definition of the
quality of service for activityk.

The problem consists in determining the number of
required agents at each period minimizing a cost function
and respecting the quality of service of each activity.

A. Problem modeling and notations

We consider one given periodt. We assume each call
arrives at a determined time and has to be answered
according to the quality of service definition. A call may
be not answered or answered after the delay, but the
number of such calls is bounded according to the quality
of service definition.

We assume that the number of agents in the call center
is equal tom. Each agentj is considered as a resource
denoted byMj , 1 ≤ j ≤ m. We consider that all the
agents constitute a particular workshop, composed by
parallel machines (or resources), where all the resources
are assumed to be identical. However, since agents do
not have the same skills, they are not able to take the
same type of calls. Therefore, we associate to each
resource a set of tools, where each tool corresponds
to the competence which possesses the corresponding
agent, i.e. to the type of calls the agent can take.
Such a workshop description is known in the scheduling
literature as the “parallel multipurpose machines” model,
denoted byPMPM [5]. A cost-in-use denoted bycj is

Cyril Canon et al. 57

associated to each resourceMj . This cost is a function
of the number of tools associated to the resource.

We assume thatn calls will occur during periodt.
Each call is considered as an independent jobi with a
release dateri, a processing timepi and a deadlinẽdi,
1 ≤ i ≤ n. Nk denotes the number of jobs corresponding
to calls of typek (we omit t in the notation), we have
∑K

k=1 Nk = n. Finally, a tool is required for processing
a job, representing the skill required to take the type of
call.

We define the quantityAAk = (τ−Pk)/Nk, to denote
the average time spent between two successive calls of
type k. The release times, the processing times and the
deadlines of the jobs corresponding to the calls of type
k are computed as follows:

r
(k)
i = AAk × (i − 1),∀i, 1 ≤ i ≤ Nk (1)

p
(k)
i = Pk,∀i, 1 ≤ i ≤ Nk (2)

d̃
(k)
i = r

(k)
i + p

(k)
i + QSk,∀i, 1 ≤ i ≤ Nk (3)

with QSk the waiting time indicated in the definition
of the quality of service for calls of typek. Note that this
waiting time is called the slack in scheduling literature.

All the jobs are then sorted in their release time non
decreasing order and renumbered from 1 ton.

The aim is to assign to the resources and to schedule
a part of these jobs in order to minimize the total cost.
This problem is solved for each periodt which gives
finally the number of agents per period needed to face
the whole demand.

Example: Lets consider two types of jobs and the data
of Table I.

type k QSk Nk Pk

k = 1 5 6 10
k = 2 5 7 30

TABLE I

DATA OF THE EXAMPLE

We assume thatT = 100, henceAA1 = 100−10
6 = 15

and AA2 = 100−30
7 = 10. Associated to type 1 and to

type 2 we obtain 13 jobs as indicated in Table II.

We assume thatmax1≤k≤K QSk ≤ min1≤i≤n pi. This
hypothesis is realistic in call center contexts, it means
that the waiting times allowed by the quality of service
definition is always smaller than the duration of the calls.

Proposition: Considering the previous hypothesis
between duration of calls and waiting time, for any pair
of jobs (i, i′) assigned to the same resource, ifri < ri′

type k = 1
j 1 2 3 4 5 6
rj 0 15 30 45 60 75
pj 10 10 10 10 10 10
d̃j 15 30 45 60 75 90

type k = 2
j 1 2 3 4 5 6 7
rj 0 10 20 30 40 50 60
pj 30 30 30 30 30 30 30
d̃j 35 45 55 65 75 85 95

TABLE II

CORRESPONDING JOBS

then i′ cannot precedei in a feasible solution.

Proof: the starting time of jobi is denoted by
ti. Suppose thatri < ri′ and i′ precedesi. If i′

begins at its earliest start time,ti′ = ri′ , and then
ti′ +pi′ < d̃i′ . Becausei follows i′, in bestti = ti′ +pi′ ,
so ti + pi = ti′ + pi′ + pi. But pi′ > QSk if k is the type
of job i, so ti + pi > ti′ + QSk + pi. Becauseri < ri′ ,
we haveri < ti′ , so ti + pi > ri + QSk + pi, which
implies ti + pi > d̃i.

So, once the assignment of jobs to resources is known,
the jobs are ordered by theSRT rule (Shortest Ready
Time first). The problem is then reduced to an as-
signment problem. According to the three-field notation
[11] of scheduling problems, our problem is denoted by
PMPM |ri, d̃i, QSmax < pmin|m

w where mw is the
cost function due to machine use,QSmax is the greatest
waiting time andpmin the smallest processing time.

The problem can be formulated as a mixed integer
linear program (called MILP) and as a constraint pro-
gramming model (called CP).

B. Integer linear program

In order to represent the skills constraints, we define
boolean databi,k = 1 if job i requires skillk and 0
otherwise (1 ≤ i ≤ n, 1 ≤ k ≤ K). In the same way,
vj,k is equal to 1 if toolk is associated to resourceMj

and 0 otherwise. The variables of the model are:xi,j a
boolean variable equal to 1 if jobi is assigned to resource
Mj and 0 otherwise;zj equal to 1 if machineMj is used
and 0 otherwise; andti the starting time of jobi.

The objective function is to MinimizeZ =
m

∑

j=1

cjzj .

The constraints are:

58 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

m
∑

j=1

xi,j = 1 ∀i ∈ {1..n} (M1)

xi,j ≤
K

∑

k=1

bi,k.vj,k

∀i ∈ {1..n},∀j ∈ {1..m} (M2)
ti′ ≥ ti + pi × (2xi,j + 2xi′,j − 3)
∀i ∈ {1..n},∀i′ ∈ {i..n},∀j ∈ {1..m} (M3)

ti ≥ ri ∀i ∈ {1..n} (M4)

ti + pi ≤ d̃i ∀i ∈ {1..n} (M5)
zj ≥ xi,j ∀i ∈ {1..n},∀j ∈ {1..m} (M6)

Constraints (M1) insure that each job is assigned
to exactly one resource. Constraints (M2) insure that
a job is assigned to a resource, only if the required
tool is present. The sum in the right hand side of the
constraint is a constant, equal to 0 or 1. If the constant
equal 0 the variable is not introduced. Constraints (M3)
are the disjunctive constraints concerning two jobs
assigned to the same resource. In these constraintsi
is smaller thani′, which means thati precedesi′ if
they are on the same resource. Constraints (M4) and
(M5) insure the respect of the release dates and the
deadlines. Constraints (M6) give the value to variables
zj . This model containsmn binary variables,(n + m)
continuous variables andO(n2m) constraints.

Proposition: Constraints (M3) are sufficient to model
the disjunctive constraints.

Proof: Let i and i′ two jobs such thati < i′.
We denote bysli the slack of jobi, it meansri +

pi + sli = d̃i. This slack timesli is equal toQSk if
i is of type k. We have the hypothesis thatsli ≤ pi,
for all i. So ri + pi + pi ≥ d̃i, i.e. ri ≥ d̃i − pi − pi.
Sinceri′ ≥ ri and ti′ ≥ ri′ , we haveti′ ≥ d̃i − pi − pi.
Becauseti ≤ d̃i−pi, we haveti′ ≥ ti−pi. This relation
is verified for any assignment of jobs. Sinceti′ ≥ ti−pi,
a fortiori, we always haveti′ ≥ ti−3pi. Thus, if the jobs
are not assigned to the same resource, this constraint is
redundant.

Assume that these two jobs are assigned to the same
resourceMj , then (2xi,j + 2xi′,j − 3) = 1 and thus
ti′ ≥ ti + pi, which corresponds to the succession ofi
and i′.

In order to improve the resolution process of this
MILP, we use some constraint propagation techniques.
Let consider two jobsi and i′ with i < i′, we focus on
constraints (M3) as follows:

• if d̃i ≤ ri′ , the disjunction will necessarily be
respected, so the constraint is not introduced.

• if ri + pi ≥ d̃i′ − pi′ then it is not possible to
schedulei andi′ on the same resource without over-
lapping. In this case, the corresponding disjunctive
constraints (one per resource) are not introduced,
but the constraintsxi,j+xi′,j ≤ 1 for all j are added
in order to impose non identical assignments.

Another improvement concerns constraints(M6). An
arbitrary order is given for all the resources of the
same type, i.e. having the same set of tools, as follows:
zj ≥ zj′ , for all Mj andMj′ of the same type withj <
j′. These constraints break symetry of the assignment
problem.

The solver CPLEX is used as a resolution method for
this problem.

C. Constraint programming model

We denote byEJMi the set of resources which can
handle job i according to the tools associated to the
resources.

The variables of the model are: for each jobi, its
starting timeTi and its assignmentRi. For each resource,
Zj is equal to 1 if machineMj is used and 0 otherwise.
The variable to minimize is denoted byC. In order to
help the resolution, a lower bound is computed and added
to the model. This lower bound is based on the notion
of ”mandatory part” [13], [3]. Let consider one jobi.
This job has to be processed betweenri and d̃i, and
more precisely, whatever is its starting time, the job will
be performed in the interval[d̃i − pi, ri + pi], if d̃i −
pi < ri + pi. We denote byT the set of dates̃di − pi

for all jobs i. We denote bySt the set of jobs that are
processed simultaneously at timet, ∀t ∈ T . The number
maxt∈T |St| gives the minimum number of jobs that will
be performed simultaneously. We assume that these jobs
are assigned to the first cheaper resources, which gives
a lower bound denoted byLB.

The constraints of the model (denoted CP) are the
following.

C =
m

∑

j=1

wjZj

C ≥ LB (C1)

Ti ∈ [ri, d̃i − pi] ∀i ∈ {1..n} (C2)
Ri ∈ EJMi ∀i ∈ {1..n} (C3)
alldifferent(Ri,∀i ∈ St) ∀t ∈ T (C4)
(Ri 6= Ri′) or (Ti + pi ≤ Ti′)

∀i ∈ {1..n − 1},∀i′ ∈ {i + 1..n} (C5)
(Ri 6= Mj) or (Zj = 1)

∀i ∈ {1..n},∀j ∈ {1..m} (C6)
Zj ≥ Zj′

∀j ∈ {1..m},∀j′ ∈ {j + 1..m} (C7)

Cyril Canon et al. 59

Constraint(C1) is the lower bound constraint. Con-
straints(C2) and (C3) indicate the definition domains
of variablesTi andRi. Constraints(C4) insure that the
jobs of a same setSt will not have the same assignment.
Constraints(C5) are the disjunctive constraints that
indicate that ifi andi′ are assigned to the same resource
and i < i′ then i precedesi′. Constraints(C6) impose
to variablesZj to take value 1 if resourceMj is used.
If Ri = Mj , this constraint imposesZj = 1. Constraints
(C7) impose that if a resourceMj is not used (Zj = 0),
then so do the resources of the same class that have a
higher cost (Mj′ with j′ > j).

The variables are instanciated as follows: all the
variablesZj are sorted according to their decreasing cost
of use, and set to 0 first (”expensive machines last”); then
all the couples of variables(Ri, Ti).

The first modification of this model lies in the instan-
ciation method. We denote by CP’ the model CP with the
following instanciation method: all the variablesZj are
sorted according to their increasing cost of use, and set
to 1 first (”cheapest machines first”); then all the couples
of variables(Ri, Ti).

In the second modification of model CP, we insert
an upper bound constraint on the criterion value. The
upper bound is the result of a simple list algorithm: sort
the jobs using SRT rule (Shortest Release Time first)
and assign the jobs to the First Available Machine, that
is able to process it. This algorithm as anO(n log(n))
time complexity. We denote byUB the value of the
solution returned by this simple heuristic algorithm. The
additive constraint is:C ≤ UB, (C8). We denote by
CP”, model CP (with the initial instanciation method)
plus this constraint.

D. Computational experiments

Data are generated as described Table III. We consider
four different activities, denoted byA, B, C andD. The
mean duration of one call of each activity is respectively
60, 120, 45 and 90 seconds. We assume that calls have
to be taken in less than 20 seconds. The set of agents is
composed by 45 agents having the skills indicated table
III. The costs of use are 1000 for one skill, 1300 for two
skills and 1500 for three skills.

For each type of call, the number of expected
calls is randomly generated betweenN and 2N with
N ∈ {5, 10, 15, 20, 25}. It means that for a given value
of N , the total number of jobsn is comprised between
4N and 8N . 50 instances are generated for each value
of N . The computational time of each instance is
bounded by two minutes since the problem has to be
solved for each period of the horizon. All the tests have

skill A B C D

max. # agents 5 5 5 5

skill AB AC BD ABD BCD

max. # agents 5 5 5 5 5

number of skills 1 2 3
cost of use 1000 1300 1500

TABLE III

DATA GENERATION

been realized using CPLEX 8.0 software for testing
MILP and Eclipse 5.877 software for testing CP, on a
PC Pentium III, 1.4 GHz, 512 Mo.

Results are presented in Table IV. Column #opt.
indicates the number of instances for which the optimal
solution has been returned in less than two minutes. Col-
umn #feas. indicates the number of instances for which a
feasible solution – non optimal – has been found, column
#unfeas. indicates the number of instances for which no
feasible solution has been found. Column CPU(s) indi-
cates the average computation time in seconds. Column
#impr. indicates the number of improvements, i.e. the
number of instances for which the solution returned by
the method is strictly better thanUB.

Method MILP has the advantage to always find a
feasible solution to the problem. However, this solution
is never optimal – never proved optimal – and is never
strictly better thanUB. So, using the heuristic algorithm
is always better than using MILP.

Methods CP and CP’ give complementary results.
For N = 5, CP always returns the optimal solution in
a very small computation time; forN = 10, CP either
finds the optimal or a feasible solution, in less time than
CP’ that only gives feasible solutions. ForN = 15 the
difference is not so evident since CP finds less feasible
solutions than CP’, but the solutions are of better quality
as indicated in column #impr. ForN = 20 or 25, CP
does not find any solution to the problem – except for
10 instances – whereas CP’ always finds a feasible
solution. However, all these solutions are worst than
UB. Method CP”, that cannot be worst thanUB has
the advantages of both CP and CP’. Adding the upper
bound to CP does not help the solver finding an optimal
solution, it only prevents unfeasible solutions. For
N ≤ 15 adding the upper bound constraint is interesting
since the method can improve some solutions. However,
for N ≥ 20, using any CP model is not interesting,
since it is always better to use directly the solution of
the heuristic algorithm – except for one instance.

60 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

MILP
N n #opt. #feas. #unfeas. CPU (s) #impr.
5 [20,40] 0 50 0 120 0
10 [40,80] 0 50 0 120 0
15 [60,120] 0 50 0 120 0
20 [80,160] 0 50 0 120 0
25 [100,200] 0 50 0 120 0

CP
N n #opt. #feas. #unfeas. CPU (s) #impr.
5 [20,40] 50 0 0 3.33 21
10 [40,80] 27 23 0 84.33 27
15 [60,120] 0 40 10 120 13
20 [80,160] 0 10 40 120 1
25 [100,200] 0 0 50 120 0

CP’
N n #opt. #feas. #unfeas. CPU (s) #impr.
5 [20,40] 38 12 0 74.18 17
10 [40,80] 0 50 0 120 0
15 [60,120] 0 50 0 120 0
20 [80,160] 0 50 0 120 0
25 [100,200] 0 50 0 120 0

CP”
N n #opt. #feas. #unfeas. CPU (s) #impr.
5 [20,40] 50 0 0 3.52 21
10 [40,80] 28 22 0 84.80 27
15 [60,120] 0 50 0 120 16
20 [80,160] 0 50 0 120 1
25 [100,200] 0 50 0 120 0

TABLE IV

RESULTS

Integer programming and constraint programming re-
sults are compared, using MILP and CP’ model. Table
V indicates in column #M<C’ and #M=C’ the number
of instances for which the result returned by MILP
is strictly smaller than – respectively equal to – the
one returned by CP’. Column av.M and column av.C’
indicate the average objective function value for both
methods. A star in these columns indicates the best one.

N n #M<C’ #M=C’ av.M av.C’
5 [20,40] 0 0 8300 *4436
10 [40,80] 15 2 12074 *11760
15 [60,120] 41 0 *16840 21428
20 [80,160] 50 0 *22156 41586
25 [100,200] 50 0 *29784 58294

TABLE V

COMPARISON BETWEENMILP AND CP’

For a small value ofN (N ≤ 10), CP’ gives better
results than MILP, even if the average values of the
objective function are similar forN = 10. However,
for N ≥ 15, results returned by MILP are better than

those returned by CP’ without ambiguity: in average,
the objective value of the solutions returned by MILP
is the half of those of CP’, forN ≥ 20. However, as
indicated in Table IV, the heuristic algorithm is always
strictly better than MILP.

II. SOLVING THE SHIFT DESIGN PROBLEM

Once the number of required agents is known for each
period, the problem is how to define shifts for each agent,
that is solving the shift design problem. The number of
employees needed for each period to answer the calls is
now a data of the problem.

We assume that all the contracts of the agents are
known, it means the minimum and maximum number
of work hours per day, the exact number of work hours
in the week, the minimum and maximum duration of
the break during the day, plus its relative position in
the day, the minimum duration of rest between two
consecutive days and the number of days-off per week.
A solution that respects the legal constraints is called in
the following a legal solution. Knowing the results of
the preceding phase, i.e. the number of agents required
per period, we have to determine for each agentj and
for each dayd of the week, the start time of workTj,d,
the duration of workPj,d including the break, the start
time of breakSj,d and the duration of breakLj,d. The
shift for agentj dayd is the vector(Tj,d, Pj,d, Sj,d, Lj,d)
and is represented in Figure 1.

-

-¾ Pj,d

-¾ Lj,d

Tj,d Sj,d

Fig. 1. Shift for agentj

The fact that the number of agents scheduled per
period and per activity is greater than or equal to
the required number is calleda feasible solution. The
objective is to obtain a solution both legal and feasible.

A. Tabu search algorithm

This problem is solved by using a Tabu Search al-
gorithm [14]. One solution is represented by the four
matricesT , P , S and L. A solution is evaluated by a
function of the total number of missing agents per period.

At the beginning, an initial legal solution is obtained
as follows: for each agentj and for each dayd,
Pj,d, Sj,d, Lj,d are randomly generated in their definition
domain. Then, for agentj, day d, variable Tj,d is
assigned to the smallest period belonging to the

Cyril Canon et al. 61

definition domain that do not respect the temporal
requirement. This simple algorithm allows to generate
in O(m) a legal solution, with no feasibility guaranty.

We define four basic neighbourhood relations chang-
ing one of the four features of a shift, and two composite
moves:

• for agentj day d, increase or decrease

– Pj,d

– or Lj,d

– or Tj,d

– or Sj,d.

• swap the shift for agentj day d and the shift for
agentj day d′,

• increasePj,d for agentj day d and decreasePj,d′

for agentj day d′.

In order to avoid cycles in the neighbourhood, a Tabu
mechanism is used: the Tabu list contains the lastH
visited solutions, whereH is the length of the Tabu list.
Each time a solution is chosen in the neighbourhood, this
solution is added to the Tabu list. When the Tabu list is
full, the oldest solution is extracted. In fact, the Tabu
list contains “reduced solutions”: a reduced solution is
a matrix with one row for each type of contract (same
number of work hours in the week and same min-max
number of work hours each day) and one column for
each period, representing how many agents having the
same contract are assigned to each period. Two solutions
are equivalent if the corresponding reduced solutions are
identical. The size of the Tabu list has been fixed to 7.

No aspiration criteria is used.
For each solution, all the neighbours are generated.

However, all of them are not explored since of all them
are not legal solutions. This verification can be checked
in polynomial time, assuming that the initial solution was
legal.

Among all the neighbour that are not in the Tabu
list, the neighbour with the best objective function is
chosen for the next exploration. The Tabu algorithm
stops when the solution has not been improved during
the last 30 moves.

The objective function to minimize is defined as
follows. We denote byY the total number of hours of
the employees, available for working in the considered
horizon. We denote byW ′ the total number of work
hours required for all the periods of the horizon. We
define ρ = W ′/Y that represents the percentage of
use of the employees.C denotes the load curve, i.e.
the number of employees needed each time period.C

is the result of the previous phase.C′ defined byC′(t) =
(1+ρ)C(t) is the augmented load curve, that corresponds
to the optimal curve (see Figure 2). We denote byP
the curve representing the number of scheduled agents
per period. This curve can be deduced from one set of
matrices(T, P, S, L). We define the objective function
to minimize by:

Z = α.max (0, C(t) − P(t)) + β.
T

∑

t=1

|C′(t) − P(t)|

C
)

¼

C′

-

6

t

agents

Fig. 2. Load curve definitions

The first term of this expression indicates that the
total number of missing employees is weighted by co-
efficient α. The aim of the second term is to smooth
the overstaffing along the horizon. It is clear that if we
obtainP = C′, the objective function value is equal to
0, since all the staff is used, no period is understaffed
(C′(t) ≥ C(t), ∀t ∈ [1, T]) and the overstaffing is regular
all along the horizon. Coefficientsα and β have been
set to 100 and 1 respectively.

B. Computational experiments

The number of agents required per period is generated
as follows:

• for period t, 1 ≤ t ≤ 24, day d, 1 ≤ d ≤ 7, the
number of agents required is uniformly generated
betweent and t.nbmax,

• for period t, 25 ≤ t ≤ 48, day d, 1 ≤ d ≤ 7, the
number of agents required is uniformly generated
between(49 − t) and (49 − t).nbmax,

• for period t, 49 ≤ t ≤ 72, day d, 1 ≤ d ≤ 7, the
number of agents required is uniformly generated
between(t − 48) and (t − 48).nbmax,

• for period t, 73 ≤ t ≤ 96, day d, 1 ≤ d ≤ 7, the
number of agents required is uniformly generated

62 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

-

6

required agents

t

0 4824 9672

Fig. 3. Random generation of a typical loading curve

between(97 − t) and (97 − t).nbmax.

Parameternbmax allows to vary the aspect of the
curve by increasing the peaks size. It belongs to
{1.5, 2, 2.5, 3, 3.5}. Such a data generation allows to
obtain the characteristic “back of camel” curve of call
center (see Figure 3). We denote byWt the total number
of agents required periodt and we setW =

∑T
t=1 Wt.

We compute a number of “full time equivalent” agents
(FTE) as follows. We insert a margin of 10% and we
consider in fact1.1W agents. Since the period is of
length τ (in minutes) we have to consider1.1W/(60

τ
)

working hours, i.e.1.1W/4 if τ is a quarter of hour.
Since one full time equivalent works 35 hours per
week, we have to consider1.1W/(35 × 60

τ
) agents and

since each agent has exactly two days-off per week
(he/she works only five days per week), it remains
7
5(1.1W/(35 × 60

τ
)). We obtainFTE = 1.1Wτ

1500 .
We consider 6 types of contracts, the data are de-

scribed in Table VI. Column type indicates the type of
agent. Column#Ag represents the number of agents of
each type. Column#Hr represents the number of work
hours per week per agent. This number is not the same
for all the types of agents due to the annualized hours
constraints [2], [6], [8]. Column#Hr/d represents the
interval (minimum and maximum number) of work hours
per day. Columnδ indicates the interval (minimum and
maximum) of the gap between the start of the shift and
the start of the break. ColumnL indicates the duration
of the break (in hours).

The number of generated agents is 7/6FTE, since
it ensures that the call center contains enough agents
for covering the demand. 125 data set are generated
per value ofnbmax. The results are presented in Table
VII. Columns ILS andTA indicate the mean objective
value of the initial legal solution (ILS) and of the Tabu
algorithm. A deviation between the initial legal solution

type #Ag #Hr #Hr/d δ L

1 1/6 FTE 35 [5,9] [2,3] 1
2 1/6 FTE 33 [5,9] [2,3] 1
3 1/6 FTE 38 [5,9] [2,3] 1
4 1/6 FTE 32 [5,9] [2,3] 1
5 1/6 FTE 37 [5,9] [2,3] 1
6 2/6 FTE 20 [3,5] [1,2] 1

TABLE VI

DATA FOR THE SHIFT DESIGN PROBLEM

and the final solution is computed as follows:

∆(ILS/TA) = 100 ×
ILS − TA

ILS

Columns min∆, avg∆ and max∆ represent the min-
imum, average and maximum deviation between ILS
and TA. In Table VIII, columns minCPU, avgCPU and
maxCPU indicate the minimum, average and maximum
CPU running time of the Tabu algorithm in seconds.

nbmax ILS TA min∆ avg∆ max∆
1.5 172.27 10.45 41.67% 89.68% 97.82%
2 399.85 56.01 39.67% 84.63% 98.57%
2.5 689.30 152.88 30.82% 76.10% 97.78%
3 1025.75 375.88 18.89% 61.52% 95.74%
3.5 1241.62 506.02 19.35% 58.03% 93.07%

TABLE VII

COMPARISON OF THE QUALITY OFTA VS ILS

nbmax minCPU avgCPU maxCPU
1.5 16.09 26.66 46.83
2 34.95 58.80 95.70
2.5 66.31 106.33 187.66
3 98.46 187.18 404.99
3.5 129.91 229.50 316.37

TABLE VIII

COMPUTATION TIME OF TA

We can notice that the improvement of the initial
solution by the Tabu algorithm is really significant. For
nbmax ≤ 2.5, the peak of load are not too large and
the average improvement is more than 75% in average
and always more than 30%. Fornbmax ≥ 3, the peaks
are so important that it is needed to find a compromise
between assigning employees to the peaks and to the rest
of the horizon. For all these instances, it is difficult to
know if a solution better than the one returned by TA
exists. Note also that a solution with an optimal value
of 0 rarely exists.

Cyril Canon et al. 63

The running time of TA is reasonable since it is
less than 4 minutes on average and it never exceeds 7
minutes, even for instances withnbmax ≥ 3.

CONCLUSION AND FURTHER DIRECTIONS

We have considered in this paper the workforce
scheduling problem of an inbound Call Center, decom-
posed into two successive subproblems: first, the dimen-
sioning problem that consists in the determination of the
ideal number of employees needed to face the demand
and second, the shift design problem that consists in
assigning employees to the shifts.

The first problem has been solved using a mixed
integer linear program, some constraint programming
models and a heuristic algorithm. The heuristic algorithm
is interesting for big instances, and the heuristic algo-
rithm plus one constraint programming model are better
for small instances. The second problem is solved using
a Tabu search algorithm. The method gives interesting
results and is very promising to solve this problem.

The resolution of the first problem may be improved
by using the heuristic algorithm, a steepest descent and
constraint programming algorithm to check the con-
straints violations. This method plus another method
based on ant colony optimization will be compared to
the preceding methods both in terms of quality and
running time. Concerning the second problem, it seems
that the Tabu search algorithm can be improved by
exploring firstly composite moves and secondly basic
moves. Furthermore, a lower bound could be usefull
to measure more precisely the quality of the solutions
returned by the method.

REFERENCES

[1] O. Z. Aksin and P. T. Harker, “Capacity sizing in the presence
of a common shared ressource : dimensioninig an inbound call
center,”EJOR, vol. 147, pp. 464–483, 2003.

[2] C. S. Azmat and M. Widmer, “A case study of single shift plan-
ning and scheduling under annualized hours: A simple three-
step approach.”European Journal of Operational Research, vol.
153, no. 1, pp. 148–175, 2004.

[3] P. Baptiste, C. L. Pape, and W. Nuijten,Constraint-based
Scheduling: Applying Constraints to Scheduling Problems.
Dordrecht: Kluwer Academic Publishers, 2001.

[4] S. Borst, A. Mandelbaum, and M. I. Reiman, “Dimensioning
large call center,”Operations Research, vol. 52, no. 1, pp. 17–
34, 2004.

[5] P. Brucker,Scheduling Algorithms, 3rd ed. Berlin: Springer-
Verlag, 2001.

[6] C. Canon, J.-L. Bouquard, and J.-C. Billaut, “Staff planning in
a call centre industry,” inConference of the Italian Association
of Operations Research (AIRO’03), Venice (Italy), Sept. 2003,
p. 73.

[7] B. P. K. Chen and S. G. Henderson, “Two issues in setting call
centre staffing levels.”Annals of Operations Research, vol. 108,
pp. 175–192, 2001.

[8] A. Corominas, A. Lusa, and R. Pastor, “Planning annualised
hours with a finite set of weekly working hours and joint
holidays,” Annals of Operations Research, vol. 128, pp. 217–
233, 2004.

[9] A. Fukunaga, E. Hamilton, J. Fama, D. Andre, O. Matan, and
I. Nourbakhsh, “Staff scheduling for inbound call centers and
customer contact centers,”AI Magazine, 2002.

[10] N. Gans and Y.-P. Zhou, “Managing learning and turnover in
employee staffing,”Operations Research, vol. 50, no. 6, pp.
991–1006, 2002.

[11] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan,
“Optimisation and approximation in deterministic sequencing
and scheduling: a survey,”Annals of Discrete Mathematics,
vol. 5, pp. 236–287, 1979.

[12] G. Koole and A. Mandlebaum, “Queueing models of call
centers : an introduction,”Annals of operations research, vol.
113, pp. 41–59, 2002.

[13] P. Lopez, J. Erschler, and P. Esquirol, “Ordonnancement de
tâches sous contraintes : une approcheénerǵetique (in french),”
RAIRO APII, vol. 26, no. 6, pp. 453–481, 1992.

[14] N. Musliu, A. Schaerf, and W. Slany, “Local search for shift
design,”European Journal of Operational Research, vol. 153,
no. 1, pp. 51–64, 2003.

[15] C. C. News. (2002) Internet draft. [Online]. Available:
http://www.callcenternews.com/resources/statistics.shtml

[16] A. Partouche, “Planification d’horaires de travail :
Méthodologie, mod́elisation et ŕesolution à l’aide de
la programmation lińeaire en nombres entiers et de la
programmation par contraintes (in french),” Thèse de doctorat,
Universit́e Paris-Dauphine, Paris, 1998.

[17] R. Stolletz,Performance analysis and optimization of inbound
call centers. Berlin: Lecture Notes in Economics and Mathe-
matical Systems, Springer, 2003.

[18] W. Whitt, “Dynamic staffing in a telephone call center aiming
to immediately answer all calls,”Operations Research Letters,
vol. 24, pp. 205–212, 1999.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 65

A new concept of approximate efficiency in
multiobjective mathematical programming

César Gutíerrez∗, Bienvenido Jiḿenez† and Vicente Novo‡,§

∗Universidad de Valladolid, Departamento de Matemática Aplicada
E.T.S.I. Inforḿatica, Edificio de Tecnologı́as de la Información y las Telecomunicaciones,

Campus Miguel Delibes, s/n, 47011 Valladolid, Spain
Email: cesargv@mat.uva.es

†Universidad de Salamanca, Departamento de Economı́a e Historia Ecońomica
Facultad de Econoḿıa y Empresa, Campus Miguel de Unamuno, s/n, 37007 Salamanca,Spain

Email: bjimen1@encina.pntic.mec.es
‡Universidad Nacional de Educación a Distancia, Departamento de Matemática Aplicada
E.T.S.I. Industriales, c/ Juan del Rosal, 12, Ciudad Universitaria, 28040 Madrid, Spain

Email: vnovo@ind.uned.es

Abstract— This paper deals with approximate (ε-
efficient) solutions of multiobjective mathematical pro-
grams. We introduce a new ε-efficiency concept which
extends and unifies different approximate solution notions
defined in the literature. We obtain necessary and suffi-
cient conditions via linear scalarization, which allow to
study this new class of approximate solutions in convex
multiobjective mathematical programs. Several classical
ε-efficiency notions are considered in order to show the
concepts introduced and the results obtained.

Keywords— Multiobjective mathematical programming,
approximate solutions, ε-efficiency, scalarization, Weight-
ing Method

I. I NTRODUCTION

A PPROXIMATE solutions are an usual kind of so-
lution used in practice to solve optimization prob-

lems. There are two reasons for that: firstly, optimization
models are simplified representations of real problems.
Secondly, these models are solved frequently using itera-
tive algorithms or heuristic methods and these procedures
give approximations to the theoretical solution.

The notion of approximate solution in multiobjective
mathematical programming is not unique. The first and
most popular concept was introduced by Kutateladze
[14]. This notion has been used to obtain vector varia-
tional principles, approximate Kuhn-Tucker type condi-
tions, approximate duality theorems, resolution methods,
etc. (see [3]–[7], [10], [11], [15], [16], [18]–[20], [22],
[25], [28], [30]).

However, theε-efficiency set obtained according to
the Kutateladze’s definition is sometimes too large. So,

§Corresponding author.

several authors are proposed otherε-efficiency concepts
(see for example [8], [9], [21], [26], [27]). In this work,
all these notions are analyzed through a new concept that
allows us to study them simultaneously.

We characterize this newε-efficiency notion in convex
multiobjective mathematical programs via linear scalar-
ization, i.e., by means of approximate solutions of asso-
ciated scalar optimization problems. As a consequence of
this characterization, we extend the classical Weighting
Method to approximate efficiency sets obtained through
different ε-efficiency notions.

The work is structured as follows: In Section II, the
multiobjective mathematical program and the preference
relation are fixed. Moreover, we describe some notations
used in the sequel. In Section III, we propose a newε-
efficiency concept and we prove some properties of this
notion whenε tends to zero. In Section IV, it is shown
that our concept extends and unifies severalε-efficiency
notions introduced previously in the literature by dif-
ferent authors: Kutateladze [14], Németh [21], Helbig
[8] and Tanaka [26]. In Section V, we characterize the
ε-efficiency set in convex multiobjective mathematical
programs through approximate solutions of scalar opti-
mization problems. The scalarization process is based on
the Weighting Method. In Section VI, the results attained
in the previous section are applied to characterize several
types ofε-efficient solutions in a convex Pareto context.
Finally, in Section VII, conclusions are presented that
summarize this work.

II. PRELIMINARIES

We denote byint(C), cl(C), bd(C) and Cc the
interior, the closure, the boundary and the complement

66 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

of a setC ⊂ R
p, respectively. The cone generated of a

setC is defined by

cone(C) :=
⋃

α>0

αC.

We say that a setC is solid if int(C) 6= ∅. We denote
the nonnegative orthant inRp by R

p
+.

For a coneK ⊂ R
p, its positive polar cone (resp. strict

positive polar cone) is

K+ = {h ∈ R
p : 〈h, d〉 ≥ 0,∀ d ∈ K}

(resp.Ks+ = {h ∈ R
p : 〈h, d〉 > 0,∀ d ∈ K\{0}}).

In this paper, we consider the multiobjective mathe-
matical program

Min{f(x) : x ∈ S}, (P)

wheref : R
n → R

p and S ⊂ R
n, S 6= ∅. As usual, to

solve (P) the following preference relation≤ defined in
R

p by a proper solid convex coneD ⊂ R
p is used, which

models the preferences stated by the decision maker:

y, z ∈ R
p, y ≤ z ⇐⇒ y − z ∈ −D.

We do not require that0 ∈ D and we suppose thatD
is a pointed cone, i.e., a cone such thatD∩(−D) ⊂ {0}
(it is assumed that∅ ⊂ A, ∀A ⊂ R

p).
Definition 2.1: It is said that a feasible pointx0 ∈ S

is an efficient solution of (P) with respect toD (or an
efficient solution for short) if

(f(x0) − D) ∩ f(S) ⊂ {f(x0)}. (1)

Let us note that if0 ∈ D (resp. 0 /∈ D) then (1)
becomes

(f(x0) − D) ∩ f(S) = {f(x0)}

(resp.(f(x0) − D) ∩ f(S) = ∅). We denote the set of
efficient solutions of (P) with respect toD by E(f, S, D)
and with respect toint(D) by WE(f, S, D) (these last
efficient solutions of (P) are called weakly efficient
solutions). It is clear thatE(f, S, D) ⊂ WE(f, S, D).

Next, we give a simple example to show the concepts
of efficient and weakly efficient solution.

Example 2.2:Let us consider problem (P) with the
following data:n = p = 2, D = R

2
+, f(x, y) = (x, y),

S = {(x, y) ∈ R
2 : x ≥ 1, y ≥ 1, max{x, y} ≥ 2}.

It is clear that

E
(

f, S, R2
+

)

= {(1, 2), (2, 1)}

and
WE

(

f, S, R2
+

)

= bd(S) .

In Figure 1 we have drawn the feasible setS and its
efficient and weakly efficient elements.

0 1 2 3
0

1

2

3

Efficient solutions
Weak efficient solutions

S

Fig. 1. Efficiency and weak efficiency sets in Example 2.2

III. A NEW CONCEPT OF APPROXIMATE EFFICIENCY

IN MULTIOBJECTIVE MATHEMATICAL PROGRAMMING

In the sequel, we introduce a new approximate solu-
tion concept for multiobjective mathematical programs.
This notion is motivated in the following idea: an ap-
proximate solution of (P) is every feasible pointx0 ∈ S
such that for all feasible pointx ∈ S whose imagef(x)
is better thanf(x0), the improvementf(x0) − f(x) is
near to zero.

To define this concept, we use a nonempty solid
pointed convex setC ⊂ R

p and we assume thatC is co-
radiant, i.e., a set such thatαd ∈ C, ∀ d ∈ C, ∀α > 1.
Moreover, we denoteC(ε) := εC, ∀ ε > 0 and

C(0) :=
⋃

ε>0

C(ε) . (2)

Lemma 3.1:
(i) C(ε) is a pointed convex co-radiant set,∀ ε > 0.
(ii) C(ε2) ⊂ C(ε1), ∀ ε1, ε2 > 0, ε1 < ε2.

(iii) C + C(α) ⊂ C, ∀α > 0.
(iv) C(ε) + C(δ) ⊂ C(ε), ∀ ε, δ > 0.
(v) C(ε) + C(0) ⊂ C(ε), ∀ ε > 0.
(vi) C(0) is a pointed convex cone.
Proof. Part (i). Considerε > 0. It is obvious thatC(ε)

is a convex set, sinceC is convex. Lety ∈ C(ε) and
α > 1. There existsd ∈ C such thaty = εd. As C
is a co-radiant set, it follows thatαy = ε(αd) ∈ C(ε)
and C(ε) is a co-radiant set. Moreover, ify ∈ −C(ε)
then y/ε ∈ C ∩ (−C) ⊂ {0}, and soy = 0. Thus,
C(ε) ∩ (−C(ε)) ⊂ {0} andC(ε) is a pointed set.

Part (ii). Let ε1, ε2 > 0, ε1 < ε2 andy ∈ C(ε2). There
existsd ∈ C such thaty = ε2d. For

α := 1 + (ε2 − ε1)/ε1

we have thaty = α(ε1d) ∈ C(ε1), sinceα > 1 and
C(ε1) is a co-radiant set. Then,C(ε2) ⊂ C(ε1).

Part (iii). For eachd1, d2 ∈ C and α > 0 it follows
that

d1 + αd2 = (1 + α)

((

1 −
α

1 + α

)

d1 +
α

1 + α
d2

)

César Gutíerrez et al. 67

andd1 + αd2 ∈ C, sinceC is a co-radiant convex set.
Part (iv). For eachε, δ > 0 it follows from part (iii)

that

C(ε) + C(δ) = ε(C + C(δ/ε)) ⊂ εC = C(ε) .

Part (v). By part (iv) we see that

C(ε) + C(0) =
⋃

δ>0

(C(ε) + C(δ)) ⊂ C(ε) ,∀ ε > 0.

Part (vi). It is clear thatC(0) = cone(C), and so we
have thatC(0) is a cone.

If y ∈ C(0)∩ (−C(0)) then there existδ, ν > 0 such
that y ∈ C(δ)∩ (−C(ν)). Considerβ = min{δ, ν} > 0.
By parts (i)-(ii) we see thaty ∈ C(β) ∩ (−C(β)) ⊂
{0}, and therefore,C(0) is a pointed set. Moreover, by
a similar reasoning, ify1, y2 ∈ C(0) then there exists
β > 0 such thaty1, y2 ∈ C(β) and it follows thatλy1 +
(1 − λ)y2 ∈ C(β), ∀λ ∈ (0, 1), sinceC(β) is a convex
set. Consequently,C(0) is convex. ¥

Definition 3.2: Let ε ≥ 0. We say that a feasible point
x0 ∈ S is an ε-efficient solution of (P) with respect to
C (or anε-efficient solution for short) if

(f(x0) − C(ε)) ∩ f(S) ⊂ {f(x0)}. (3)

We denote byAE(f, S, C, ε) the set of ε-efficient
solutions of (P) with respect toC. Let us observe that
whenε = 0 we haveAE(f, S, C, 0) = E(f, S, C(0)).

Taking p = 1 and C = (1,∞) in Definition 3.2
we obtain the classical concept of approximate solution
in (scalar) mathematical programming. We recall this
notion in the following definition.

Definition 3.3: Considerp = 1 in program (P) and
ε ≥ 0. It is said thatx0 ∈ S is anε-solution of (P) if

f(x0) − ε ≤ f(x), ∀x ∈ S.
We denote the set of allε-solutions of (P) whenp = 1
by AMin(f, S, ε).

As C is a solid pointed convex co-radiant set, it
follows that int(C) is a nonempty pointed convex co-
radiant set and we can also consider the set of all
ε-efficient solutions of (P) with respect toint(C) (or
weakly ε-efficient solutions for short):

{x ∈ S : (f(x) − int(C) (ε)) ∩ f(S) ⊂ {f(x)}}.

We denote this set byWAE(f, S, C, ε). Notice that

int(C) (0) =
⋃

ε>0

ε int(C) =
⋃

ε>0

int(C(ε)) . (4)

Moreover, asC is a solid convex set it follows that (see
[13, Proposition 2.3(ii)])

int(C) (0) = cone(int(C)) = int(cone(C))

= int(C(0)) ⊂ C(0) . (5)

Therefore,AE(f, S, C, ε) ⊂ WAE(f, S, C, ε), ∀ ε ≥ 0
and

WAE(f, S, C, 0) = E(f, S, int(C(0)))

= WE(f, S, C(0)) .

To illustrate we give now an example (see Section IV
for more important notions).

Example 3.4:Let h ∈ D+\{0} and define

C := {y ∈ R
p : 〈h, y〉 > 1}.

It is clear thatC is a proper solid pointed convex co-
radiant set andC(ε) = {y ∈ R

p : 〈h, y〉 > ε}. Then we
have for eachε ≥ 0 andx0 ∈ S

x0 ∈ AE(f, S, C, ε) ⇐⇒ (f(x0) − f(S)) ⊂ C(ε)c

⇐⇒ ∀x ∈ S, 〈h, f(x)〉 ≥ 〈h, f(x0)〉 − ε.

This says thatx0 is anε-efficient solution with respect to
〈h, ·〉 in the sense introduced by Vályi in [27, Definition
2].

Let us consider the functionh(x, y) = 2x + y.
Then, the following V́alyi’s approximate efficiency set
is obtained in problem (P) described in Example 2.2:

AE(f, S, C, ε) = {(x, y) ∈ S : 2x + y ≤ 4 + ε}.

Figure 2 shows this set forε = 2 andε = 0.5.

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

h (x, y) = 2x + y h (x, y) = 2x + y

ε = 2 ε = 0.5

Fig. 2. Vályi’s ε-efficiency sets in Example 2.2

Theorem 3.5 shows several properties of the family
{AE(f, S, C, ε)}ε≥0.

Theorem 3.5:
(i) AE(f, S, C, 0) ⊂ AE(f, S, C, ε), ∀ ε > 0.
(ii) AE(f, S, C, ε1) ⊂ AE(f, S, C, ε2), ∀ ε1, ε2 > 0,

ε1 < ε2.
(iii)

⋂

ε>0 AE(f, S, C, ε) = AE(f, S, C, 0).
(iv) Let (xn) ⊂ S, (εn) ⊂ R+ and y ∈ R

p such that
xn ∈ AE(f, S, C, εn), εn ↓ 0 and f(xn) → y.
Thenf−1(y) ∩ S ⊂ WAE(f, S, C, 0).

(v) Let (xn) ⊂ S and (εn) ⊂ R+ such thatxn ∈
AE(f, S, C, εn) andεn ↓ 0. Consider

K :=
⋂

n

(f(xn) − C(εn)).

68 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Thenf−1(K) ∩ S ⊂ AE(f, S, C, 0).
Proof. Part (i). Let ε > 0 and x ∈ AE(f, S, C, 0). It

follows that

(f(x) − C(ε)) ∩ f(S) ⊂

(

f(x) −
⋃

δ>0

C(δ)

)

∩ f(S)

= (f(x) − C(0)) ∩ f(S) ⊂ {f(x)}

andx ∈ AE(f, S, C, ε).
Part (ii). Let ε1, ε2 > 0, ε1 < ε2 and x ∈

AE(f, S, C, ε1). By Lemma 3.1(ii) we have thatC(ε2) ⊂
C(ε1) and we deduce that

(f(x)−C(ε2))∩f(S) ⊂ (f(x)−C(ε1))∩f(S) ⊂ {f(x)}.

Then,x ∈ AE(f, S, C, ε2).
Part (iii). From part (i) it follows that

AE(f, S, C, 0) ⊂
⋂

ε>0

AE(f, S, C, ε) .

Conversely, letx ∈
⋂

ε>0 AE(f, S, C, ε). Then,

(f(x) − C(ε)) ∩ f(S) ⊂ {f(x)},∀ ε > 0.

Therefore,

(f(x) − C(0)) ∩ f(S) =
(

f(x) −
⋃

ε>0

C(ε)

)

∩ f(S) ⊂ {f(x)}

andx ∈ AE(f, S, C, 0).
Part (iv). Let x ∈ f−1(y) ∩ S and suppose that there

existsz ∈ S such thatf(z) ∈ f(x) − int(C) (0). From
(4) it follows that there existsε > 0 verifying f(z) ∈
f(x) − int(C(ε)). As f(xn) → y we deduce that there
existsn0 ∈ N such that

f(z) + y − f(xn) ∈ f(x) − C(ε) ,∀n ≥ n0.

As εn ↓ 0 it follows from Lemma 3.1(ii) that there exists
n1 ≥ n0 such that

f(z) ∈ f(xn) − C(εn) ,∀n ≥ n1

and thereforef(z) = f(xn), ∀n ≥ n1, since xn ∈
AE(f, S, C, εn). Then, taking the limit, we havef(z) =
y = f(x),

(f(x) − int(C) (0)) ∩ f(S) ⊂ {f(x)}

andx ∈ WAE(f, S, C, ε).
Part (v). Considerx ∈ f−1(K)∩S. As f(x) ∈ K and

xn ∈ AE(f, S, C, εn) we have that

f(x) ∈ (f(xn) − C(εn)) ∩ f(S) ⊂ {f(xn)}, ∀n

and we deduce thatf(x) = f(xn), ∀n. Therefore,

(f(x) − C(εn)) ∩ f(S) = (f(xn) − C(εn)) ∩ f(S)

⊂ {f(xn)} = {f(x)},∀n.

Thus, by (2) we see that

(f(x) − C(0)) ∩ f(S) ⊂ {f(x)}

and we conclude thatx ∈ AE(f, S, C, 0). ¥

Remark 3.6:From Theorem 3.5(iv) it is clear that iff
is a continuous map atx0 ∈ S and there exist(xn) ⊂ S
and (εn) ⊂ R+ such thatxn ∈ AE(f, S, C, εn), xn →
x0 andεn ↓ 0 thenx0 ∈ WAE(f, S, C, 0).

Remark 3.7:Theorem 3.5 holds if we changeC
by int(C) and AE(f, S, C, ε) by WAE(f, S, C, ε),
since int(C) is also a nonempty solid pointed con-
vex co-radiant set. In this case, let us observe that
WAE(f, S, int(C) , 0) = WAE(f, S, C, 0).

IV. RELATIONS WITH OTHER ε-EFFICIENCY

CONCEPTS

In this section, we deduce well-knownε-efficiency
concepts by choosing suitable setsC in Definition 3.2.

A. ε-efficiency in the senses of Kutateladze and Németh

Suppose that0 ∈ D and takeq ∈ D\{0}. It is clear
that

C := q + D

is a solid pointed convex co-radiant set, sinceint(C) =
q + int(D), C ⊂ D and

αC = q + ((α − 1)q + αD) ⊂ q + D = C, ∀α > 1.

Moreover, C(ε) = εq + D, ∀ ε > 0. Then, we can
consider the set ofε-efficient solutions of (P) with
respect toC and for eachε > 0 we have

x ∈ AE(f, S, C, ε)

⇐⇒ x ∈ S, (f(x) − εq − D) ∩ f(S) ⊂ {f(x)}. (6)

As D is a pointed cone, it follows that (6) is equivalent
to

x ∈ AE(f, S, C, ε)

⇐⇒ x ∈ S, (f(x) − εq − D) ∩ f(S) = ∅. (7)

This concept was introduced by Kutateladze [14] and it
is the most popular notion ofε-efficiency (see [9], [14],
[24], [29], [33] for more details about it). We denote
the set ofε-efficient solutions of (P) in this sense by
AEKu(f, S, D, q, ε).

Example 4.1:Let us consider problem (P) introduced
in Example 2.2. Takingq = (1, 0) andε > 0 we obtain
that

AEKu
(

f, S, R2
+, q, ε

)

= {(x, y) ∈ R
2 : 1 ≤ x < 1 + ε, y ≥ 2}

∪{(x, y) ∈ R
2 : 2 ≤ x < 2 + ε, 1 ≤ y < 2}.

César Gutíerrez et al. 69

In Figure 3, thisε-efficiency set is drawn forε = 0.5
andε = 0.1.

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

q = (1, 0)

ε = 0.5
q = (1, 0)

ε = 0.1

Fig. 3. Kutateladze’sε-efficiency sets in Example 2.2

Next, let us consider

C := H + D,

where H ⊂ D\{0} is a nonemptyD-convex set, i.e.,
such thatH + D is a convex set. This setC becomes
the previous one consideringH = {q}. C is a pointed
convex set, sinceC ⊂ D and D is a pointed cone.
Moreover, as

C =
⋃

q∈H

(q + D)

and q + D is a solid co-radiant set,∀ q ∈ H, thenC is
a solid co-radiant set,

C(ε) =
⋃

q∈H

ε(q+D) =
⋃

q∈H

(εq+D) = εH+D, ∀ ε > 0

(8)
and anε-efficiency notion can be deduced from Defini-
tion 3.2 by takingC = H + D. With this notion, for
eachε > 0 the following ε-efficiency set is obtained:

x ∈ AE(f, S, C, ε)

⇐⇒ x ∈ S, (f(x) − εH − D) ∩ f(S) ⊂ {f(x)}. (9)

As D is a pointed cone, for eachε > 0 condition (9)
becomes

x ∈ AE(f, S, C, ε)

⇐⇒ x ∈ S, (f(x) − εH − D) ∩ f(S) = ∅.

This notion was introduced by Ńemeth [21]. We de-
note the set ofε-efficiency (resp. weakε-efficiency)
in the sense of Ńemeth byAENe(f, S, D, H, ε) (resp.
WAENe(f, S, D, H, ε)).

Some properties of this kind of approximate solutions
are collected in Corollary 4.4. The following lemma is
necessary.

Lemma 4.2:

(i) H ⊂ int(D) ⇐⇒ C(0) = int(D).
(ii) bd(D) ∩ (D\{0}) ⊂ cone(H) ⇒ C(0) = D\{0}.

(iii) int(C) (0) = int(D).
Proof. Part (i). Suppose thatH ⊂ int(D). As D is a

solid convex cone, from (8) we have

C(ε) = εH + D ⊂ ε int(D) + D ⊂ int(D) , ∀ ε > 0,

and C(0) ⊂ int(D). Reciprocally, letd ∈ int(D) and
considerq ∈ H. Then, there existsε > 0 such that
d − ε q ∈ D. It follows thatd ∈ εq + D ⊂ εH + D and

int(D) ⊂
⋃

ε>0

C(ε) = C(0) .

Next, supposeC(0) = int(D). Then, takingε = 1 in
(8) we deduce thatH ⊂ H + D ⊂ C(0) = int(D).

Part (ii). If bd(D) ∩ (D\{0}) = ∅ thenD\{0} is an
open set andH ⊂ int(D). Thus, by part (i), we have
that C(0) = int(D) = D\{0}.

Suppose thatbd(D)∩ (D\{0}) 6= ∅. From (8) we see
that C(0) =

⋃

ε>0 C(ε) ⊂ D\{0}, sinceD is a pointed
convex cone.

Conversely, by the hypothesis,

bd(D) ∩ (D\{0}) ⊂ cone(H) =
⋃

α>0

α H ⊂ C(0) .

(10)
Let d ∈ int(D) and take a pointd1 ∈ bd(D)∩(D\{0}).
There existd2 ∈ D andλ ∈ (0, 1) such thatd = λd1 +
(1−λ)d2. From (10) we deduce that there existsq ∈ H
andα > 0 such thatd1 = αq and so

d = λ(αq) + (1 − λ)d2 ∈ λαH + D ⊂ C(0) .

Thus, int(D) ⊂ C(0). From this inclusion and (10) it
follows thatD\{0} ⊂ C(0).

Part (iii). As H ⊂ D and D is a solid convex cone
then

int(C) (0) =
⋃

ε>0

ε int(H + D) ⊂ int(D) .

Let d ∈ int(D). Taking a pointq ∈ H we deduce that
there existsε > 0 such thatd− εq ∈ int(D). Therefore,
d ∈ int(εq + D) ⊂ ε int(H + D) and we conclude that
int(D) ⊂ int(C) (0). ¥

Remark 4.3:The converse of Lemma 4.2(ii) is false
as the following data show:p = 3, H = {(α, 1− α, 0) :
α ∈ [0, 1]} andD = R

3
+\{(0, 0, y3) : y3 > 0}.

Proposition 4.4:
(i) If H ⊂ int(D) then

⋂

ε>0

AENe(f, S, D, H, ε) = WE(f, S, D) ,

and if bd(D) ∩ (D\{0}) ⊂ cone(H) then
⋂

ε>0

AENe(f, S, D, H, ε) = E(f, S, D) .

70 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

(ii) Let (xn) ⊂ S, (εn) ⊂ R+ and y ∈ R
p such that

xn ∈ AENe(f, S, D, H, εn), εn ↓ 0 andf(xn) →
y. Thenf−1(y) ∩ S ⊂ WE(f, S, D).

(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such thatxn ∈
AENe(f, S, D, H, εn) andεn ↓ 0. Consider

K :=
⋂

n

(f(xn) − εnH − D).

If H ⊂ int(D) thenf−1(K) ∩ S ⊂ WE(f, S, D)
and if bd(D) ∩ (D\{0}) ⊂ cone(H) then
f−1(K) ∩ S ⊂ E(f, S, D).

Proof. If H ⊂ int(D), then by Lemma
4.2(i) we deduce that C(0) = int(D) and
AENe(f, S, D, H, 0) = WE(f, S, D). From Lemma
4.2(iii), it follows that int(C) (0) = int(D) and
we have WAENe(f, S, D, H, 0) = WE(f, S, D).
If bd(D) ∩ (D\{0}) ⊂ cone(H), we deduce
from Lemma 4.2(ii) that C(0) = D\{0} and
AENe(f, S, D, H, 0) = E(f, S, D). Then properties
(i)-(iii) hold by Theorem 3.5(iii)-(v). ¥

In Proposition 4.4 we have extended several properties
proved in the literature for theε-efficiency set in the
sense of Kutateladze (see for example [9, Lemma 3.3
and Theorem 3.4]) to the approximate solutions in the
sense of Ńemeth. We can deduce these properties by
consideringH = {q} in Proposition 4.4.

B. ε-efficiency in the sense of Helbig

Let h ∈ D+\{0}. For eachα ∈ R we denote

[h > α] = {y ∈ R
p : 〈h, y〉 > α}.

Consider the following set:

C := D ∩ [h > 1]. (11)

Lemma 4.5:

(i) C is a solid pointed convex co-radiant set.
(ii) C(ε) = D ∩ [h > ε].

(iii) int(D) ⊂ C(0) ⊂ D\{0}.
(iv) int(C) (0) = int(D), and ifh ∈ Ds+ thenC(0) =

D\{0}.
Proof. Part (i). It is obvious thatC is a pointed convex

co-radiant set and we prove just thatC is solid. Indeed,
asD is a proper solid cone, there existsd ∈ int(D) such
that 〈h, d〉 = α > 0. Then(2/α)d ∈ int(D)∩ [h > 1] =
int(C) andC is solid.

Part (ii) follows easily sinceD is a cone and〈h, ·〉 is
a linear map.

Part (iii). Let d ∈ int(D). As h ∈ D+\{0} we see
that 〈h, d〉 > 0. Then, there existsε > 0 such thatd ∈
[h > ε] and we deduce thatd ∈ C(ε). Thus, it follows
that int(D) ⊂ C(0).

By part (ii) it is obvious thatC(ε) ⊂ D\{0}, ∀ ε > 0
and soC(0) ⊂ D\{0}.

Part (iv). By part (iii) we deduce thatint(D) =
int(C(0)) and by (5) we see thatint(C(0)) =
int(C) (0). Therefore it follows that int(D) =
int(C) (0).

If h ∈ Ds+ then〈h, d〉 > 0, ∀ d ∈ D\{0} and we see
that D\{0} ⊂ C(0). By part (iii) we have the converse
inclusion and, therefore,C(0) = D\{0}. ¥

By Definition 3.2, for eachε ≥ 0 we obtain the
following ε-efficiency set:

x0 ∈ AE(f, S, C, ε)

⇐⇒ x0 ∈ S, (f(x0) − (D ∩ [h > ε])) ∩ f(S) = ∅

⇐⇒ x0 ∈ S, (f(x0) − f(S)) ∩ (D ∩ [h > ε])) = ∅

⇐⇒ x0 ∈ S, 〈h, f(x0)〉 − ε ≤ 〈h, f(x)〉,

∀x ∈ S, f(x) ∈ f(x0) − D.

This notion was introduced by Helbig [8]. We de-
note the set ofε-efficient (resp. weaklyε-efficient)
solutions in this sense byAEHe(f, S, D, h, ε) (resp.
WAEHe(f, S, D, h, ε)).

Example 4.6:In the vector optimization problem con-
sidered in Example 2.2, let us takeh(x, y) = 2x + y.
Then, the following ε-efficiency set in the sense of
Helbig is obtained:

AEHe
(

f, S, R2
+, h, ε

)

= {(x, y) ∈ S : 2x + y ≤ 4 + ε, y ≥ 2}

∪{(x, y) ∈ S : 2x + y ≤ 5 + ε, y < 2}.

In Figure 4 we drawn this set forε = 1 andε = 0.5.

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

h (x, y) = 2x + y h (x, y) = 2x + y

ε = 1 ε = 0.5

Fig. 4. Helbig’sε-efficiency sets in Example 2.2

Helbig’s approximate solutions satisfy the following
properties.

Proposition 4.7:
(i) If h ∈ D+\{0} then

E(f, S, D) ⊂
⋂

ε>0

AEHe(f, S, D, h, ε)

⊂ WE(f, S, D) ,

César Gutíerrez et al. 71

and if h ∈ Ds+ then
⋂

ε>0

AEHe(f, S, D, h, ε) = E(f, S, D) .

(ii) Let (xn) ⊂ S, (εn) ⊂ R+ and y ∈ R
p such that

xn ∈ AEHe(f, S, D, h, ε), εn ↓ 0 andf(xn) → y.
Thenf−1(y) ∩ S ⊂ WE(f, S, D).

(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such thatxn ∈
AEHe(f, S, D, h, εn) andεn ↓ 0. Consider

K :=
⋂

n

(f(xn) − (D ∩ [h > εn])).

If h ∈ D+\{0} thenf−1(K) ∩ S ⊂ WE(f, S, D)
and if h ∈ Ds+ thenf−1(K) ∩ S ⊂ E(f, S, D).

Proof. From Lemma 4.5(iii) we deduce that

E(f, S, D) ⊂ AEHe(f, S, D, h, 0)

⊂ WE(f, S, D) , ∀h ∈ D+\{0}.

Moreover, by Lemma 4.5(iv), we have that
AEHe(f, S, D, h, 0) = E(f, S, D) , ∀h ∈ Ds+

and for each h ∈ D+\{0} we see that
WAEHe(f, S, D, h, 0) = WE(f, S, D). Then, parts
(i)-(iii) follow easily from Theorem 3.5(iii)-(v). ¥

C. ε-efficiency in the sense of Tanaka

Next, we define the set

C := D ∩ Bc,

whereD ⊂ R
p
+, B denotes the unit open ball inRp,

B = {y ∈ R
p : ‖y‖1 < 1},

and‖ · ‖1 is the l1 norm in R
p.

Lemma 4.8:

(i) C is a solid pointed convex co-radiant set.
(ii) C(ε) = D ∩ (εB)c, ∀ ε > 0.

(iii) C(0) = D\{0} and int(C) (0) = int(D).
Proof. Part (i). It is obvious thatC is convex. More-

over,C is a pointed set, sinceC ⊂ D andD is a pointed
cone. Lety ∈ C andα > 1. As D is a cone, we have that
αy ∈ D. Moreover,‖αy‖1 = α‖y‖1 > 1 sinceα > 1
and y /∈ B. Then αy ∈ C and it follows thatC is a
co-radiant set.

Next, we prove thatC is a solid set. Indeed, there
exists a pointq ∈ int(D), q 6= 0, sinceD is a solid
cone. Then,2q/‖q‖1 ∈ int(D) ∩ int(Bc) = int(C) and
C is a solid set.

Part (ii). Let y ∈ C andε > 0. It is clear thatεy ∈ D
and ‖εy‖1 = ε‖y‖1 ≥ ε sincey ∈ Bc. It follows that
εy ∈ D ∩ (εB)c and C(ε) ⊂ D ∩ (εB)c. Similarly, if
y ∈ D ∩ (εB)c theny/ε ∈ D ∩ Bc = C. Thus,y ∈ εC
andC(ε) = D ∩ (εB)c.

Part (iii). By part (ii) it is clear that

C(0) =
⋃

ε>0

D ∩ (εB)c = D ∩

(

⋂

ε>0

εB

)c

= D\{0}.

Analogously,

int(C) (0) =
⋃

ε>0

int(D ∩ (εB)c)

=
⋃

ε>0

int(D) ∩ int((εB)c) = int(D) ∩

(

⋂

ε>0

εcl(B)

)c

= int(D) . ¥

The set of all approximate solutions (resp. weak approx-
imate solutions) with respect to thisC is denoted by
AETa(f, S, D, ε) (resp.WAETa(f, S, D, 0)). It follows
that

x ∈ AETa(f, S, D, ε)

⇐⇒ (f(x) − (D ∩ (εB)c)) ∩ f(S) ⊂ {f(x)}

⇐⇒ (f(x) − D) ∩ f(S) ⊂ f(x) + εB.

This concept ofε-efficiency was introduced by Tanaka
[26]. Next, we give several properties of this notion,
which extend others previously proved by Tanaka in [26,
Proposition 3.3].

Example 4.9:Let us recall problem (P) considered in
Example 2.2. In this problem, the set of approximate
solutions in the sense of Tanaka is:

AETa
(

f, S, R2
+, ε

)

= {(x, y) ∈ S : x + y ≤ 3 + ε}.
In Figure 5 we show this set forε = 1 andε = 0.5.

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

ε = 1 ε = 0.5

Fig. 5. Tanaka’sε-efficiency sets in Example 2.2

Proposition 4.10:
(i)

⋂

ε>0 AETa(f, S, D, ε) = E(f, S, D).
(ii) Let (xn) ⊂ S, (εn) ⊂ R+ and y ∈ R

p such that
xn ∈ AETa(f, S, D, εn), εn ↓ 0 and f(xn) → y.
Thenf−1(y) ∩ S ⊂ WE(f, S, D).

(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such thatxn ∈
AETa(f, S, D, εn), εn ↓ 0 and

K :=
⋂

n

(f(xn) − (D ∩ (εnB)c)).

72 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Thenf−1(K) ∩ S ⊂ E(f, S, D).
Proof. By Lemma 4.8(iii) we deduce

that AETa(f, S, D, 0) = E(f, S, D) and
WAETa(f, S, D, 0) = WE(f, S, D). Then, the
corollary is a consequence of Theorem 3.5(iii)-(v). ¥

Remark 4.11:In order to better understanding Propo-
sitions 4.4, 4.7 and 4.10 let us notice that these results
can be easily interpreted via Examples 4.1, 4.6 and 4.9
and Figures 3, 4 and 5, respectively.

V. L INEAR SCALARIZATION FOR ε-EFFICIENCY IN

CONVEX MULTIOBJECTIVE MATHEMATICAL

PROGRAMS

In the literature, approximate solutions of (P) are
usually studied in convex problems via the Kutateladze’s
definition (see for example [29, Lemma 3.2], [2, Theo-
rem 2.1], [18, Theorems 1 and 2], [17, Lemma 2.1] and
[4, Theorem 2.1]). However, results aboutε-efficiency
notions different to the Kutateladze’s concept are very
limited (see [19, Propositions 3.1 and 3.2], [32, Lemmas
4.1 and 4.2] and [7, Lemma 3.1]).

Our objective in this section is to characterize theε-
efficiency notion with respect to a setC, in order to
obtain additional results onε-efficient concepts different
to the Kutateladze’s notion by applying this characteri-
zation to suitable setsC.

Next, necessary conditions for the approximate solu-
tions of (P) with respect to a setC are obtained via
approximate solutions of linear scalarizations, i.e., by the
Weighting Method. For it, we suppose that program (P)
satisfies certain convexity hypothesis.

Definition 5.1: ([12, Definition 2.9]) We say thatf :
S ⊂ R

n → R
p is a convex-like map onS with respect

to D if ∀x1, x2 ∈ S and∀λ ∈ [0, 1] there is ans ∈ S
such that

λf(x1) + (1 − λ)f(x2) − f(s) ∈ D.
The following proposition is well-known (see for

example [12, Theorem 2.11]).
Proposition 5.2:The mapf is convex-like onS with

respect toD if and only if f(S) + D is a convex set.
For eachK ⊂ R

p and y ∈ R
p we denoted(y, K) =

inf{‖y−z‖ : z ∈ K}, where‖·‖ is the Euclidean norm.
Theorem 5.3:Consider program (P) and suppose that

f is convex-like onS with respect toC(0) andd(0, C) ≤
δ. Then,∀ ε ≥ 0,

AE(f, S, C, ε) ⊂
⋃

l∈C(0)+,‖l‖=1

AMin(l · f, S, εδ) ,

wherel · f : R
n → R is the map〈l, f(·)〉.

Proof. Let ε > 0 andx0 ∈ AE(f, S, C, ε). Thenx0 ∈ S
and

(f(x0) − C(ε)) ∩ f(S) ⊂ {f(x0)}.

By Lemma 3.1(v) it follows that

(f(x0) − C(ε)) ∩ (f(S) + C(0)) ⊂ {f(x0)}.

Moreover, asC is pointed we have thatf(x0) /∈
int(f(x0) − C(ε)), and by Proposition 5.2 we see that
f(S) + C(0) is a convex set, sincef is a convex-like
map onS with respect toC(0). Then, by the Separation
Theorem (see, for example, [23, Theorem 2.1.1]) we
deduce that there existsl ∈ R

p\{0} such that

〈l, f(x0) − εd1〉 ≤ 〈l, f(x) + d2〉, (12)

∀ d1 ∈ C,∀ d2 ∈ C(0) ,∀x ∈ S.

We can suppose that‖l‖ = 1 sincel 6= 0, and asC(0) is
a cone, we have from (12) thatl ∈ C(0)+. By continuity,
we deduce from (12) that

〈l, f(x0)〉 − ε〈l, d1〉 ≤ 〈l, f(x)〉, ∀ d1 ∈ C,∀x ∈ S (13)

and by the Cauchy-Schwartz inequality we deduce that

〈l, f(x0)〉 − ε‖d1‖ ≤ 〈l, f(x)〉, ∀ d1 ∈ C,∀x ∈ S. (14)

From here, by continuity, we see that

〈l, f(x0)〉 − εδ ≤ 〈l, f(x0)〉 − εd(0, C) (15)

≤ 〈l, f(x)〉, ∀x ∈ S. (16)

Thus, forl(y) = 〈l, y〉 it follows that l ∈ C(0)+, ‖l‖ = 1
andx0 ∈ AMin(l · f, S, εδ).

If ε = 0 and x0 ∈ AE(f, S, C, 0) then, repeating the
same reasoning we see that

〈l, f(x0)〉 ≤ 〈l, f(x)〉, ∀x ∈ S, (17)

since (12) is true for allε > 0. Therefore, considering
l(y) = 〈l, y〉 it follows that x0 ∈ AMin(l · f, S, 0) with
l ∈ C(0)+ and‖l‖ = 1. ¥

We obtain sufficient conditions for theε-efficient
solutions of (P) with respect to a setC as a consequence
of the following result (see [1, Lemma 2.7] for more
detail).

Lemma 5.4:Let K ⊂ R
p be a convex cone such that

K+ is solid. Considerl ∈ int(K+). Then

d(l, Rp\K+) ≤ inf{〈l, y〉 : y ∈ K, ‖y‖ = 1}.
Theorem 5.5:Suppose that0 /∈ cl(C), C(0)+ is solid

and considerl ∈ int
(

C(0)+
)

. Then

AMin(l · f, S, δ) ⊂ AE(f, S, C, ε) , ∀ ε > δ/c,

wherec = d(0, C) · d(l, Rp\C(0)+).
Proof. Let x0 ∈ AMin(l · f, S, δ) and ε > δ/c.

Reasoning “ad absurdum”, let us suppose thatx0 /∈
AE(f, S, C, ε). Then there existx ∈ S and d ∈ C(ε)
such thatf(x0) − d = f(x). As 〈l, ·〉 is linear and
x0 ∈ AMin(l · f, S, δ) we deduce that

〈l, f(x)〉 = 〈l, f(x0)〉 − 〈l, d〉 ≤ 〈l, f(x)〉 + δ − 〈l, d〉

César Gutíerrez et al. 73

and it follows that〈l, d〉 ≤ δ. By Lemma 5.4 we have
that

〈l, d〉 ≥ ‖d‖d(l, Rp\C(0)+)

≥ εd(0, C)d(l, Rp\C(0)+) = εc > δ,

which is a contradiction. Therefore,x0 ∈ AE(f, S, C, ε).
¥

VI. L INEAR SCALARIZATION FOR NÉMETH, HELBIG

AND TANAKA ’ S ε-EFFICIENCY NOTIONS

In this section we consider that (P) is a Pareto mul-
tiobjective mathematical program (i.e.,D = R

p
+) and

under the hypothesis that the objective functionf : S ⊂
R

n → R
p is convex-like onS we apply Theorem 5.3

and Theorem 5.5 to obtain through linear scalarization
necessary and sufficient conditions for theε-efficient
solutions of (P) in the senses of Németh, Helbig and
Tanaka.

We denote the components of a vectory ∈ R
p by

yi and we define the following nonempty solid pointed
convex co-radiant sets:

CNe = H + R
p
+, CHe = R

p
+ ∩ [h > 1], CTa = R

p
+ ∩ Bc,

whereh ∈ int
(

R
p
+

)

and

H =

{

y ∈ R
p
+ :

p
∑

i=1

(yi − 1)2 < 1

}

.

Theorem 6.1:Consider program (P) and suppose that
f is a convex-like map onS with respect toR

p
+\{0}.

Then,∀ ε ≥ 0,

AEHe
(

f, S, Rp
+, h, ε

)

⊂
⋃

l∈R
p

+
,‖l‖=1

AMin(l · f, S, ε/‖h‖) , (18)

AETa
(

f, S, Rp
+, ε

)

⊂
⋃

l∈R
p

+
,‖l‖=1

AMin(l · f, S, ε/
√

p) (19)

and for eachl ∈ int
(

R
p
+

)

,

AMin(l · f, S, δ) ⊂ AEHe
(

f, S, Rp
+, h, ε

)

, (20)

∀ ε > ‖h‖ δ/ min
1≤i≤p

{li},

AMin(l · f, S, δ) ⊂ AETa
(

f, S, Rp
+, ε

)

, (21)

∀ ε >
√

p δ/ min
1≤i≤p

{li}.

Proof. By Lemma 4.5(iv) and Lemma 4.8(iii) we have
that

CHe(0) = CTa(0) = R
p
+\{0}. (22)

Moreover, easy calculations give

d(0, CHe) = 1/‖h‖, (23)

d(0, CTa) = 1/
√

p. (24)

Then, necessary conditions (18)-(19) are a direct con-
sequence of Theorem 5.3 and distances (23)-(24), and
sufficient conditions (20)-(21) are deduced immediately
from Theorem 5.5 and formulae (23)-(24). ¥

Theorem 6.2:Consider program (P) and suppose that
f is a convex-like map onS with respect toint

(

R
p
+

)

.
Then,∀ ε ≥ 0,

AENe
(

f, S, Rp
+, H, ε

)

⊂
⋃

l∈R
p

+
,‖l‖=1

AMin(l · f, S, ε(
√

p − 1)) , (25)

and for eachl ∈ int
(

R
p
+

)

,

AMin(l · f, S, δ) ⊂ AENe
(

f, S, Rp
+, H, ε

)

, (26)

∀ ε > δ/((
√

p − 1) min
1≤i≤p

{li}),

Proof. From Lemma 4.2(i) it is clear thatCNe(0) =
int

(

R
p
+

)

. Moreover, d(0, CNe) =
√

p − 1. Then (25)
and (26) follow by Theorem 5.3 and Theorem 5.5
respectively. ¥

VII. C ONCLUSIONS

In this paper we have introduced a newε-efficiency
concept in multiobjective mathematical programs, which
extends and unifies several differentε-efficient notions
previously defined in the literature.

We prove some properties of this new concept and we
characterize it in a convex framework via approximate
solutions of associate scalar optimization problems.

As final conclusion, we think that several results of
this work are useful in order to improve the actual
resolution techniques and develop new methods to solve
multiobjective mathematical programs.

ACKNOWLEDGEMENTS

This research was partially supported by Ministerio de
Ciencia y Tecnoloǵıa (Spain), project BFM2003-02194.

REFERENCES

[1] S. Bolintineanu, “Vector variational principles;ε-efficiency and
scalar stationarity,”J. Convex Anal., vol. 8, no. 1, pp. 71–85,
2001.

[2] S. Deng, “On approximate solutions in convex vector optimiza-
tion,” SIAM J. Control Optim., vol. 35, no. 6, pp. 2128–2136,
1997.

[3] D. Dentcheva and S. Helbig, “On variational principles, level
sets, well-posedness, andε-solutions in vector optimization,”J.
Optim. Theory Appl., vol. 89, no. 2, pp. 325–349, 1996.

[4] J. Dutta and V. Vetrivel, “On approximate minima in vector
optimization,” Numer. Funct. Anal. Optim., vol. 22, no. 7&8,
pp. 845–859, 2001.

[5] C. Gutiérrez, “Condiciones deε-Eficiencia en Optimización
Vectorial,” Ph.D. dissertation, Universidad Nacional de Edu-
cacíon a Distancia, Madrid, November 2004.

74 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

[6] C. Gutiérrez, B. Jiḿenez, and V. Novo, “A property of efficient
and ε-efficient solutions in vector optimization,”Appl. Math.
Lett., vol. 18, no. 4, pp. 409–414, 2005.

[7] ——, “Multiplier rules and saddle-point theorems for Helbig’s
approximate solutions in convex Pareto problems,”J. Global
Optim., vol. 32, no. 3, 2005.

[8] S. Helbig, “On a new concept forε-efficiency,” talk atOpti-
mization Days 1992, Montreal, 1992.

[9] S. Helbig and D. Pateva, “On several concepts forε-efficiency,”
OR Spektrum, vol. 16, pp. 179–186, 1994.

[10] H. Idrissi, P. Loridan, and C. Michelot, “Approximation of so-
lutions for location problems,”J. Optim. Theory Appl., vol. 56,
no. 1, pp. 127–143, 1988.

[11] G. Isac, “The Ekeland’s principle and the Paretoε-efficiency,”
ser. Lecture Notes in Economics and Mathematical Systems.
New York, Springer, 1996, vol. 432, pp. 148–163.

[12] J. Jahn,Vector Optimization, Berlin: Springer, 2004.
[13] B. Jiménez and V. Novo, “Second order necessary conditions

in set constrained differentiable vector optimization,”Math.
Methods Oper. Res., vol. 58, no. 2, pp. 299-317, 2003.

[14] S. S. Kutateladze, “Convexε-programming,” Soviet Math.
Dokl., vol. 20, no. 2, pp. 391–393, 1979.

[15] J. C. Liu, “ε-duality theorem of nondifferentiable nonconvex
multiobjective programming,”J. Optim. Theory Appl., vol. 69,
no. 1, pp. 153–167, 1991.

[16] ——, “ε-Pareto optimality for nondifferentiable multiobjective
programming via penalty function,”J. Math. Anal. Appl., vol.
198, pp. 248–261, 1996.

[17] ——, “ε-properly efficient solutions to nondifferentiable mul-
tiobjective programming problems,”Appl. Math. Lett., vol. 12,
pp. 109–113, 1999.

[18] J. C. Liu and K. Yokoyama, “ε-optimality and duality for
multiobjective fractional programming,”Comput. Math. Appl.,
vol. 37, pp. 119–128, 1999.

[19] P. Loridan, “ε-solutions in vector minimization problems,”J.
Optim. Theory Appl., vol. 43, no. 2, pp. 265–276, 1984.

[20] ——, “ε-duality theorem of nondifferentiable nonconvex multi-
objective programming,”J. Optim. Theory Appl., vol. 74, no. 3,
pp. 565–566, 1992.

[21] A. B. Németh, “A nonconvex vector minimization problem,”
Nonlinear Anal., vol. 10, no. 7, pp. 669–678, 1986.

[22] L. G. Ruhe and G. B. Fruhwirth, “ε-optimality for bicriteria
programs and its application to minimum cost flows,”Comput-
ing, vol. 44, pp. 21–34, 1990.

[23] Y. Sawaragi, H. Nakayama and T. Tanino,Theory of Multiob-
jective Optimization, Orlando: Academic Press, 1985.

[24] T. Staib, “On two generalizations of Pareto minimality,”J.
Optim. Theory Appl., vol. 59, no. 2, pp. 289–306, 1988.

[25] C. Tammer, “A generalization of Ekeland’s variational princi-
ple,” Optimization, vol. 25, pp. 129–141, 1992.

[26] T. Tanaka, “A new approach to approximation of solutions in
vector optimization problems,” inProc. APORS’94, Singapore,
July 1994, pp. 497–504.

[27] I. Vályi, “Approximate solutions of vector optimization prob-
lems,” ser. Systems Analysis and Simulation. Berlin, Germany:
Akademie-Verlag, 1985, pp. 246–250.

[28] ——, “Approximate saddle-point theorems in vector optimiza-
tion,” J. Optim. Theory Appl., vol. 55, no. 3, pp. 435–448, 1987.

[29] D. J. White, “Epsilon efficiency,”J. Optim. Theory Appl.,
vol. 49, no. 2, pp. 319–337, 1986.

[30] ——, “Epsilon-dominating solutions in mean-variance portfolio
analysis,”European J. Oper. Res., vol. 105, pp. 457–466, 1998.

[31] A. P. Wierzbicki, “On the completeness and constructiveness of
parametric characterizations to vector optimization problems,”
OR Spektrum, vol. 8, pp. 73–87, 1986.

[32] K. Yokoyama, “Epsilon approximate solutions for multiobjec-
tive programming problems,”J. Math. Anal. Appl., vol. 203, pp.
142–149, 1996.

[33] ——, “Relationships between efficient set andε-efficient set.”
in Proc. International Conference on Nonlinear Analysis and
Convex Analysis, River Edge, New York, 1999, pp. 376–380.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 75

An Efficient Approach for Solving the
Production/Ordering Planning Problem with

Time-varying Storage Capacities
José Miguel Gutiérrez∗, Antonio Sedeño-Noda†, Marcos Colebrook‡ and Joaquín Sicilia§

University of La Laguna/Dept.de Estadística, Investigación Operativa y Computación
Email: ∗jmgrrez@ull.es,†asedeno@ull.es,‡mcolesan@ull.es,§jsicilia@ull.es

Abstract— We address the dynamic lot size problem
assuming time-varying storage capacities. The planning
horizon is divided into T periods and stockouts are
not allowed. Moreover, for each period, we consider a
setup cost, a holding unit cost and a production/ordering
unit cost, which can vary through the planning horizon.
Although this model can be solved using O(T 3) algorithms,
we show that under this cost structure an optimal solution
can be obtained in O(T log T) time. In addition, we show
that when production/ordering unit costs are assumed to
be constant, there exists an optimal plan satisfying the
Zero Inventory Ordering (ZIO) property. Computational
results for randomly generated problems are reported.

Keywords— Inventory-Production: Policies, Capacity,
Dynamic Programming, Computational Improvement.

I. I NTRODUCTION

W E focus our attention on the dynamic lot
size problem assuming that inventory levels are

limited by storage capacities. Holding and produc-
tion/ordering costs are linear and setup costs are also
considered. As usual, the planning horizon is divided into
T periods and the demand for each period is known in
advance. In addition, we assume that the storage capacity
varies with time, and shortages are not permitted. The
goal consists of determining a production plan which
satisfies the demand for each period at minimum cost.

The uncapacitated version of this problem, that is,
when no bound is imposed on either the production
quantity or the inventory level, was well solved by
Manne (1958) and, independently, by Wagner and Whitin
(1958), who devised an O(T 2) dynamic programming
algorithm. Later, Federgruen and Tzur (1991), Wagel-
mans et al. (1992), as well as Aggarwal and Park
(1993) independently proposed O(T) algorithms, based
on different techniques, for the cost structure defined in
Wagner and Whitin (1958), and O(T log T) procedures
for the general version, that is, considering non-constant
unit production costs.

Love (1973) was the first to study the dynamic lot
size problem with limited inventory and concave cost
functions, developing an O(T 3) algorithm based on
the dynamic programming approach. Since then, little
effort has been made either to look for more effi-
cient algorithms or to analyse different cost structures
for this problem. Accordingly, Gutiérrez et al. (2003)
have recently proposed a O(T 3) dynamic programming
algorithm, which reduces the computational effort of
Love’s procedure to a constant factor. That algorithm
runs in O(T) expected time when the demand in each
period varies between zero and the storage capacity for
such period. These computational enhancements are a
consequence of a new characterization of the optimal
plans introduced in their paper. On the other hand,
when the cost structure consists of linear holding and
production costs and in absence of setup costs, Sedeño-
Noda et al. (2004) proved that an optimal plan can be
derived applying an O(T log T) algorithm. In this paper,
the case where holding and production costs are linear
and setup costs are significant is analyzed. Indeed, the
results show that, when shortages are not allowed, we can
adapt the geometrical technique given in Wagelmans et
al. (1992) to determine an optimal plan in O(T log T).
Moreover, we also consider the cost structure given in
Wagner and Whitin (1958), namely, we assume that the
production cost remains constant through the planning
horizon. Under this assumption, we get an interesting
result, which states that among the optimal policies there
exists one satisfying the Zero Inventory Ordering (ZIO)
property.

The rest of the paper is organized as follows. In
Section 2, we introduce the problem statement and the
notation. In Section 3, we present a recurrence formula
which can be implemented with an O(T 2) dynamic
programming algorithm. Moreover, we propose an adap-
tation of the geometrical technique of Wagelmans et
al. (1992), which allows us to develop a O(T log T)
solution method. Additionally, when production costs are

76 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

constant, i.e., considering the cost structure as in Wagner
and Whitin (1958), we show that an optimal solution
satisfying the ZIO property can be determined. Further-
more, a numerical example to illustrate these results is
reported. A computational experiment is presented in
Section 4. Finally, concluding remarks are discussed in
Section 5.

II. N OTATION AND PRELIMINARIES

Let T be the number of consecutive periods. Then,
following the notation introduced in Wagelmans et al.
(1992), we denote bydt, pt, ht and ft, the demand,
production unit cost, holding unit cost and setup cost in
periodt (t = 1, . . . , T). We also denote bySt the storage
capacity in periodt. For the sake of simplicity, we
denote bydt,j =

∑j
i=t di the cumulative demand from

period t to periodj. Remark that, once the cumulative
demandsd1,T , d2,T , . . . , dT,T are obtained in O(T), any
value dt,j can be determined in O(1) applying dt,j =
dt,T − dj+1,T . In addition to the previous parameters,
let xt and It (t = 1, . . . , T) be the decision and state
variables, respectively, which represent the number of
units produced in periodt and the inventory level at the
end of periodt. Also, the statement of the cost function
requires the following variable related to setup costs:
yt = 1 if xt > 0, and yt = 0 otherwise. Then, we
can formulate the dynamic lot size problem with storage
capacities as follows:

min
∑T

t=1(ftyt + ptxt + htIt)
s.t.
I0 = IT = 0
xt + It−1 − It = dt t = 1, . . . , T
dt,T yt − xt ≥ 0 t = 1, . . . , T
0 ≤ It ≤ St − dt t = 1, . . . , T
xt ≥ 0 integer,yt ∈ {0, 1} t = 1, . . . , T

(1)

The first constraint in(1) forces both the initial and
final inventory levels of the planning horizon to be zero.
The second constraint set in(1) represents the well-
known material balance equation. Sinceyt ∈ {0, 1},
the following constraint set ensures thatyt = 1 when
xt > 0. The next constraint set states the lower and
upper bounds for each inventory level and it can be
obtained combining the second set of constraints and
the following set: It−1 + xt ≤ St, (t = 1, . . . , T).
This last set guarantees that the sum of the inventory
at the end of one period and the production quantity
in the consecutive period does not exceed the storage
capacity of this last period. The final constraints force
the production quantities to be non-negative integers, and

eachyt to be binary variable. Feasibility is assured by
the assumption thatdt ≤ St (t = 1, . . . , T).

Remark that, as a consequence of the storage con-
straints, the maximum quantity which can be produced in
a period is limited. Accordingly, letMt be the maximum
quantity that can be produced in periodt (t = 1, . . . , T−
1), which can be easily derived from the following
expression:Mt = min(Mt+1 +dt, St), whereMT = dT .
We also denote byRt the maximum reachable period
such that the demands of periodsi = t, . . . , Rt can be
completely satisfied with inventory held from periodt
(t = 1, . . . , T −1), that is,Rt = max(j : t ≤ j ≤ T and
(Mt − dt,j) ≥ 0), with RT = T. The valuesMt andRt

(t = 1, . . . , T − 1) are determined from the demand and
storage capacity values in O(T).

We introduce in the next section the solution method
which determines an optimal plan for problem(1) in
O(T log T) time.

III. SOLUTION METHOD

As we previously pointed out, we address the case
in which the production and holding costs are linear
and setup costs are significant. This cost structure cor-
responds with a particular case of the concave cost
structure studied by Love (1973) and Gutiérrez et al.
(2003), respectively. Precisely, Theorem 1 in Gutiérrez
et al. (2003) states that an optimal production plan
x = (x1, . . . , xT) can always be found in O(T 3) such
that for each production periodt (t = 1, . . . , T), the
amountIt−1+xt corresponds to either a sum of demands
of consecutive periodsdt,j ≤ Mt (j = t + 1, . . . , Rt)or
the maximum quantityMt that can be produced in that
period. Formally, this theorem states that ifxt > 0 then

It−1 + xt =

Mt,
or
dt,j for somej such thatdt,j ≤ Mt

(2)
Moreover, Theorem 2 in Gutiérrez et al. (2003) states

that among the optimal solutions for the problem there
exists at least one such that ifIt−1 + xt = dt,j < Mt

for some periodt, thenxi = 0 for those periodsi = t+
1, . . . , j. Accordingly, this result guarantees the existence
of one optimal plan in which the decision in a periodi
is not to produce(xi = 0) when the inventory on hand
at the end of the previous period consists of a sum of
demands, i.e.,Ii−1 = di,j . In other words, that property
can be formulated as follows

If Ii−1 = di,j for somej such thatdi,j ≤ Mi,then
xi = 0

José Miguel Gutiérrez et al. 77

(3)

Throughout this section we are only interested in
generating optimal plans that simultaneously satisfy (2)
and (3). These results along with the lemmas below let
us develop a new O(T 2) algorithm for problem(1).
Accordingly, let G(t), t = 1, . . . , T, be the optimal
cost of the problem consisting of periodst to T , with
G(T +1) = 0, and letct = pt +

∑T
i=t hi be the marginal

cost of producing an item unit in periodt and holding it
up to periodT . Note that adding the same amount to all
marginal production costs shifts the objective function of
all feasible solutions by the same quantity. Hence, not
the values, but rather the differences between marginal
production costs play a role in determining the optimal
solution. Moreover, letx∗

s,t be the optimal decision in
period t when the problem consisting of periodss to
T is independently solved, wheres ≤ t, and let δ(z)
denote a delta function such thatδ(0) = 1 andδ(z) = 0
if z 6= 0.

A. The Recursion Formula

For notational convenience, we denote byI∗i,l the
optimal inventory level at the end of periodl when
the problem starting at periodi ≤ l is independently
solved. Moreover, given a periodi, we assume that the
inventory level at the end of the periodi − 1 is zero
when the problem starting at periodi is independently
solved, that is,I∗i,i−1 = 0. In what follows, letx̂t = x∗

t,t

be the optimal production quantity in periodt when
the problem with periods fromt to T is independently
solved.

Lemma 1: If x̂t = Mt for a given periodt, then there
exists an optimal plan for the problem starting at periodt
with at least one periodk ∈ [j, Rt+1] such thatI∗j,k−1+
x∗

j,k ≥ Mt − dt,k−1 for some periodj ∈ [t + 1, Rt + 1].
Proof: We know by (2) that when the problem start-

ing at periodt is independently solved (i.e., assuming
that I∗t,t−1 = 0), the only two decisions to consider are
either x̂t = dt,l < Mt for some periodl ∈ [t, Rt],
or x̂t = Mt. Moreover, we know that the quantity
x̂t = Mt is enough to completely satisfy the demands
for periodst to Rt, and to partially satisfy the demand in
periodRt +1 (i.e., Mt − dt,Rt

< dRt+1, or equivalently,
Mt = dt,Rt

+ λdRt+1 with λ ∈ (0, 1)).
Additionally, taking into account the way in which the

valuesMi (i = 1, . . . , T) are obtained, it is clear that
Mi − di,l−1 ≤ Ml for all l ∈ [i + 1, Ri + 1], otherwise
there would be a period in[i + 1, Ri + 1] where the
storage constraint is violated.

For a contradiction, let us suppose thatI∗j,n−1+x∗

j,n <
Mt−dt,n−1 for all n ∈ [j, Rt +1] andj ∈ [t+1, Rt +1].
In particular let us consider periodj, so we obtain that
I∗j,j−1+x∗

j,j = x̂j < Mt−dt,j−1 = dj,Rt
+λdRt+1 ≤ Mj

with λ ∈ (0, 1). Note that, in this case,I∗j,j−1 = 0
since we are independently solving the problem with
initial period j. Additionally, it follows that x̂j < Mj

and according to (2), there should be an optimal plan
where the decision̂xj consists of a sum of demands,
i.e., x̂j = dj,i−1 with i ∈ [j + 1, Rt + 1]. Observe
that the inventory on handI∗j,l at the end of any period
l ∈ [j, i − 1] corresponds to the sum of demands
dl+1,i−1 = dj,i−1 − dj,l, and therefore, applying (3)
there must be an optimal plan wherex∗

j,l = 0 for any
period l ∈ [j + 1, i − 1]. It is worth noting that the
plan between periodsj and i − 1 represents a ZIO
policy. Moreover, note that the demands for periods
i, i+1, . . . , Rt, Rt+1 have not been covered yet. Hence,
to prevent a shortage, periodi should produce a quantity
different from zero. However, by hypothesis, in periodi
the following inequalityI∗j,i−1 + x∗

j,i < Mt − dt,i−1 =
di,Rt

+λdRt+1 ≤ Mi also holds. Since the plan between
periodsj andi−1 is ZIO, the inventory on handI∗j,i−1 at
the end of periodi−1 is zero, and henceI∗j,i−1 +x∗

j,i =
x∗

j,i < Mt−dt,i−1 = di,Rt
+λdRt+1 ≤ Mi. Equivalently

x∗

j,i < Mi, and by (2), x∗

j,i = x̂i corresponds with
a sum of demands from periodi to a periodm − 1
so that m ∈ [i + 1, Rt + 1], namely, x̂i = di,m−1.
Furthermore, in accordance with (3), there should be an
optimal plan where the optimal decision for those periods
in [i + 1, m − 1] is not to produce, and hencex∗

j,l = 0
for any periodl ∈ [i + 1, m− 1]. Consequently the plan
between periodsi andm − 1 is ZIO.

If we continue applying the same argument for all
intermediate production periods betweenm andRt + 1,
we finally attain periodRt + 1. Remark that the plan
from period j to period Rt represents a ZIO policy.
Accordingly, it follows thatI∗j,Rt

= 0 and, by hypothesis,
that I∗j,Rt

+ x∗

j,Rt+1

= x∗

j,Rt+1

= x̂Rt+1 < Mt − dt,Rt
=

λdRt+1 ≤ MRt+1, that is, x∗

j,Rt+1

= x̂Rt+1 < MRt+1

andx∗

j,Rt+1

= x̂Rt+1 < λdRt+1. Thus, according to (2),
x∗

j,Rt+1

= x̂Rt+1 = 0. As a result, the demand for period
Rt + 1 has not been produced through periods fromj
to Rt + 1 and, therefore, a stockout occurs. Hence, to
avoid this infeasible fact, there must be at least a period
k ∈ [t+1, Rt +1] such thatx∗

j,k ≥ Mt−dt,k−1 for some
period j ∈ [t + 1, k − 1].

For the sake of simplicity, we show in Figure 1 an
illustration of Lemma 1 assuming that the demands for
periods in [t + 1, Rt + 1] are equal and they occur at
constant rate instead of instantaneously.

78 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Fig. 1. Illustration of Lemma 1.

In what follows, letKt be the set of production periods
i within the interval[t + 1, Rt + 1] such thatI∗t+1,i−1 +
x∗

t+1,i ≥ Mt − dt,i−1, that is Kt = {i ∈ [t + 1, Rt +
1]|I∗t+1,i−1 + x∗

t+1,i ≥ Mt − dt,i−1 and x∗

t+1,i > 0}.
Thus, the following result states that among those periods
i ∈ Kt there exists one, sayk, such that if the optimal
decision in periodt is to order its maximum quantity,
then the optimal decision for those periodsj ∈ [t +
1, k − 1] is not to order. Furthermore, in this case, the
optimal decision in periodk consists of producing the
difference between̂xk andMt − dt,k−1.

Lemma 2: Let x̂t = Mt be the optimal decision in
period t and let j ∈ [t + 1, Rt + 1] be a period such
that I∗t+1,j−1 + x∗

t+1,j < Mt − dt,j−1, then the optimal
decision in periodj is not to produce, i.e.,x∗

t,j = 0.
Proof: SinceI∗t+1,j−1 + x∗

t+1,j < Mt − dt,j−1, by
virtue of Lemma 1, we can denote byk1 the period with
smallest index in setKt. For a contradiction, assume that
the optimal decision in periodj when x̂t = Mt consists
of producing a quantityq ∈ (0, I∗t+1,k1−1 + x∗

t+1,k1

−
(Mt−dt,k1−1)]. Therefore, the following inequality holds

fj + cjq < ck1
q

which contradicts the fact thatx∗

t+1,k1

is the optimal or-
der quantity in periodk1 when problem starting in period
t+1 is independently solved, since a better solution can
be obtained just producing a quantityx∗

t+1,j +q in period
j and a quantityx∗

t+1,k1

−q in periodk1. Accordingly, the
optimal decision in periodj whenx̂t = Mt is x∗

t,j = 0.
Lemma 3: Let x̂t = Mt be the optimal decision in

period t and let j ∈ [t + 1, Rt + 1] be a period such
that I∗t+1,j−1 + x∗

t+1,j ≥ Mt − dt,j−1, where the optimal
decision for those periodsi in [t + 1, j − 1] is x∗

t,i = 0,
then the optimal decision in periodj is eitherx∗

t,j = 0
or x∗

t,j = I∗t+1,j−1 + x∗

t+1,j − (Mt − dt,j−1).
Proof: For a contradiction, let us assume that it is

optimal to produce in periodj a quantityq > 0 different
from I∗t+1,j−1 + x∗

t+1,j − (Mt − dt,j−1). For notational
convenience, let∆ be equal toI∗t+1,j−1 +x∗

t+1,j −(Mt−
dt,j−1). Under this assumption we should distinguish two

cases, namely, ifx∗

t,j = q < ∆ or the reverse. In the first
case, we can apply (2) to obtain thatI∗t,j−1 +q = dj,l for
some periodl ≥ Rt + 1 andI∗t,j−1 = Mt − dt,j−1. Note
that I∗t,j−1 = Mt − dt,j−1 as a result of assuming that
x∗

t,i = 0 for any periodi ∈ [t + 1, j − 1]. Furthermore,
by (3), observe thatx∗

t,i = 0 for any periodi ∈ [j +1, l].
Thus, the following inequality holds

fj + cjq + fl+1 + cl+1(∆ − q) < fj + cjq + cj(∆ − q)

or, equivalently

fl+1 + cl+1(∆ − q) < cj(∆ − q)

which yields the contradiction thatx∗

t+1,j is not the
optimal order quantity in periodj when problem starting
in period t + 1 is independently solved, since a better
solution can be obtained simply producing the quantity
q < x∗

t+1,j in periodj and a quantity equal to∆ − q in
periodl+1. As a result, the optimal decisionx∗

t,j in any
period j ∈ [t + 1, Rt + 1] such thatI∗t+1,j−1 + x∗

t+1,j ≥
Mt − dt,j−1 cannot be below the quantity∆.

In second place, we address the situation in which
it is optimal to produce a quantityx∗

t,j = q > ∆ in
period j when x̂t = Mt. Remark that if it is feasible to
produce an additional quantityq − ∆ in period j then
I∗t+1,j−1 + x∗

t+1,j < Mj , and by (2),I∗t+1,j−1 + x∗

t+1,j =
dj,l for some periodl ≥ Rt + 1. For a contradiction,
we assume that it is preferable to order in periodj a
quantity q instead of ordering a quantity equal to∆ in
periodj and a quantityq −∆ in period l + 1. Formally,
this assumption can be stated as follows

fj + cj(q −∆) + cj∆ < fj + cj∆ + fl+1 + cl+1(q −∆)

That is,

cj(q − ∆) < fl+1 + cl+1(q − ∆)

and hence, we obtain the following inequality

fj+cjx
∗

t+1,j+cj(q−∆) < fj+cjx
∗

t+1,j+fl+1+cl+1(q−∆)

which implies that instead of beingx∗

t+1,j the optimal or-
der quantity in periodj for the problem starting in period
t+1, it should have beenx∗

t+1,j + q−∆. Consequently,
the optimal decisionx∗

t,j in any periodj ∈ [t+1, Rt +1]
such thatI∗t+1,j−1+x∗

t+1,j ≥ Mt−dt,j−1 cannot be above
the amount∆. Therefore, when̂xt = Mt, the optimal
decision for those periodsj ∈ [t + 1, Rt + 1] such that
I∗t+1,j−1 + x∗

t+1,j ≥ Mt − dt,j−1 is either x∗

t,j = 0 or
x∗

t,j = ∆ = I∗t+1,j−1 + x∗

t+1,j − (Mt − dt,j−1).

José Miguel Gutiérrez et al. 79

We can use the results above to introduce a functional
equation, which characterizes a subset of optimal plans
to problem(1).

Theorem 4: An optimal production plan for problem
(1) is given by the following recurrence formula

if dt > 0 :
G(t) = min [min

t<j≤Rt+1
A(t, j), min

t<j≤Rt+1

x̂j≥Mt−dt,j−1

B(t, j)],

if dt = 0 :
G(t) = min [G(t + 1), min

t+1<j≤Rt+1
A(t, j),

min
t<j≤Rt+1

x̂j≥Mt−dt,j−1

B(t, j)]

(4)

where B(t, j) = ft+ctMt+G(j)−(cj(M t−dt,j−1)+
δ(M t−dt,j−1−x̂j)f j

) andA(t, j) = ft+ctdt,j−1+G(j).
Proof: Assuming thatIt−1 = 0 (t = 1, . . . , T),

expression (2) states that the production quantity in
period t consists of either a sum of demands corre-
sponding to consecutive periods orMt. The former
decision corresponds to the terms denoted byA(t, j) in
(4). On the other hand, the latter decision concerns the
expressionB(t, j). Indeed, when̂xt = Mt, only those
periodsj in [t + 1, Rt + 1] satisfyingx̂j ≥ Mt − dt,j−1

must be considered as it was proved in Lemma 3.
It is clear that a straightforward implementation of

the recursion formula above yields an O(T 2) algorithm,
reducing the complexity O(T 3) of both Love’s proce-
dure (1973) and the method given in Gutiérrez et al.
(2003), which have been devised for more general cost
structures.

B. The Geometrical Technique

A more efficient algorithm can be developed applying
a procedure based on the approach proposed by Wagel-
mans et al. (1992). In particular, these authors argued
that only the efficient periods should be considered for
the determination ofmint<j≤T+1{ctdt,j−1 + G(j)} in
the uncapacitated case. Accordingly, assume that we plot
the points(dt,T , G(t)), t = 1, . . . , T + 1, such that the
cumulative demands are put on the horizontal axis and
the vertical axis represents the optimal costs. Thus, a
period is said to be efficient when it corresponds to
a breakpoint of the lower convex envelope of points
(dt,T , G(t)), t = 1, . . . , T + 1. The implementation of
this technique consists of evaluating the periods from
T to 1 and holding the efficient periods in a listL.
This list is sorted by ratios which represent the slopes
of the line segments joining consecutive efficient periods
(breakpoints) of the lower convex envelope. Each time a

new periodj is considered, the procedure looks for the
smallest efficient periodq(j) in L with ratio smaller than
cj , and the lower envelope is updated removing fromL
the non-efficient periodsj +1 to the predecessor ofq(j)
in L.

Unfortunately, this technique cannot be used directly
when the inventory levels are limited. Unlike the geo-
metrical approach proposed by Wagelmans et al. (1992),
in our procedure the non-efficient periods cannot be
discarded since a period that is not efficient for a problem
consisting of periodsj to Rj + 1 could be efficient for
the problem involving periodst to Rt + 1, with j > t.
However, we can adapt this geometrical technique to our
model in the following way. We should define two lists
LE and LNE containing, respectively, the efficient and
non-efficient periods. These lists are also sorted by the
slopes-ratios. When evaluating periodj, if q(j) is smaller
thanRj+1, then the new procedure proceeds in the same
way that the approach in Wagelmans et al. (1992), i.e.,
producingdj,q(j)−1 units. In case ofq(j) equalsRj + 1,
we can make two decisions, namely, to order eitherMj

or dj,Rj
. Nevertheless, whencj < cq(j), it can be easily

proved that the optimal decision consists of producing
Mj . Otherwise, the optimal decision isdj,q(j)−1. Finally,
when q(j) > Rj + 1, the efficient periodq(j) is not
feasible for the problem starting in periodj, and hence
we must compare both the efficient periodqE(j) ≤
Rj + 1 in LE with smallest ratio and the non-efficient
period qNE(j) ≤ Rj + 1 in LNE . Accordingly, we
denote byGE(j) = fj + cjdj,qE(j)−1 + G(qE(j)) and
GNE(j) = fj + cjdj,qNE(j)−1 + G(qNE(j)) the costs
associated to, respectively, periodsqE(j) and qNE(j),
which are the successors toj. If evaluating both costs we
obtain thatGE(j) ≤ GNE(j), then periodqE(j) remains
to be efficient. Otherwise, sinceGE(j) > GNE(j), the
following proposition shows that periodqNE(j) should
be inserted in listLE and the rest of periods in this
list have to be moved toLNE . Actually, this process to
transfer periods from one list to the other represents an
update of the lower envelope.

Proposition 5: If evaluating a periodj, both q(j) >
Rj + 1 andGE(j) > GNE(j) hold, then periodqNE(j)
should be included in listLE and the rest of periods in
this list must be moved to listLNE .

Proof: Without loss of generality, we assume that
q(qE(j)) = q(j) and q(j) is the period successor to
qE(j) in LE . Note thatG(qNE(j)) + cjdl,qNE(j)−1 <
G(l) for any period l in LE smaller than or equal
to qE(j), and henceG(qNE(j)) < G(l). Otherwise,
fj + cjdj,k−1 + G(k) < fj + cjdj,qNE(j)−1

+ GNE(j) for
somek ≤ qE(j) in LE , and thereforeqE(j) = k with
GE(j) < GNE(j), which contradicts the hypothesis.

80 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Recall that for a production/reordering periodt, x̂t ∈
{Mt, dt,q(t)−1}. In addition, sinceqNE(j) < qE(j),
the straight line connecting points(dj,T , GNE(j)) and
(dqNE(j),T −(x̂j−dj,qNE(j)−1), G(qNE(j))−cqNE(j)(x̂j−
dj,qNE(j)−1)) intercepts the line segment joining
points (dqE(j),T , G(qE(j))) and (dq(j),T − (x̂qE(j) −
dqE(j),q(j)−1), G(q(j)) − cq(j)(x̂qE(j) − dqE(j),q(j)−1)) in
a point smaller thanqE(j), and hence the result below
follows

GNE(j)−(G(qNE(j))−cqNE(j)(x̂j−dj,qNE(j)−1))
x̂j

<
G(qE(j))−(G(q(j))−cq(j)(x̂qE(j)−dqE(j),q(j)−1))

x̂qE(j)

Moreover, given that the term on the right-hand side
in the above expression is smaller than the ratio
G(k)−G(q(k))

dk,q(k)−1

, for any periodk < qE(j) in LE , these
periods are to be dominated byqNE(j). For that reason,
these periods should be moved to listLNE .

Figure 2 shows the case wherêxj = dj,qNE(j)−1.
Note that periods highlighted by the gray line are not
accessible from periodj.

Fig. 2. Illustration of the caseq(j) > Rj+1 andGE(j) > GNE(j).

Following a similar argument to the previous propo-
sition, we can state the following result

Proposition 6: If evaluating a periodj, it holds that
q(j) > Rj +1, GE(j) < GNE(j) and the ratio related to
period qE(j) is greater thanGE(j)−G(qE(j))

dj,qE(j)−1

, then every
periodk ≤ qE(j) in LE should be moved to listLNE .

The method outlined above is shown in Algorithm
1, wherepred(j) and succ(j) denote, respectively, the
period predecessor and successor to periodj in both lists.
We also follow the convention that ifdj = 0, then the
efficient periodj+1 is replaced by the efficient periodj.
Regarding the complexity of this procedure, note that the
valueq(j) can be obtained by binary search in O(log T).

In case ofq(j) > Rj + 1, the procedure should inspect
by sequential search in bothLE andLNE to determine
the actual period,qE or qNE , successor toj. Specifically,
if we are evaluating periodj, there would be, at most,
(T − j) periods distributed in both lists. Each time the
sequential search reaches a period greater thanRj + 1,
this period is removed from the corresponding list, and
it will not be considered in subsequent search processes.
Observe that each comparison in any of the two lists,
whenq(j) > Rj +1, yields a deletion of the correspond-
ing period. Hence, the overall number of comparisons
is O(T). Therefore, the process of searching all values
q(j)′s (j = 1, . . . , T) runs in O(T log T)+O(T). On the
other hand, any periodj can be moved between both lists
at most two times, and so, the transferring process can
be carried out in O(T) time. According to the previous
arguments, the algorithm runs in O(T log T).

C. The Wagner and Whitin Cost Structure

In addition to the case where production/ordering costs
are time-varying, we also address the problem admitting
that production/ordering costs are constant, i.e., when
pt = p for all t. Under this assumption, the formulation
of problem (1) adopts a form equivalent to that in the
Wagner and Whitin model and, hence,c1, c2, . . . , cT

represent a non increasing sequence of values. Therefore,
speculative motives for holding stock are not allowed.
It is well-known that, under this cost structure and in
absence of capacities, the problem admits an optimal
plan x = (x1, . . . , xT) verifying It−1xt = 0, for
t = 1, . . . , T . This result is commonly refereed to as
Zero Inventory Ordering (ZIO) property. Indeed, the
ZIO property still holds when the cost functions are
concave in general(see Wagner (1960) and Zangwill
(1968)). Moreover, as we show in Proposition 7, the ZIO
property holds even when inventory levels are limited.
Therefore, the use of the ZIO property is not conditioned
to limitations on the inventory levels.

Proposition 7: When production/ordering costs in
problem(1) are constant, there always exists an optimal
policy x = (x1, . . . , xT) such thatIt−1xt = 0, t =
1, . . . , T.

Proof: Let us assume that there exists an optimal
plan x with at least one periodj such thatIj−1xj 6= 0.
According to Lemma 3, sincexj 6= 0, then there must
exists a periodt, t < j, such that̂xj is strictly greater
thanMt−dt,j−1, which corresponds toIj−1. Therefore,
the following inequality holds

ft+ctMt+G(j)−cj(Mt−dtj−1) < ft+ctdt,j−1+G(j)

that is,ct < cj , which contradicts the fact thatct ≥ cj .

José Miguel Gutiérrez et al. 81

Algorithm 1 Determine an optimal planx =
(x1, . . . , xT) for problemP

1: DATA: vectors d, c, h, f , S and the number of
periodsT

2: calculateCt, Mt andpt, t = 1, . . . , T + 1
3: G(T + 1) ← 0
4: insertT + 1 in LE

5: for i ← T downto 1do
6: search forq(i) ← min[T + 1, min{j ∈ LE :

G(j)−G(succ(j))
x̂j

< ci}]

7: if (q(i) < Ri+1) or (q(i) = Ri+1 andci > cq(i))
then

8: G(i) ← fi+cidi,q(i)−1+G(q(i)); x̂i ← di,q(i)−1

9: else
10: if q(i) = Ri + 1 then
11: G(i) = fi + ciMi + G(q(i)) − cq(i)(Mi −

di,q(i)−1); x̂i ← Mi

12: else
13: j ← pred(q(i)); while j > Ri + 1 do j ←

pred(j)
14: delete all k : q(i) ≤ k < j from LE

15: qE(i) ← j; GE(i) ← fi + cidi,qE(i)−1 +
G(qE(i));GNE(i) ← −1

16: if LNE is not empty then
17: j ← first element in LNE ; while j >

Ri + 1 do j ← pred(j)
18: delete all k : 1 ≤ k < j from

LNE ; qNE(i) ← j
19: if (qNE(i) < Ri +1) or (qNE(i) = Ri +1

and ci > cqNE(i)) then
20: GNE(i) ← fi + cidi,qNE(i)−1 +

G(qNE(i)); z ← di,qNE(i)−1

21: else
22: GNE(i) ← fi + ciMi + G(qNE(i)) −

cqNE(i)(Mi − di,qNE(i)−1); z ← Mi

23: end if
24: end if
25: if GNE(i) ≥ 0 and GNE(i) < GE(i) then
26: G(i) ← GNE(i); q(i) ← qNE(i); x̂i ← z
27: else
28: G(i) ← GE(i); q(i) ← qE(i); x̂i ← z
29: end if
30: end if
31: end if
32: at this point, valuesG(i) andx̂i have been already

determined
33: call Algorithm 2 to update the lower envelope
34: end for
35: call Algorithm 3 to arrange the optimal solution

Algorithm 2 Routine to update the lower envelope

1: if q(i) ≤ Ri + 1 or (q(i) = qE(i) and G(i)−G(q(i)
x̂i

>
G(q(i))−G(succ(q(i)))

x̂q(i)
) then

2: if di = 0 andG(i + 1) < G(i) then
3: G(i) ← G(i + 1); s ← succ(i + 1)
4: else
5: if di > 0, then s ← i+1 elses ← succ(i+1)

6: while G(i)−G(s)
di,s−1

≤ G(s)−G(succ(s))
x̂s

and s < q(i)
do

7: s ← succ(s)
8: end while
9: end if

10: move all k : i + 1 ≤ k < s from LE to LNE ;
insert i in LE

11: else
12: move all periods inLE to LNE ; insert i in LE

13: end if

The above proposition allow us to reformulate expres-
sion (4) as follows

G(t) =

min
t<j≤Rt+1

A(t, j) if dt > 0

min[G(t + 1), min
t+1<j≤Rt+1

A(t, j)] if dt = 0

(5)
A(t, j) = ft + ctdt,j−1 + G(j). Remark that expression
(5) only differs from that proposed by Wagelmans et al.
(1992) in the range ofj. Unfortunately, this result does
not imply a computational improvement since each non-
efficient period should be sorted in O(log T) when it is
inserted inLNE .

As an illustration of this latter result, we present
the following numerical example. Assuming that the
production/ordering unit costs are equal to zero, the rest
of the input data are shown in Table I, where the first
column corresponds to the period and the subsequent
columns represent, respectively, the demand, the setup
cost and the storage capacity.

The corresponding trace to the problem introduced in
Table I is shown in Table II. In particular, the rows
in this table stand for the iterations (periods), and the
second and third columns show the maximum quantity
to be produced/ordered and the maximum reachable
period for each period, respectively. Additionally, we
show in columns four to six the values ofq(j), G(j)

and Ratio = G(j)−G(succ(j))
dj,succ(j)−1

following (5). Finally, the
last two columns contain listsLE and LNE , where
the symbol {ø} indicates that the list is empty. Note
that, in absence of capacities, the optimal solution for
the example in Table I is(22, 0, 0, 24, 0, 22, 0, 0, 8, 0)

82 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Algorithm 3 Routine to arrange the optimal solution
1: Cost ← 0; i ← 1; D ← 0; Rest ← 0
2: while i ≤ T do
3: if di = 0 andG(i) = G(i + 1) then
4: i ← i + 1
5: else
6: if q(i) = Ri + 1 andci < cq(i) then
7: x̂i ← Mi − Rest; D ← x̂i + Rest −

di; Rest ← Mi − di,q(i)−1

8: else
9: x̂i ← di,q(i)−1 − Rest; D ← x̂i + Rest −

di; Rest ← 0
10: end if
11: if x̂i = 0 then f ← 0 elsef ← fi

12: Cost ← Cost + f + cix̂i + Dhi

13: for k ← i + 1 to q(i) − 1 do
14: D ← D − dk; Cost ← Cost + Dhk

15: end for
16: i ← q(i)
17: end if
18: end while
19: returnCost

j dj fj cj Sj

1 5 1 10 10
2 10 30 9 15
3 7 20 8 10
4 9 2 7 20
5 15 40 6 25
6 4 1 5 22
7 8 30 4 10
8 10 25 3 10
9 2 10 2 10
10 6 28 1 10

TABLE I

INPUT DATA FOR ONE INSTANCE OF PROBLEM(1).

whereas considering capacities yields the optimal plan
(5, 10, 7, 9, 15, 12, 0, 10, 8, 0).

IV. COMPUTATIONAL RESULTS

We show in Table III the average running times of
Algorithm 1 introduced in Section 3, and the average
running times of the dynamic programming algorithm
developed from the recurrence formula (4). Both algo-
rithms have been implemented using C++ along with
LEDA 4.2.1 libraries and were tested in a HP-712/80 (80
MHz) workstation. For simplicity, we denote byT log T
the Alg. 1 and by DPA the algorithm obtained from
(4), respectively. The different values for the maximum
storage capacity (S) and the number of periods (T) are

j Mj Rj q(j) G(j) Ratio LE LNE

10 6 10 11 34 5.66 {11, 10} {ø}
9 8 10 11 26 3.25 {11, 9} {10}
8 10 8 9 81 5.50 {11, 9, 8} {ø}
7 10 7 8 143 7.75 {11, 9, 8, 7} {ø}
6 14 7 8 142 5.08 {9, 6} {8, 7}
5 25 6 6 272 8.66 {9, 6, 5} {8, 7}
4 20 4 5 337 7.22 {6, 4} {5}
3 10 3 4 413 10.85 {6, 4, 3} {5}
2 15 2 3 533 12.00 {6, 3, 2} {ø}
1 10 1 2 584 10.20 {3, 1} {2}

TABLE II

THE OUTPUT DATA CORRESPONDING TO THE INSTANCE INTABLE

1.

T

25 50 75
S DPA Alg.1 DPA Alg.1 DPA Alg.1

100 0.016 0.005 0.046 0.012 0.088 0.023
500 0.015 0.005 0.040 0.013 0.070 0.025
1000 0.015 0.006 0.041 0.013 0.071 0.023
2000 0.015 0.006 0.041 0.013 0.069 0.022
5000 0.016 0.006 0.043 0.014 0.074 0.024
10000 0.014 0.005 0.044 0.013 0.074 0.024
100000 0.015 0.005 0.040 0.015 0.071 0.024

T

100 150
S DPA Alg.1 DPA Alg.1

100 0.138 0.035 0.274 0.066
500 0.103 0.037 0.179 0.069
1000 0.104 0.036 0.180 0.069
2000 0.106 0.037 0.186 0.069
5000 0.108 0.036 0.193 0.070
10000 0.111 0.036 0.193 0.069
100000 0.105 0.038 0.188 0.069

TABLE III

AVERAGE RUNNING TIMES IN SECONDS FORALGORITHM 1

(Alg.1) AND FOR THE DYNAMIC PROGRAMMING ALGORITHM

(DPA) BASED ON RECURRENCE FORMULA GIVEN IN(4).

shown in the first row and column, respectively. For each
pair (S, T), we have run thirty instances withdt varying
in [0, St], t = 1, . . . , T . Moreover, for each pair(S, T),
we show two columns: the first containing the average
running times of the dynamic programming algorithm
based on the recurrence formula (4) and the second
showing the average running times of Algorithm 1. From
Table III, two main points can be highlighted. In first
place, the running times of both algorithms support the
theoretical complexities obtained in previous sections.
Secondly, the running times of both procedures for a
fixed number of periods do not seem to be affected by
the values of the maximum storage capacity.

José Miguel Gutiérrez et al. 83

V. CONCLUSIONS ANDFINAL REMARKS

We have analysed the dynamic lot size problem with
time-varying storage capacities. We have presented re-
sults which allow formulating an efficient recurrence
expression for the problem. It has been shown that an
appropriate implementation of this recurrence formula
leads to an O(T 2) dynamic programming algorithm.
Moreover, we have adapted the geometrical technique
of Wagelmans et al. (1992) to develop an O(T log T)
algorithm. Another relevant aspect introduced in this
paper is that the Zero Inventory Ordering (ZIO) property
holds when cost specifications are considered as in the
model by Wagner and Whitin (1958). These results
represent a significant improvement with respect to the
previous algorithm of Love (1973) and Gutiérrez et al.
(2003). We intend to extend the results in this paper to
the case in which shortages are allowed, and to the case
with multiple items.

REFERENCES

[1] Aggarwal, A. and J.K. Park, ”Improved Algorithms for Eco-
nomic Lot Size Problems,”Oper. Res. 41 (1993), 549-571.

[2] Federgruen, A. and M. Tzur, ”A Simple Forward Algorithm to
Solve General Dynamic Lot Sizing Models withn Periods in
O(nlogn) or O(n) Time,” Mgmt. Sci. 37 (1991), 909-925.

[3] Gutiérrez, J., A. Sedeño-Noda, M. Colebrook and J. Sicilia, ”A
New Characterization For The Dynamic Lot Size Problem with
Bounded Inventory,”Comput. Oper. Res. 30 (2003), 383-395.

[4] LEDA User Manual (version 4.2.1) at www.mpi-
sb.mpg.de/LEDA/MANUAL/MANUAL.html

[5] Love, S.F., ”Bounded Production and Inventory Models with
Piecewise Concave Costs,”Mgmt. Sci. 20 (1973), 313-318.

[6] Manne, A. S., ”Programming of Economic Lot Sizes,”Mgmt.
Sci. 4 (1958), 115-135.

[7] Sedeño-Noda, A., J. Gutiérrez, B. Abdul-Jalbar, J. Sicilia, ”An
O(TlogT) Algorithm for the Dynamic Lot Size Problem with
Limited Storage and Linear Costs,”Comput. Optim. Appl. 28
(2004), 311-323.

[8] Wagelmans, A., S. Van Hoesel and A. Kolen, ”Economic Lot
Sizing: AnO(nlogn) Algorithm that Runs in Linear Time in the
Wagner-Whitin Case,”Oper. Res. 40 (1992), S145-S156.

[9] Wagner, H. M., ”A Postcript to Dynamic Problems in the
Theory of the Firm,”Naval Res. Logist. Quart. 7 (1960), 7-
12.

[10] Wagner, H. M. and T. M. Whitin, ”Dynamic Version of the
Economic Lot Size Model,”Mgmt. Sci. 5 (1958), 89-96.

[11] Zangwill, W. I., ”Minimum Concave Cost Flows in Certain
Networks,” Mgmt. Sci. 14 (1968), 429-450.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 85

Optimizing the service capacity by using a speed up
simulation

Isolina Alberto∗, Fermin Mallor† and Pedro M. Mateo‡
∗ Universidad de Zaragoza, Depto. Métodos Estad́ısticos

E.U. de Ingenieŕıa Técnica Industrial, Email: isolina@unizar.es
† Universidad Ṕublica de Navarra, Depto. Estadı́stica e Investigación

Operativa, Email: mallor@unavarra.es
‡ Universidad de Zaragoza, Depto. Métodos Estad́ısticos

Facultad de Ciencias, Email: mateo@unizar.es

Abstract— The aim of this work is to provide an effective
method, based on a speed up simulation+optimization tool,
that allows us to optimize the capacity of a queue model
system subject to the completion of a quality of service
criterion. This criterion is expressed in terms of a very
small probability of loosing a customer due to system
overload. To evaluate the performance of the system,
multiple simulations with different capacity levels have
to be made. Because of the characteristics of this kind
of systems, any speed up tool will be necessary in order
to keep the computational time reasonably bounded. Our
tool uses a speed up technique, called RESTART, once,
and it does not need any other entire execution of the
method when a new capacity level is considered. Our tool
only requires a stage (partial execution) of the RESTART
method in order to update the probabilities when the
capacity of the system is changed, so this involves an
important saving of computational time.

Keywords— simulation, queuing system, optimization

I. I NTRODUCTION

M ODERN telecommunication systems require high
levels of quality of service (QoS) which is mea-

sured in terms of blocking or cell loss probabilities. The
target values for these probabilities are lower than10−6

and 10−9, respectively. Because of this, when studying
the performance of a real system defined by a capacity
of service, a queue discipline and a buffer size, these
features turn into a rare event. The use of Crude Monte
Carlo techniques for evaluating such small probabilities
is inefficient, because it requires a sample size that tends
to infinity when the probability tends to zero, for a fixed
relative error. For example, letX be a random variable
and consider the estimation ofγ = P (X ∈ A) for
some eventA. To estimateγ by crude Monte Carlo
simulation, we drawN samplesX1, . . . , XN , we denote

In = I(Xn∈A) and build the sample mean,

γ̂ =
1

N

N
∑

n=1

In, E[γ̂] = γ,

and

Var(γ̂) =
1

N
γ(1 − γ), RE(γ̂) =

√

Var(γ̂)

E[γ̂]
∼

1
√

γN
,

so, the relative error is unbounded as the event becomes
rarer, or equivalently, the smallerγ, the higher number
of trials needed.

In most interesting real systems, it is necessary to
speed up the simulation because the simulation with
naive Monte Carlo techniques could require a pro-
hibitively large number of trials. Several speed up tech-
niques have been proposed: parallel programming, im-
portance sampling, cross entropy and importance split-
ting (RESTART).

The first one takes advantage of the capacity of new
technologies in order to develop or adapt the existing
ones. The second one, importance sampling, changes
the sampling distribution into a new one and takes
samples from this new distribution. The new distribution
is selected in such a way that the probability of the rare
event is higher. In order to retain unbiased estimations,
the observations must be corrected (because the samples
are from the new distribution instead of the original one),
that is done by means of the so-called likelihood ratio.
The main problem of these methods is to find an appro-
priate new density. Cross entropy is used in conjunction
with importance sampling, providing a simple adaptive
procedure for estimating the optimal parameters needed
for the importance sampling method.

Finally, importance splitting methods, inside of which
we can locate the RESTART methods, use a different
approach. The idea is based on restarting the simulation
in states of the system that provoke rare events more

86 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

often. Then, the calculated probability for the rare event
must be appropriately weighted.

In this paper we consider the problem of dimensioning
the capacity of service to provide a fixed QoS. Analytical
results providing an exact formula relating QoS and ca-
pacity of service are only available for simple models as,
for instance, M/M/s/k [2] [8]. Also, it is possible to find
asymptotic results for general models but assuming infi-
nite buffer which can be very far from the exact ones for
moderate sizes of the buffer. Then, if we consider general
distributions and no asymptotic results are desired, we
have to approach the problem by combining some opti-
mization procedure with simulation. The integration of
optimization techniques with simulation is widely spread
in many fields as in industry [1], management, etc. In [9]
the optimization of the service rate in a queue model
using importance sampling method has been studied,
but as these authors say “the idea of estimating rare-
event probabilities and stochastic optimization over rare
events is still in its infancy and considerable progress
can be expected, specially in the domain of dynamic
(queuing) networks”. The novelty in our case is that the
values that are necessary to be estimated by using the
simulation are very small and need to integrate a speed
up procedure. During the last decade, many researchers
have done important theoretical and practical advances
in the development of efficient techniques for the study
of systems involving rare events by using simulation.
Directly related is the stochastic optimization over rare
events. The scenario of competition in which modern
firms have to develop their economic activities obliges
them to be extremely efficient and to meet high levels
of quality in their products and services. That means to
reduce to almost zero the probability of failures in the
production, of shortcoming in inventories, of disruptions
in manufacturing chains or of having overflow in buffers.

The dimensioning of the resources that meet these
extremely hard effectiveness parameters becomes an im-
portant problem, although it is usually very complicated
to solve it in practice because of the complexity and
stochastic nature of the elements involved.

II. SPEED UP SIMULATION METHODS. RESTART
ALGORITHM

Consider that we want to estimate the probabilityγ
of a rare eventEv, γ = P{rare eventEv is observed}.
The RESTART method, introduced in [12], is based on
the idea of restarting the simulation in certain system
states in order to do the rare event more likely to
be observed. For this purpose, a sequence of nested
events is defined, being the rare event the intersection
of all of them. Then, the probability of the rare event

is the product of successive conditional probabilities,
each of which can be estimated more accurately than the
rare event probability for a given simulation effort. Let
{Ai}

m
i=1 be a sequence of events verifyingEv = Am ⊂

Am−1 ⊂ . . . ⊂ A1 with probabilitiespi = P (Ai/Ai−1)
∀i = 2, . . . , m and p1 = P (A1). Then, the probability
of the rare eventEv, γ = P (Ev), can be expressed as
γ =

∏m
i=2 P (Ai/Ai−1) × P (A1) = p1 × p2 × . . . × pm.

In order to illustrate the method, let us consider a
system where customers arrive according to a certain
interarrival time distribution and where each customer
is served according to a preestablished service time
distribution. For the moment, we do not need to establish
neither the queue discipline nor the number of servers.
Finally, we assume that the maximum number of clients
in the system isE. For this system we count the number
of clients in the system,X, and we wish to calculate the
rejection probability, that is to say,P (X = E).

In the following we show how the RESTART method
works. We divide the maximum number of clientsE
into m + 1 levels, Ii, verifying I0 = 0, Im = E and
Ii−1 < Ii i = 1, . . . , m. Then, we define the events
Ai in the following way, Ai = { w / X(w) ≥ Ii},
i = 1 . . . , m.

In this point, two different strategies are possible,
basically step-by-step approach and global approach. The
step-by-step approach works taking into account a set
Ai each time and the global approach all steps are
simulated simultaneously. Another possible classification
divides these methods in fixed effort and fixed splitting
RESTART [6]. In the first type, the number of samples
for eachAi is fixed and in the second one, each trajectory
that reaches anAi level is split in a prefixed number of
new trajectories.

Another possibility is founded in the combination of
RESTART method with LRE method, RESTART/LRE
method. LRE can be used to control systematically
the number of trials needed in a simulation run by a
formula which depends on a maximum relative error
preestablished [10] [11]. In this case, it is mandatory
to take the sample in special instants of time. In this
case, the observations are made just before any new
client arrives at the system. Under these assumptions
of the observation times, a discrete-state Markov chain
can be built, the state-transition diagram is shown in
figure 1. The number of clients in the system,X, can
be increased one by one, and can be decreased in any
amount (maintainingX ≥ 0).

The original RESTART implementation [12] [13] cor-
responds to a global fixed split approach. In this section
we describe a generic step-by-step approach like in [5].

The algorithm accomplishesm stages. The first stage

Isolina Alberto et al. 87

0 i i+1i−1i−21 ... E

Fig. 1. State-transition diagram

calculates the valuep1 = P (X ≥ I1/ X ≥ I0) =
P (X ≥ I1). The simulation process evolves and when a
new customer arrives at the system, the following values
are updated:n1, the number of customer arrivals until
this moment;h1, the number of times that, just before
the entrance of a client, the system already hadI1 or
more customers.

If the number of clients in the system when a new
customer arrives isI1, the state of the system will be
stored (number of clients, remaining service times, and
so on).

When the first stage is finished, we estimate the
probability p1 by means of the expression̂p1 = h1/n1.

Now, we consider a generic stagei of the RESTART
algorithm. We randomly pick out a stored system state
from the stagei−1, and we continue the simulation until
we detect that the number of customers in the system is
at most Ii−1. If so, we randomly take another stored
system state and the process is repeated. As it was done
in the first stage, when a customer arrives, the variable
ni is increased by one; if the current number of clients
is greater than or equal toIi, the variablehi is increased
by one; and if the number of clients is exactly equal to
Ii, the system state is stored for the next stage.

When the process finishes, the value ofpi is estimated
by means of p̂i = hi/ni. When all the stages are
considered, the rare event probabilityγ = P (X = E) =
P (X ≥ E) = P (X ≥ Im) is estimated by means of

γ̂ = p̂1 × p̂2 × . . . × p̂m−1 × p̂m

.

1I

0I =0

I 2

I 3

I m−1

mI =K

Start simulation from
a previous stored state

Time

...

Saved state

S
ys

te
m

 o
cc

up
an

cy

End partial simulation

Fig. 2. step-by-step RESTART

III. O PTIMIZATION OF QUEUING SERVICE CAPACITY

A. Definition of the problem

Dimensioning a queuing system means to determine
the capacity of service and the size of the buffer that ac-
complish certain quality of service criteria. We consider
the case in which the quality criterion is given by a small
probabilityγ0 of rejecting a customer because the system
is full. Thus, we wish to minimize the dimensions of
the system that meet this rejection probability. First we
consider the case in which the dimension of the system is
determined by the maximum number of customersC that
simultaneously can be in the system. Then our problem
is

Minimize C subject to P (X ≥ C) ≤ γ0

where X is the state variable number of customers
in the system. Note that in some real applications,
like in telecommunication systems or in reliability, the
probability γ0 is very small, of order10−7 or smaller.

We will use the following result for regenerative
processes (see [7]).

Theorem 1:Let {Z(t)}t≥0 be a regenerative process
with state space{0, 1, 2, . . .} and right continuous sam-
ple paths with left limits. LetS1 be a regenerative epoch
and Uj be the time that the process spends in statej
during [0, S1). If S1 is aperiodic withE(S1) < ∞,

lim
t→∞

P (Z(t) = j) =
E(Uj)

E(S1)

B. The algorithm

As a general idea, the algorithm works as follows.
The first step is to define an initial dimension for the
system based on a theoretical analysis for a similar
but simpler system. Once the capacity is determined,
we simulate the system to asses the quality of service.
To estimate the associated probability we use the
classical RESTART method to speed up the simulation.
Depending on the results, we modify the capacity of
the system: we increase the capacity of the system, if
the probability is too large; or we decrease the capacity
of the system, if the probability is too small. In order
to determine the new rejection probability, we propose
a method that updates the probabilities estimated in the
previous step, saving a lot of simulation effort. Again,
the new estimated probability is compared with the
target probability and as a consequence, the capacity
of the system is redefined. In the successive steps,
the estimated probability will be closer to the target
probability and then, its corresponding capacity will be

88 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

closer to the optimum. A stopping criterion is used to
end the procedure.
Step 1. Determination of an initial capacity for the
system. In order to get the optimal gain of the RESTART
method, several authors [6] have set that the optimal
number of intermediate levels ism ≈ −log(γ0)/2 and
that the successive levels verify that the probability
of reaching one from the previous is approximately
e−2. The theoretical analysis of queuing systems such
us M/M/s/k or M/M/s/∞ provides us with these
optimal levels for a given probability. We find the value
C1 which is a function of the numberE1 verifying
P (Z = E1) ≈ γ0. The variableZ is the number of
customers in the system selected as a reference. We
also determine the optimal values for the parameters
of the RESTART method if we were to apply them to
estimate the probabilityγ0 in the reference system. That
is, we also find the optimal value for the numberm of
intermediate levels and the optimal valuesI1, I2, . . . , Im

for each one.

Step 2. Use the classical RESTART procedure to
estimate the probabilitŷγ1 = P (X = E1). Applying the
classical RESTART method we estimate the conditional
probabilitiesp

(1)
i = P (X ≥ Ii/X ≥ Ii−1) by using

p̂
(1)
i =

h
(1)
i

n
(1)
i

To apply the next steps of the algorithm we need to
find a lower bound for the capacity of the system, that
is to say, we have to determine a valueIinf verifying
that P (X = Iinf/E = Iinf) ≥ γ0. Thus, the optimal
capacity of the system,I∗, associated to the probability
γ0 will satisfy I∗ ≥ Iinf .
We propose a method to estimate such levelIinf which
is based in the following two results.

Proposition 1: If the product
∏j

i=1 p̂
(1)
i < γ0, then

γ̂1 = P̂ (X = E) < γ0.
Proposition 2: If the product

j
∏

i=1

p̂
(1)
i −

∏j
k=i p̂

(1)
k

1 −
∏j

k=i p̂
(1)
k

≥ γ0

thenE = Ij is an estimated lower bound for the optimal
level, that is,P̂ (X = Ij/E = Ij) ≥ γ0.

Then, we can simulate the system using the RESTART
procedure to successively estimate the probabilities
p̂
(1)
i and in each levelj evaluate the expression

∏j
i=1

p̂
(1)

i −

∏

j

k=i
p̂
(1)

k

1−
∏

j

k=i
p̂
(1)

k

. We will estimate the lower level

I∗ by Ij , wherej corresponds to the maximum index
for which the previous expression is greater thanγ0.

Because it is not necessary a high precision in the
determination of the value ofIinf , we will not spend
too much simulation effort in this first application of the
RESTART method. Now we setE = Ij andm = j and
apply again, with these new parameters, the RESTART
method to estimate more accurately the probabilitiesp

(1)
i .

Then, the estimated probability of rejecting a customer
when the capacity isE1 is

γ̂ = p̂
(1)
1 × p̂

(1)
2 × . . . × p̂(1)

m

Step 3. Stopping criterion.If γ̂ ≥ γ0, the probability
of system overflow has been so high that we have to
increase the capacity of service. We dom = m + 1,
E1 = E2, we load the new valuesp(2)

i in p
(1)
i variables

and we determine the new threshold,E2 = Im+1. A
simple way is to use a linear approximation defining the
value ofIm+1 as

Im+1 = Im +
(Im − Im−1)(γ̂ − γ0)

γ̂/p̂
(2)
m

.

When we execute this step for the first time, only the
valueIm+1 has to be calculated.

If γ̂ < γ0, then we will discard the last iteration. If
Im+1 = 1+ Im the algorithm finishes, the last threshold
E1 is the solution. IfIm+1 > 1 + Im, we calculate a
new Im+1. Similarly to the other case we can consider
the value:

Im +
(Im+1 − Im)(γ0 − γ̂)

γ̂/p̂
(2)
m+1

.

If this value for Im+1 is equal toIm, then we set
Im+1 = Im + 1. Finally, we remove all the data of the
previous iteration and go to step 4.

Step 4Estimation of the newp(2)
m+1. At this moment,

we execute a new stage of the RESTART method. We are
going to estimatep(2)

m+1 = P (X ≥ Im+1/X ≥ Im) =
P (X ≥ E2/X ≥ E1), we collect the appropriate values:
ω

(2)
m+1, the number of hits in levelIm+1 = E2; ν

(2)
m+1, the

number of runs of hits in levelE2; nm+1, the number
of trials; Nm+1, the number of cycles. We get

p̂
(2)
m+1 =

ω
(2)
m+1

nm+1

Step 5. Estimation of probabilities p
(2)
i ∀i =

1, . . . , m.
The p

(2)
i , i = 1, . . . , m− 1 are updated according to:

p̂
(2)
i =

p̂
(1)
i + Ai

1 + Ai

Isolina Alberto et al. 89

and

p̂
(2)
m−1 =

ν
(1)
m Ê(L(E1,E2))

(nm − ω
(1)
m) + ν

(1)
m Ê(L(E1,E2))

where

Ai =
m−1
∏

j=i

p̂
(1)
j

Ê(L(E1,E2))ν
(1)
m − ω

(1)
m

nm

and

Ê(L(E1,E2)) =
nm+1

Nm+1
.

We consider the following elements: a run of hits
is defined as a sequence of states in the top levelE1

preceded and followed by states different fromE1; ν
(1)
i

is the number of runs of hits to levelE1 in the Ni

trajectories starting in levelIi−1; h
(1)
i and ω

(1)
i are,

respectively, the total number of trials greater than or
equal to levelIi and the number of hits to levelE1

observed in theNi simulated trajectories starting in level
Ii−1; E(L(E1,E2)) is the expected length of a trajectory
starting and ending inE1 with top levelE2.

With these elements we can establish the result used
in the above updating.

Proposition 3: Given p̂
(1)
i , i = 1, . . . , m, ν

(1)
m , ω

(1)
m ,

nm and Ê(L(E1,E2)), then fori = 1, . . . , m − 1

p̂
(2)
i =

Ê(Ui1) + Ê(Ui2)

Ê(Si)
=

p̂
(1)
i − Ai

1 − Ai

and

p̂
(2)
m−1 =

ν
(1)
m Ê(L(E1,E2))

(nm − ω
(1)
m) + ν

(1)
m Ê(L(E1,E2))

where

Ai =
m−1
∏

j=i

p̂
(1)
j

Ê(L(E1,E2))ν
(1)
m − ω

(1)
m

nm

Step 6. Go to step 3.

C. An illustrative example

Let us consider the following example. A system
receives packets of data that must be processed by an
only server that works at constant rateC = 2. The arrival
of data at the system occurs according to a Modulated
Markov Poisson Process (MMPP) with two states with
parametersλ1 = 2, λ2 = 1 and transition probabilities
matrix equal to

P =

(

0.9 0.1

0.5 0.5

)

In our MMPP model, the number of packets arrived by
unit time follows a Poisson distribution of rateλ1 = 2
when the system is in state 1, and follows a Poisson
distribution with rateλ2 = 1 when the system state is
2. In each time unit, the state can remain or change to
another state according to the probabilities established in
P . The packets that arrive at the system and could not be
served, are placed in a buffer with finite capacityB. The
aim is to determine the capacity of the buffer (multiple
of 10; 10, 20, 30 and so on) to have a probability of
saturating the buffer,γ, lower than or equal to10−5.

We have considered a simplified version of our algo-
rithm, the initial capacity (buffer) of the system, steps
1 and 2, is established to 10 packets, and a two level
RESTART is executed to get the firstγ̂1. In step 3, the
increments ofI[m] are of ten units each time.

We have executed the algorithm 10 times with 10 dif-
ferent seeds (for the simulation) and we have generated
106 trials for each level, that is to say,2× 106 trials for
steps 1 and 2, and106 trials for each new levelI[m+1].
In Table I the minimum value for the buffer, 70, and the
guaranteed probability are showed.

TABLE I

RESULTS OBTAINED WITH THE METHOD PROPOSED

Buffer size Probability
70 5.7666×10−6

70 5.4633×10−6

70 5.1146×10−6

70 5.2696×10−6

70 5.3188×10−6

70 5.3784×10−6

70 5.4476×10−6

70 5.2750×10−6

70 5.4247×10−6

70 5.7615×10−6

The confidence interval for the probability obtained
with these data is[5.273439763× 10−6, 5.570580237×
10−6]. To get this precision, we have used 8 million
trials: two million for the initial RESTART and one
million for each one of the new levels (20, 30,. . ., 70).

To solve the same problem using classic RESTART,
we have to solve successive problems consideringE1 =
10, E1 = 20 until reaching the value of 70.

Table II shows the probabilities obtained when con-
sidering directly a buffer size of 70, and a RESTART
with two levels and with106 trials in each level. In this
case, the number of trials required is 2 million for each
RESTART execution, because we need 7 executions for
reaching the level 70, the total number of trials is 14
million. Let us observe that this quantity is almost twice
as much as the initial computational effort.

90 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE II

RESULTS OBTAINED USINGRESTART

Probability
6.0709×10−6

5.3372×10−6

3.4351×10−6

5.5160×10−6

4.2647×10−6

5.4391×10−6

4.1832×10−6

4.0846×10−6

4.5652×10−6

3.3703×10−6

The confidence interval obtained with these data is
[3.96649387 × 10−6, 5.28676613 × 10−6]. Considering
these data, we have to point out that the effort that should
be done when applying successive steps of RESTART is
greater than the effort done with the method we propose
(approx. 2 to 1). In fact, the number of trials that should
be considered in each execution to get a similar precision
to the one obtained with our method should be greater,
and this will imply a higher computational effort.

IV. A PPLICATIONS AND CONCLUDING REMARKS

Particular interest has received in teletraffic engineer-
ing where the discrete event simulation has become in an
indispensable tool for performance evaluation of modern
telecommunication systems. The new telecommunication
networks pose extreme requirements about the quality
of service, being the cell loss probabilities in ATM
(Asynchronous Transfer Mode) networks in the order
of 10−9. Traffic in telecommunications networks exhibit
long range dependence which can be explained because
heavy tailed distributions are involved in the system.
Because of this, also the rare event simulation with heavy
tails has received attention. Our idea is to adapt our algo-
rithm to the optimization of systems where heavy tailed
distributions appear. In fact, the aggregation of ON-OFF
sources with heavy tailed distributions for the ON and/or
OFF periods behaves like a Fractional Brownian Motion
[14]. Because of this, also the rare event simulation in
systems where heavy tailed distributions are involved is
currently being investigated [3] [4]. The authors also met
these questions when studying a real telecommunication
problem, analyzing the dimensioning of an antenna for
an international mobile telecommunications company.
Then it turns natural to apply the algorithm that we
present in this paper to the optimization of such systems
which include heavy tailed distributions.

Other important systems where speed up
simulation+optimization has a niche are the reliability

systems. We can think of a lot of systems where the
correct operation of a machine is vital: big mainframes
in banks, hospitals, failure detection systems in nuclear
power plants, and so on. A failure in such kind of
systems will become a disaster and then, this probability
must be very small. These systems are so complex
that analytical methods are not applicable and so, it
is necessary the use of simulation models that require
speed up techniques in order to estimate the failure
probabilities in a reasonable computer time.

Usually, the decision-maker has to decide how many
“devices” set to guarantee that the failure probability
is smaller than certain security limit. This situation
generates directly an optimization problem, the decision-
maker has to determine the minimum amount of a col-
lection of resources in order to guarantee the probability.
For example, in the case of a important mainframe, the
decision-maker could have to decide how many supply
powers to connect, how many hard disk/network cards
to install in order to replicate information, how many
UPS’s systems, etc. But that is not all, in real systems,
in general, the decision-maker would have more than one
objective, not only the failure probability but the money,
for example. In real systems, problems tend to have a
multiobjective character.

When multiobjective problems are to be considered
the usual optimization algorithms do no work; multiob-
jective problems do not have one solution that optimize
all the objectives simultaneously and it is necessary to
use approximations to the problem, determination of
efficient solutions, lexicographic optimization, weighted
functions, and so on.

If we join all these issues, complex systems that
require speed up simulation techniques in order to
evaluate their performance and multiple objectives that
require special approximations, the complexity to solve
the problem increases exponentially, because of this,
a future line of work is to study models where more
than one objective are selected, in [1] a multiobjective
optimization+simulation model was developed in a in-
dustrial context.

As conclusions of the work we have to point out that
the developed method is a doubly speed up technique
for optimization. First, because it uses the RESTART
ideas in order to calculate in a faster way the objective
probability associated to a capacity level. Second, be-
cause when we need to re-evaluate with another capacity
level, the method only needs to execute one new stage
of the RESTART method: the work corresponding to
a new threshold. In a direct application a complete
execution of RESTART will be necessary for each new
level, obviously the computational effort saved is very

Isolina Alberto et al. 91

important.

APPENDIX

Proposition 1: If the product
∏j

i=1 p̂
(1)
i < γ0, then

γ̂1 = P̂ (X = E) < γ0.
Proof: Observe thatγ̂1 = P̂ (X = E) =

∏m
i=1 p̂

(1)
i <

∏j
i=1 p̂

(1)
i < γ0

Proposition 2:If the product

j
∏

i=1

p̂
(1)
i −

∏j
k=i p̂

(1)
k

1 −
∏j

k=i p̂
(1)
k

≥ γ0

thenE = Ij is an estimated lower bound for the optimal
level, that is,P̂ (X = Ij/E = Ij) ≥ γ0.

Proof: We consider the conditional probabilities
with the new top levelE = Ij , p

(2)
i = P (X ≥ Ii/X ≥

Ii−1∧E = Ij). Using the theorem 1 for the regenerative
process formed by the sequence of simulated trajectories
starting at levelIi−1 and top levelE = Ij the following
result holds:

p
(2)
i =

E(Ui)

E(Si)
=

E(Ui1) + E(Ui2)

E(Si1) + E(Si2)

where

• E(Ui1) is the expected number of trials

per cycle in states[Ii, Ij)

• E(Ui2) is the expected number of trials

per cycle in the stateIj

• E(Si1) is the expected number of trials

per cycle in states[Ii−1, Ij)

• E(Si2) is the expected number of trials

per cycle in the stateIj

Observe thatE(Ui2) = E(Si2), and then

E(Ui1)

E(Si1)
<

E(Ui1) + E(Ui2)

E(Si1) + E(Si2)

Thus, we define

p̂
(2)
i =

Ê(Ui)

Ê(Si)
=

Ê(Ui1) + Ê(Ui2)

Ê(Si1) + Ê(Si2)

p̂
(∗)
i =

Ê(Ui1)

Ê(Si1)

For the estimation ofE(Ui1)/E(Si1) only the trials
that take a value strictly lower than levelIj are involved.
Observe that in this case, when we are restricted to states
below Ij , the trajectories, in both cases when the top
level isIj and when the top level isE1, are stochastically

equivalents. Then, the expected number of trials in a
cycle, starting atIi−1, over levelIi and strictly below
Ij , E(Ui1), can be estimated by the probability that a
trial is in this range multiplied by the expected number
of trials in a cycle,E(S), when the top level isE1.

Ê(Ui1) = P̂ (X ≥ Ii, X < Ij /

X ≥ Ii−1, E = E1) × E(S) =

=

p̂
(1)
i −

j
∏

k=i

p̂
(1)
k

 × E(S)

Similar argument gives

Ê(Si1) = P̂ (X < Ij/X ≥ Ii−1, E = E1) × E(S)

=

1 −
j

∏

k=i

p̂
(1)
k

 × E(S)

And therefore,

p̂
(∗)
i =

Ê(Ui1)

Ê(Si1)
=

p̂
(1)
i −

∏j
k=i p̂

(1)
k

1 −
∏j

k=i p̂
(1)
k

Then, readily

j
∏

i=1

p̂
(2)
i ≥

j
∏

i=1

p̂
(∗)
i =

j
∏

i=1

p̂
(1)
i −

∏j
k=i p̂

(1)
k

1 −
∏j

k=i p̂
(1)
k

≥ γ0

Proposition 3:Given p̂
(1)
i , i = 1, . . . , m, ν

(1)
m , ω

(1)
m ,

nm and Ê(L(E1,E2)), then fori = 1, . . . , m − 1

p̂
(2)
i =

Ê(Ui1) + Ê(Ui2)

Ê(Si)
=

p̂
(1)
i − Ai

1 − Ai

and

p̂
(2)
m−1 =

ν
(1)
m Ê(L(E1,E2))

(nm − ω
(1)
m) + ν

(1)
m Ê(L(E1,E2))

where

Ai =
m−1
∏

j=i

p̂
(1)
j

Ê(L(E1,E2))ν
(1)
m − ω

(1)
m

nm

Proof:
We use the theory of regenerative processes, con-

cretely the result set in the previous theorem, to update
all the probabilities. It is clear that

p
(2)
i = P (X ≥ Ii/X ≥ Ii−1 ∧ E = E2) =

E(U
(2)
i)

E(S
(2)
i)

where the numerator,E(U
(2)
i), is the expected number

of trials taking value greater than or equal to levelIi in
a cycle, that is, in a trajectory starting in levelIi−1 and

92 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

ending the first time that, again, it is observed the level
Ii−1. The denominator,E(S

(2)
i), is the expected value

for the length of a cycle, measured in number of trials.
We separate the numerator into two terms,E(U

(2)
i) =

E(U
(2)
i1) + E(U

(2)
i2). The first one,E(U

(2)
i1), is the ex-

pected number of trials greater than or equal to levelIi

and strictly below the levelE1; meanwhile the second
term, E(U

(2)
i2), represents the expected number of trials

greater than or equal to levelE1.
Clearly,

Ê(U
(2)
i1) = (h

(1)
i − ω

(1)
i)/Ni

The second term can be expressed as

Ê(U
(2)
i2) =

ν
(1)
i

Ni
Ê(L(E1,E2))

Because the observation ofE1 can remain as a rare
event for the lower levelsIi, it could be quite usual to
haveν

(1)
i /Ni = 0. In these cases the probabilities would

remain unchanged, although we know that they would
not. To avoid this problem we can substitute this ratio
for

ν
(1)
i

Ni
≈

ν
(1)
m

nm

ni

Ni

m−1
∏

j=i

p̂
(1)
j =

ν
(1)
m

nm
Ê[S

(1)
i]

m−1
∏

j=i

p̂
(1)
j

Observe that
∏m−1

j=i p̂
(1)
j represents the probability that

a trial belonging to a trajectory starting in levelIi−1 is
over the levelIm−1; ni

Ni
= Ê[S

(1)
i] is the average number

of trials per cycle starting inIi−1; and finally, ν
(1)

m

nm

represents the ratio of runs of hits per trial in trajectories
over Im−1.

Then,

Ê(U
(2)
i2) = Ê(L(E1,E2))

ν
(1)
m

nm
Ê[S

(1)
i]

m−1
∏

j=i

p̂
(1)
j

Using the same arguments as before,Ê(U
(2)
i1) can be

expressed as

Ê(U
(2)
i1) =

(h
(1)
i − ω

(1)
i)

Ni
=

= p̂
(1)
i Ê(S

(1)
i) −

ω
(1)
m

nm
Ê(S

(1)
i)

m−1
∏

j=i

p̂
(1)
j

Reasoning in a similar way we obtain the following
expression forE(S

(2)
i):

Ê(S
(2)
i) =

ni − ω
(1)
i

Ni
+

ν
(1)
i

Ni
Ê(L(E1,E2))

= Ê(S
(1)
i) −

ω
(1)
m

nm
Ê(S

(1)
i)

m−1
∏

j=i

p̂
(1)
j +

Ê(L(E1,E2))
ν

(1)
m

nm
Ê[S

(1)
i]

m−1
∏

j=i

p̂
(1)
j

If we join the above expressions, we get the proposi-
tion.

REFERENCES

[1] Alberto, I., Azćarate, C., Mallor, F. and Mateo, P.M., “Optimiza-
tion with simulation and multiobjective analysis in industrial
decision-making: A case study”.European Journal of Opera-
tional Research, Vol. 140, pp. 373-383, 2002.

[2] Asmussen, S., “Applied Probability and Queues”. Springer Ver-
lag, 2nd ed. 2003.

[3] Asmussen, S., Binswanger, K., Hojgaard, B., “Rare events sim-
ulation for heavy tailed distributions”.Bernoulli, Vol. 6, No. 2,
pp. 303-322, 2000.

[4] Asmussen, S., Kroese, D.P., Rubinstein, R.Y., “Heavy tails,
importance sampling and cross entropy”.Stochastic Models, Vol.
21, pp. 57-76, 2005.

[5] Below, K. Battaglia, L. and Killat, U., “RESTART/LRE Simula-
tion: The reliability issue”.Proceedings of the Second Interna-
tional Workshop on Rare Event Simulation, 1999.

[6] Garvels, M.J.J. and Kroese, D.P., “A comparison of RESTART
implementations”.Proceedings of the 1998 Winter Simulation
Conference, Ed. D.J. Medeiros, E.F. Waton, J.S. Carson and M.S.
Manivannan, pp. 601-608, 1998.

[7] Kulkarni, V. G., “Modeling and Analysis of Stochastic Systems”,
Chapman Hall, 1995.

[8] Ross, D. and Harris, C.M., “Fundamentals of queueing theory”.
John Wiley and Sons, Singapore, 1985.

[9] Rubinstein, R.Y. and Melamed, B., “Modern Simulation and
Modeling”. John Wiley and Sons, 1998.

[10] Schreiber, F., “Effective control of simulation runs by a new
evaluation algorithm for correlated random sequences”.AEÜ,
Vol. 42, pp. 347-354, 1988.

[11] Schreiber, F. and G̈org, C., “Stochastic Simulation: a simplified
LRE-Algorithm for Discrete Random SequencesAEÜ, Vol. 50,
pp. 233-239, 1996.

[12] Vill én-Altamirano, M., Vilĺen-Altamirano, J., “RESTART: A
method for accelerating rare events simulations”.Proceedings of
the 13th International Teletraffic Congress, Queuing performance
and control in ATM., Ed. J. W. Cohen and C.D. Pack, pp. 71-76,
North-Holland, 1991.

[13] Vill én-Altamirano, M., Vilĺen-Altamirano, J., “RESTART: A
straightforward method for fast simulation of rare events”.Pro-
ceedings of the 1994 Winter Simulation Conference, Ed. J. D.
Tew, S. Manivannan, D.A. Sadowski and A.F. Seila., pp. 282-
289, 1994.

[14] Willinger, W., Taqqu, M., Sherman, R. and Wilson, D., “Self-
similarity through high-variability: statistical analysis of ethernet
LAN traffic at the source level”.IEEE ACM Transactions on
Networking, Vol. 5, No. 1, pp. 71-86, 1997.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 93

Exact Algorithms for Procurement Problems
under a Total Quantity Discount Structure

D.R. Goossens∗, A.J.T. Maas†, F.C.R. Spieksma‡ and J.J. van de Klundert§

∗Department of Applied Economics, Katholieke UniversiteitLeuven, Belgium
Email: dries.goossens@econ.kuleuven.be
†RIKS BV, Maastricht, The Netherlands

‡Department of Applied Economics, Katholieke UniversiteitLeuven, Belgium
§Department of Mathematics, Maastricht University, The Netherlands

Abstract— In this paper, we study the procurement
problem faced by a buyer who needs to purchase a variety
of goods from suppliers applying a so-called total quantity
discount policy. This policy implies that every supplier
announces a number of volume intervals and that the
volume interval in which the total amount ordered lies
determines the discount. Moreover, the discounted prices
apply to all goods bought from the supplier, not only to
those goods exceeding the volume threshold. We refer to
this cost-minimization problem as the total quantity dis-
count (TQD) problem. We give a mathematical formulation
for this problem and argue that not only it is NP-hard, but
also that there exists no polynomial-time approximation
algorithm with a constant ratio (unless P = NP). Apart
from the basic form of the TQD problem, we describe
four variants. In a first variant, the market share that
one or more suppliers can obtain is constrained. Another
variant allows the buyer to procure more goods than
strictly needed, in order to reach a lower total cost. We also
consider a setting where the buyer needs to pay a disposal
cost for the extra goods bought. In a third variant, the
number of winning suppliers is limited, both in general
and per product. Finally, we investigate a multi-period
variant, where the buyer not only needs to decide what
goods to buy from what supplier, but also when to do this,
while considering the inventory costs. We show that the
TQD problem and its variants can be solved by solving a
series of min-cost flow problems. Finally, we investigate the
performance of three exact algorithms (min-cost flow based
branch-and-bound, linear programming based branch-
and-bound, and branch-and-cut) on randomly generated
instances involving 50 suppliers and 100 goods. It turns
out that even the large instances of the basic problem
are solved to optimality within a limited amount of time.
However, we find that different algorithms perform best
in terms of computation time for different variants.

Keywords— procurement, volume discounts, exact algo-
rithm, complexity, min-cost flow, reverse auction

I. I NTRODUCTION

I T is a widespread economic phenomenon that
the price of a good depends - among many other

things - on the amount ordered. Indeed, there are
many reasons for suppliers to offer discounts based
on the volume sold to a buyer. Consequently, when it
comes to procuring amounts of different goods from
different suppliers, it makes sense to consider various
alternatives. In fact, choosing the right suppliers to
deliver the right products has become a major concern
in many large companies. Reliability, quality, and
price are important criteria that guide the choice for
suppliers. Moreover, the ever-increasing opportunities
that e-commerce and web-based procurement offer for
dealing with procurement issues, explain the increased
usage of so-called reverse auctions. While traditional
auctions involve a single seller and multiple buyers, a
reverse auction involves multiple sellers that express
bids to provide goods or services and one buyer that
chooses the best bids.

In this work, we investigate a basic procurement
problem from the viewpoint of a buyer who faces
different suppliers that offer a variety of goods using
specific discount policies. The discount policy we
investigate is one where the supplier has specified a
number of volume intervals, and the price per good
depends on the volume interval in which the total amount
ordered lies. Obviously, a supplier is assumed not to
increase its prices in a higher interval. This structure
is called total quantity discount (TQD). Furthermore,
the prices apply to all units bought from the supplier,
which is called an all-unit discount policy (a discussion
and classification of various quantity discount policies
can be found in Munson and Rosenblatt (1998)).
We assume that a preselection of suppliers has been
made, excluding those suppliers who do not attain the
required standards with respect to quality, reliability
and other relevant considerations (see Degraeve et

94 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

al. (2000) for a discussion of these considerations).
Thus, we assume that the only remaining criterion
upon which the further supplier selection decision
is based, is the price these suppliers charge for the
different goods. Given a final demand for each good, the
TQD problem is to satisfy demand against minimal cost.

Procurement problems involving discount policies
have been studied by many authors. Katz et al. (1994)
(see also Sadrian and Yoon (1994)) discuss a
procurement problem where they distinguish between
purchases on a commitment basis and purchases on an
as-ordered basis. They stress the importance of sourcing
flexibility and model explicitly the fact that not all future
goods should be purchased via committed contracts. In
addition, they explicitly consider the number of vendors
for each good, and the percentages of the total supply
given to each of the vendors. In their discount policy, a
supplier discounts the price of each good by the same
percentage based on the total dollar value of all goods
purchased from the supplier, whereas our policy allows
a different discount percentage for each good.

Crama et al. (2004) investigate another procurement
problem, characterized by a discount policy very
similar to the one used here, in the sense that it
also expresses the discount as a function of the total
quantity of goods purchased. However, it also differs
since it uses one single discount rate for all products.
Furthermore, Crama et al. face the additional problem
of deciding how to use the purchased raw materials
to manufacture the desired quantities of the endproducts.

Austin and Hogan (1976) is an early reference to
procurement problems characterized by a lower and
upper bound for each supplier between which the
ordered amount needs to lie, provided that that supplier
is used. In this paper, the government needs to purchase
a given amount of aviation fuel from one or more
suppliers, where prices differ depending on how the fuel
is transported. This problem differs from our setting
in that the goods considered are independent and there
are no discounts. The authors solve the problem using
a branch-and-bound algorithm, exploiting the network
structure of the core problem.

The TQD problem can also be viewed in the context
of combinatorial auctions. Combinatorial auctions are
relevant when the value of a set of goods is not equal
to the sum of the values of the individual goods. Then
there are so-called complementary or substitute-effects,
and in such a setting it can be beneficial to consider

pricing sets of goods instead of pricing only individual
goods. The discount policy described above is a way
to price a set of goods: the cardinality of the set of all
goods ordered determines in which interval the buyer
is, and the all-unit discount policy leads to prices that
imply complementary effects.

Bichler et al. (2004) outline a classification of
allocation problems based on the number of participants
and the type of traded goods. According to this
classification, the TQD problem is ann-bilateral
allocation problem, since there are only two types of
participants, i.e., buyers and sellers. In our case, there is
only one buyer, which makes it a single-sided auction.
Furthermore, the TQD problem is characterized by
single-attribute, multi-item, multi-unit bids, because
bids can be made on any quantity of a number of
heterogeneous goods and all other attributes besides the
price are predefined.

Davenport and Kalagnanam (2002) report on a
volume discount auction in which discounts are based
on quantities for each individual good. Furthermore,
they use an incremental discount policy, meaning
that the discounts apply only to the additional units
above the threshold of the volume interval. Hohner et
al. (2003) describe a web-based implementation of this
procurement auction at Mars Incorporated.

Eso et al. (2001) also elaborate on the work of
Davenport and Kalagnanam. They study a volume
discount auction with piece-wise linear supply curves,
allowing discontinuities and all-unit discounts. However,
they do require additive separable supply curves, which
boils down to assuming that the prices charged by a
supplier for different commodities are independent.
This makes their problem not truly combinatorial, since
synergies or substitutability between different goods
cannot be reflected in the total price charged by the
suppliers. As a result, a total quantity discount structure
is not possible in their setting. The authors formulate
a column generation based heuristic that provides
near-optimal solutions to the bid evaluation problem.

Another procurement auction with marginal-
decreasing piecewise-constant supply curves is described
in Kothari et al. (2003). This auction also allows all-unit
discounts, but it deals only with a single good. Kothari
et al. present fully polynomial-time approximation
schemes for the winner determination problem and the
computation of the corresponding payments of this
auction.

D.R. Goossens et al. 95

The TQD problem is also related to the so-called deal
splitting problem introduced by Shachnai et al. (2004).
In this problem, a buyer needs to split an order of
multiple units from a set of heterogeneous goods
among a set of sellers, each having bounded amounts
of the goods, so as to minimize the total cost of the
deal. Two variants of the deal splitting problem can
be discerned, depending on whether the seller offers
packages containing combinations of the goods or
whether the buyer can generate such combinations
using seller-specified price tables. Shachnai et al.
show that for both variants an exact solution can be
found in pseudo-polynomial time if the number of
heterogeneous goods is fixed. Moreover, they develop
polynomial-time approximation schemes for several
subclasses of instances of practical interest.

We now describe shortly the practical application that
originally motivated this problem (see Van de Klundert
et al. (2003)). Consider a telecommunication company
that needs to acquire capacity to accommodate its
international calls. This capacity is offered by various
so-called carriers, i.e., for each destination, each carrier
offers capacity, priced in eurocents per minute. Prices
of carriers differ, and - which is particularly relevant for
our setting - each carrier uses an interval structure to
arrive at a certain price. In other words, the total amount
of call-minutes handled by a certain carrier determines
the price. The problem is to acquire the right amount of
capacity for each destination at minimal cost.

We give the following results. We show that no
polynomial-time algorithm for the TQD problem can
achieve a constant worst-case ratio (unlessP = NP);
this contrasts with the case of a single good for which
Chauhan et al. (2005) established NP-completeness and
gave a fully polynomial time approximation scheme.
Then, we prove that (a generalization of) the linear
programming relaxation of a straightforward formulation
of the problem can be solved by min-cost flow. Thus,
we prove that a combinatorial algorithm solves the
LP-relaxation of the TQD problem. Furthermore, we
extend the basic TQD problem incorporating market
share constraints, the more-for-less paradox, limits to
the number of winning suppliers, and a multi-period
perspective with inventory costs. Finally, we perform
computational experiments comparing three exact
algorithms: a min-cost flow based branch-and-bound
approach (using the network solver of Ilog Cplex
8.1), a linear programming based branch-and-bound
approach (using the MIP solver of Ilog Cplex 8.1) and

a branch-and-cut approach (also using the MIP solver
of Ilog Cplex 8.1). Section II presents the mathematical
formulation of our problem, section III describes the
theoretical results, and section IV presents four variants
of the TQD problem. In section V, the exact algorithms
for the TQD problem and its variants are described and
finally section VI gives our computational results.

II. M ATHEMATICAL FORMULATION

To state a mathematical formulation of the TQD
problem, we use the following notation. We defineG
as the set ofm goods, indexed byk, andS as the set
of n suppliers, indexed byi. For each goodk in G, we
definedk as the amount of goodk to be procured. To
each supplieri in S we associate a sequence of intervals
Zi = {0, 1, ..., maxi}, indexed byj. Furthermore, for
each supplieri ∈ S and intervalj ∈ Zi, lij and uij

define the minimum and maximum number of goods
respectively that needs to be ordered from supplieri to
be in interval j. Finally, for each supplieri ∈ S, for
each intervalj ∈ Zi and each goodk ∈ G, let cijk

be the price for one item of goodk purchased from
supplieri in its j-th interval.

We assume that these parameters satisfy the following
assumptions:

∀i ∈ S, j 6= j′ ∈ Zi : [lij , uij) ∩ [lij′ , uij′) = ∅, (1)

∀i ∈ S, j ∈ Zi \ {maxi}, k ∈ G : cijk > ci,j+1,k, (2)

∀i ∈ S, j ∈ Zi, k ∈ G : cijk > 0, lij > 0, uij > 0, dk > 0.
(3)

Assumption (1) states that a supplier’s intervals should
not overlap. The requirement that prices should not
increase from one interval to the next is expressed in
the second assumption. The last assumption reflects that
all prices and all quantities ordered are nonnegative.

We define the decision variablexijk as the amount of
goodk purchased from supplieri in interval j. Further,
we define a binary decision variableyij which is 1 if
interval j is selected for supplieri and 0 otherwise.
This leads to the following formulation of the TQD
problem, referred to as TQDF.

minimize
∑

i∈S

∑

j∈Zi

∑

k∈G

cijkxijk (4)

96 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

subject to
∑

i∈S

∑

j∈Zi

xijk = dk ∀k ∈ G (5)

∑

j∈Zi

yij 6 1 ∀i ∈ S (6)

∑

k∈G

xijk − yijlij > 0 ∀i ∈ S, j ∈ Zi (7)

∑

k∈G

xijk − yijuij 6 0 ∀i ∈ S, j ∈ Zi (8)

xijk > 0 ∀i ∈ S, j ∈ Zi, k ∈ G (9)

yij ∈ {0, 1} ∀i ∈ S, j ∈ Zi (10)

The objective function (4) states that the amount of
goods k ordered from supplieri when in interval
j, times the corresponding price must be minimal.
Constraints (5) make sure that the demand for each
good is met, while constraints (6) guarantee that at
most one interval per supplier is selected. Constraints
(7) and (8) ensure that if an intervalj is selected, the
total amount of goods purchased from supplieri is
between the bounds of that interval. If an intervalj
is not selected, these constraints ensure thatxijk = 0.
Constraints (9) state that only a nonnegative amount
can be purchased, while constraints (10) definey as a
boolean variable. Notice that this formulation allows to
order nothing from a supplier. Notice also that we do
not require integrality of thex-variables; if the demands
and the lower and upper bounds of each volume interval
are integral however, then, assuming the existence
of a feasible solution, there always exists an optimal
solution of TQDF with integralx-values (see section III).

Let us now discuss how this formulation relates to
known classes of integer programming formulations. The
TQD problem is related to fixed charge network flow
problems (see [13]). In fact, when omitting constraints
(6) from the formulation above, the resulting problem
can be formulated as a (special) fixed charge network
flow problem. Indeed, when one builds a network
involving a source with supply

∑

dk, a ‘demand’ node
for each goodk with demanddk, and an ‘interval’ node
for each interval of each supplier, the variablexijk in
the formulation above represents nothing else but the
flow on the arc from an ’interval’ node to a ’demand’
node. In particular, this implies that inequalities that are
valid for this formulation of the fixed charge network
flow problem are also valid for TQDF. However, due to
the presence of constraints (6), the TQDF formulation is
more general than a fixed charge network flow problem.
Notice, though, that in the objective function (4), there

is no fixed cost associated to choosing some interval of
some supplier, i.e., in terms of the fixed charge network
flow problem, the fixed cost of using an arc is 0.

Finally, one can view the TQD problem as a
direct generalization of the ordinary, well-known,
transportation problem: given a set of demand nodes,
each with demanddk, given a set of supply nodes each
with a supply between a given lower boundlj and upper
bound uj , given costs per good for each combination
of demand node and supply node, and finally, given
a collection of subsets of the supply nodes such that
at most one node of each subset is allowed to supply
a positive amount, find a solution of minimum cost.
TQD belongs to this class of generalized transportation
problem; as far as we are aware, this problem has
not been investigated before. A special case of this
generalized transportation problem where for each
demand nodek, pairs of supply nodes are given such
that at most one supply node of each pair is allowed to
supply demand nodek is studied by Sun (2002).

III. PROPERTIES OF THETQD PROBLEM

In this section we establish the complexity of the TQD
problem (section III-A). We also show that the the LP-
relaxation of TQDF can be solved by solving a min-cost
flow problem (section III-B).

A. On the complexity of the TQD problem

We show that the TQD problem is a hard problem to
solve when aiming for optimal solutions.

Theorem 1:The decision version of the TQD
problem is strongly NP-complete.

In fact, we can also make the following statement on
the approximability of the TQD problem:

Theorem 2:No polynomial-time approximation
algorithm with constant worst-case ratio exists for the
TQD problem (unlessP = NP).

Next, consider the TQD problem, where - instead of
prices for all intervals for each supplier - only prices
for the first interval and a discount rate is given. This
discount rateδ determines the priceci,j,k of good k in
interval j as a function of the price in intervalj − 1 as
follows:

cijk = (1 − δ)ci,j−1,k ∀i, k and∀j > 1 (11)

D.R. Goossens et al. 97

We claim that this special case of the TQD problem is
still a hard problem.

Theorem 3:The decision version of the TQD
problem with a common discount rateδ is strongly
NP-complete.

Finally, consider the variant of the the TQD problem
where the amounts purchased must beat least as
large as the demandsdk. In such a setting, it might
happen that buying more than what is strictly needed
reduces the total cost. We refer to this problem as
the more-for-less variant of the TQD problem (see
section IV-B). For the special case of this variant where
only one good needs to be purchased, Chauhan et al.
(2005) showed that there exists a fully polynomial
time approximation scheme. We claim that this variant
remains a hard problem.

Theorem 4:The decision version of the more-for-less
variant of TQD problem is strongly NP-complete.

For the proofs of Theorems 1, 2, 3, and 4, we refer
to the appendix.

B. Min-cost flow and the TQD problem

We now show that the LP-relaxation of TQDF can
be solved by solving a min-cost flow problem. In fact,
even in the more general case where for some suppliers
intervals are prespecified, the LP-relaxation of the
resulting model can still be found by solving a min-cost
flow problem.

Let us first state a model which assumes that for an
arbitrary given subset of suppliers, referred to asD
(D ⊆ S), an interval, says(i) ∈ Zi, has been selected,
while for the remaining suppliers no interval has been
selected. We refer to the following formulation as
GENTQDF.

minimize
∑

i∈S

∑

j∈Zi

∑

k∈G

cijkxijk

(12)

subject to
∑

i∈S

∑

j∈Zi

xijk = dk ∀k ∈ G (13)

∑

j∈Zi

yij 6 1 ∀i ∈ S \ D (14)

∑

k∈G

xijk − yijlij > 0 ∀i ∈ S \ D, j ∈ Zi (15)

∑

k∈G

xijk − yijuij 6 0 ∀i ∈ S \ D, j ∈ Zi (16)

∑

k∈G

xi,s(i),k − li,s(i) > 0 ∀i ∈ D (17)

∑

k∈G

xi,s(i),k − ui,s(i) 6 0 ∀i ∈ D (18)

xijk > 0 ∀i ∈ S \ D, j ∈ Zi, k ∈ G
(19)

xijk = 0 ∀i ∈ D, j 6= s(i), k ∈ G
(20)

0 6 yij 6 1 ∀i ∈ S \ D, j ∈ Zi (21)

Observe that ifD = ∅, the resulting model is the
LP-relaxation of TQDF, whereas ifD = S, we arrive
at the situation where an interval has been selected
for each supplier (see [10]). IntroducingD allows us
to develop an enumeration approach based algorithm,
solving only min-cost flow problems (see section V).

Theorem 5:GENTQDF can be polynomially
transformed to min-cost flow.

PROOF. We organize the proof by first showing
that an optimal solution of GENTQDF has a structural
property. Then we construct a min-cost flow instance
and show the correspondence between optimal solutions
of this instance and GENTQDF.

Claim: There exists an optimal solution (x∗, y∗) of
GENTQDF in which for eachi ∈ S \ D:

x∗

ijk = 0 ∀j 6= maxi,∀k ∈ G, and
y∗ij = 0 ∀j 6= maxi.

(22)

Thus, the claim states that there exists an optimal
solution in which allx- andy-variables equal 0, except
those corresponding to the highest interval of each
supplier. In other words, goods are bought only at the
lowest prices of each supplier.

Argument: given some feasible solution (x, y) of
GENTQDF, we show how to modify (x, y) to (x∗, y∗)
such that (x∗, y∗) is a feasible solution of GENTQDF
satisfying (22) and such that the cost of (x∗, y∗) does
not exceed the cost of (x, y).

98 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

For eachk ∈ G and eachi ∈ S \ D, we set

x∗

i,maxi,k
=

maxi
∑

j=0

xijk, and (23)

x∗

ijk = 0 for j = 0, 1, ..., maxi − 1. (24)

Further, for eachi ∈ S \ D, we set

y∗i,maxi
= yi,maxi

+

∑maxi−1
j=0

∑

k∈G xijk

ui,maxi

, and (25)

y∗ij = 0 for j = 0, 1, ..., maxi − 1. (26)

All other variables remain the same, that is

x∗

ijk = xijk ∀i ∈ D, j ∈ Zi, k ∈ G. (27)

It is obvious that the costs of (x∗, y∗) cannot exceed
the costs of (x, y) since the total amount of goods has
remained the same for each supplier, while in (x∗, y∗)
all goods are purchased in the highest interval (and we
haveci,maxi,k 6 cijk ∀i, j, k, see (1)). Let us now argue
that (x∗, y∗) is a feasible solution of GENTQDF.

Evidently, (x∗, y∗) satisfies (13), (17), (18), (19) and
(20). To show that (x∗, y∗) satisfies (14) and (21), we
need to show thaty∗i,maxi

6 1 for i ∈ S\D. Observe that
for j = 0, 1, ..., maxi − 1 we have

∑

k∈G xijk/uij 6 yij

(using the feasibility of (x, y) with respect to (16)) and
thus

∑

k∈G xijk/ui,maxi
6 yij for j = 0, 1, ..., maxi−1.

Summing overj = 0, 1, ..., maxi − 1 implies that
∑maxi−1

j=0 (
∑

k∈G xijk)/ui,maxi
6

∑maxi−1
j=0 yij and

together with the feasibility of (x, y) with respect to
(14) this leads to (x∗, y∗) satisfying (14) and (21).

Consider now for somei ∈ S \ D constraints (15),
written alternatively as

∑

k∈G xijk > lijyij for j =
0, 1, ..., maxi. In casej < maxi, the right-hand side
equals 0 (sincey∗ij = 0 for j < maxi by construction)
and feasibility follows. In casej = maxi, we have, using
feasibility of (x, y), that

∑

k∈G

xi,maxi,k > li,maxi
yi,maxi

. (28)

Also it is true that

maxi−1
∑

j=0

∑

k∈G

xijk >

∑maxi−1
j=0

∑

k∈G xijk

ui,maxi

li,maxi
. (29)

Summing (28) and (29) yields:

∑

k∈G

x∗

i,maxi,k
=

∑

k∈G

(xi,maxi,k +

maxi−1
∑

j=0

xijk)

> li,maxi
(yi,maxi

+

maxi−1
∑

j=0

∑

k∈G

xijk

ui,maxi

)

= li,maxi
y∗i,maxi

. (30)

Thus (x∗, y∗) satisfies constraints (15).

To verify that (x∗, y∗) satisfies constraints (16), ob-
serve that fori ∈ S \ D and for j = 0, 1, ..., maxi − 1
∑

k∈G x∗

ijk = 0 andy∗ij = 0 (this follows by construction
of x∗ andy∗). Finally, in casej = maxi we have

∑

k∈G

xi,maxi,k 6 ui,maxi
yi,maxi

, and (31)

maxi−1
∑

j=0

∑

k∈G

xijk =

∑maxi−1
j=0

∑

k∈G xijk

ui,maxi

ui,maxi
. (32)

Summing (31) and (32) yields

∑

k∈G

x∗

i,maxi,k
=

∑

k∈G

(xi,maxi,k +

maxi−1
∑

j=0

xijk)

6 ui,maxi
(yi,maxi

+

maxi−1
∑

j=0

∑

k∈G

xijk

ui,maxi

)

= ui,maxi
y∗i,maxi

, (33)

which shows that constraints (16) are also satisfied by
(x∗, y∗) and allows us to conclude that (x∗, y∗) is indeed
a feasible solution of GENTQDF.

Let us now build the network. We have three sets
of nodes: there is a node for each supplier (a ‘supplier
node’), there is a node for each good (a ‘good node’)
and there is a single source node. The supply of
the source node equals

∑

k∈G dk and the demand of
each good node equalsdk. All other demands are 0.
Furthermore, there is an arc from the source node
to each supplier node. If this supplier is inD, the
corresponding lower and upper bounds of this arc are
li,s(i) and ui,s(i); if this supplier is not inD, the lower
and upper bounds are 0 andui,maxi

. (The choice for
a lower bound of 0 for suppliers not inD, even if li,0
is strictly positive, may seem surprising at first sight.
It can however be verified that because they-values
are relaxed in GENTQDF,li,0 no longer constrains the
x-values.) The cost of an arc between the source node
and each supplier node equals 0. There are also arcs
from each supplier node to each good node. These arcs
are not constrained by lower or upper bounds, but do

D.R. Goossens et al. 99

have a cost equal toci,s(i),k if the corresponding supplier
is in D and equal toci,maxi,k if this supplier is not in
D. This completes the description of the min-cost flow
instance. A schematic representation is given in Figure 1.

…
…

…

∑k dk

1

2

m

goodssuppliers

1

g

h

n

0

0

0

0

-d2

-d1

-dm

D

S\D

c1,s(1),1

c1,s(1),2

c1,s(1),m

ch,maxh,1

ch,maxh,2

ch,maxh,m

[l1,s(1);u1,s(1)] ; 0

[lg,s(g);ug,s(g)] ; 0

[0;uh,maxh
] ; 0

[0;un,maxn
] ; 0

Fig. 1. GENTQDF as min-cost flow

A solution of this min-cost flow instance is character-
ized by flowsfik on each arc from supplieri to goodk.
It corresponds to a solution of GENTQDF as follows:

xi,s(i),k = fik ∀i ∈ D, k ∈ G, (34)

xi,maxi,k = fik ∀i /∈ D, k ∈ G, (35)

yi,s(i) = 1 ∀i ∈ D, (36)

yi,maxi
=

∑

k∈G

fik

ui,maxi

∀i /∈ D. (37)

All other x- and y-variables of GENTQDF are set
equal to 0.

Given (22), we conclude that an optimal solution of
the min-cost flow problem in Figure 1 corresponds to
an optimal solution of GENTQDF. It can now easily
be seen that an optimal solution of GENTQDF also
corresponds to an optimal flow in the min-cost flow
problem. Thus, we have shown how GENTQDF can be
polynomially transformed to min-cost flow. ¤

Notice that as a consequence of Theorem 5, the
LP-relaxation of TQDF can be found by solving a
min-cost flow problem. This result is the foundation for
an exact algorithm to be discussed in section VI.

IV. VARIANTS OF THE TQD PROBLEM

When procuring goods, other considerations besides
the price can be relevant. Although our model does not
incorporate criteria like quality or reliability, we now
consider a number of variants of the TQD problem

that are common in both practice and literature. A first
variant adds constraints on the amount of goods the
buyer is willing to purchase from a supplier (section
IV-A). In another variant (section IV-B), the buyer is
allowed to buy more goods than strictly needed, while
the third variant (section IV-C) imposes a restriction
on the number of winning suppliers (suppliers that end
up selling some amount of any of the goods are called
winning suppliers). Finally, a variant that incorporates
a multi-period perspective with inventory costs is
described (section IV-D). We show that results similar
to that of Theorem 5 hold for each of these variants.

A. Market share constraints

Suppose that the buyer wants to impose upper and/or
lower bounds on the amount of a good that must be
ordered from a supplier. Forcing that some supplieri
must be allocated an amount of at leastqik and at most
Qik of good k can be done by adding the following
constraint to GENTQDF:

qik 6

∑

j∈Zi

xijk 6 Qik. (38)

On a more global level the buyer could provide bounds
on the total allocation for a supplier, across all goods.
Forcing the total amount of goods purchased from a
supplier i to lie betweenwi and Wi can be done by
adding the following constraint to GENTQDF:

wi 6

∑

j∈Zi

∑

k∈G

xijk 6 Wi. (39)

These market share constraints are often mentioned
in literature (see [5], [7], [8], and [9]). Notice that
none of these extra constraints invalidate property
(22). Constraints (38) can easily be implemented in
the min-cost flow graph by changing the lower and
upper bounds of the arcs from supplieri to good k.
Constraints (39) can be realized via the lower and upper
bounds of the arcs from the root node to supplieri.
Thus, we obtain the following statement:

Theorem 6:GENTQDF with constraints (38) and/or
(39) can be polynomially transformed to min-cost flow.

B. More-for-less

As described in section III-A, it can be advantageous
to obtain more of some goodk than the required amount
dk, since this might allow the buyer to use the cheaper

100 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

prices of a higher interval (see also [4] and [14]). If we
wish to allow this, constraints (13) in GENTQDF should
be replaced by

∑

i∈S

∑

j∈Zi

xijk > dk ∀k ∈ G. (40)

Notice that for the special case whereD = ∅, all
units are already bought in the highest intervals in an
optimal solution of GENTQDF (see (22)). Therefore,
there is no need to buy more thandk of any goodk
and an optimal solution can be found by solving the
min-cost flow problem in Figure 1. In general however,
we can formulate the following result:

Theorem 7:GENTQDF with constraints (13)
replaced by (40) can be polynomially transformed to
min-cost flow.

PROOF. Consider the graph in Figure 2. It has
supplier and good nodes, with demands and connecting
arcs like in Figure 1. The lower and upper bounds and
the costs for these arcs are the same as in Figure 1 but in
order not to overload the figure, they have been omitted.
There is however also a dummy node, corresponding to
the additional goods that are bought once the demand
dk is fulfilled. The dummy node has a demand ofM ,
being at least

∑

i∈D li,s(i). The supply of the source
node is increased by this same amountM . Furthermore,
there is an arc from the source node to the dummy node
with cost 0 and an upper bound ofM . Notice that any
flow in the network in Figure 1 is still a feasible flow
in the network in Figure 2. There are also arcs from
each supplieri ∈ D to the dummy node. These arcs
have a cost equal to the price of the supplier’s cheapest
good in its selected intervals(i). In Figure 2, we refer
to this good asq(i), i.e. q(i) = arg mink ci,s(i),k. Notice
that this is the good we will buy additionally from that
supplier to reach the threshold of a higher interval;
it would be pointless to buy a more expensive good
instead to achieve this. There are no arcs to the dummy
node from suppliers not inD. Since for these suppliers
the goods are already bought at their lowest prices (see
(22)), there is no use in buying additional goods.

Observe that in GENTQDF it can happen that because
of the interval selections made for suppliers inD, no
feasible solution exists. This is the case if the demandsdk

are not high enough to reach the required lower bounds
of the selected intervals. In the more-for-less variant of
GENTQDF, however, this is no longer possible since it
is allowed to buy more than the amountsdk. Indeed,

…
…

…

∑k dk + M

1

m

goodssuppliers

1

g

h

n

0

0

0

0

-d1

-dm

D

S\D

c1,s(1),q(1)

[0, M] ; 0

dummy

-M

cg,s(g),q(g)

Fig. 2. GENTQDF with more-for-less as min-cost flow

these extra amounts correspond to the flows on the arcs
from suppliers inD to the dummy node. If we refer to
the flow from a supplieri to the dummy node asfid,
then a solution of the min-cost flow model in Figure 2
corresponds to a solution of GENTQDF with constraints
(13) replaced by (40) as follows:

xi,s(i),k = fik ∀i ∈ D, k ∈ G \ {q(i)},

(41)

xi,s(i),q(i) = fi,q(i) + fid ∀i ∈ D, (42)

xi,maxi,k = fik ∀i /∈ D, k ∈ G, (43)

yi,s(i) = 1 ∀i ∈ D, (44)

yi,maxi
=

∑

k∈G

fik

ui,maxi

∀i /∈ D. (45)

¤

Until now, we implicitly made the assumption that the
buyer can simply buy more than what is demanded and
enjoy a higher discount without any further consequence.
However, as described in [4], in practice, overbuying
often leads to an extra cost for the buyer. The buyer may
for instance need extra storage capacity. Furthermore,
the buyer may not be able to use the additional goods
as profitably as the goods of the original demand, or
even be forced to pay a cost for the disposal of these
goods. Let us assume thatpk is this non-negative cost
the buyer incurs for each additional unit of goodk,
in addition to the purchasing cost. Let us definex′

ijk

as the amount of goodk that is bought in addition
to the demand in thej-th interval of supplieri. We
can now generalize more-for-less GENTQDF as follows:

D.R. Goossens et al. 101

minimize
∑

i∈S

∑

j∈Zi

∑

k∈G

(cijkxijk + (cijk + pk)x
′

ijk)

(46)

subject to
∑

i∈S

∑

j∈Zi

xijk = dk ∀k ∈ G (47)

∑

j∈Zi

yij 6 1 ∀i ∈ S \ D (48)

∑

k∈G

(xijk +x′

ijk)− yijlij > 0 ∀i ∈ S \D, j ∈ Zi (49)

∑

k∈G

(xijk +x′

ijk)−yijuij 6 0 ∀i ∈ S \D, j ∈ Zi (50)

∑

k∈G

(xi,s(i),k + x′

i,s(i),k) − li,s(i) > 0 ∀i ∈ D (51)

∑

k∈G

(xi,s(i),k + x′

i,s(i),k) − ui,s(i) 6 0 ∀i ∈ D (52)

xijk > 0 ∀i ∈ S \ D, j ∈ Zi, k ∈ G (53)

x′

ijk > 0 ∀i ∈ S \ D, j ∈ Zi, k ∈ G (54)

xijk = x′

ijk = 0 ∀i ∈ D, j 6= s(i), k ∈ G (55)

0 6 yij 6 1 ∀i ∈ S \ D, j ∈ Zi (56)

Consider a min-cost flow network like the one in
Figure 2, but with the difference that the cost on the
arcs from supplieri ∈ D to the dummyd node equals
ci,s(i),q(i) + pq(i), with

q(i) = arg min
k

(ci,s(i),k + pk). (57)

Let us now argue how a solution of this min-cost
flow network corresponds to a solution of generalized
more-for-less GENTQDF. It is clear that for suppliers
not in D, it remains pointless to buy any additional
good, since the buyer can already get the lowest possible
price by ordering in the highest intervals. Notice that
property (22) thus remains valid. For suppliers for which
an interval has been prespecified, it can be necessary
to buy additional goods, namely if the demandsdk are
insufficiently high to reach the lower bounds of the
selected intervals. In this case, the buyer will obviously
buy the cheapest additional good, namely the good
for which ci,s(i),k + pk is minimal. Notice that this is
exactly how we definedq(i). It is now easy to see that
a solutionf of the min-cost flow network corresponds
to a solution of generalized more-for-less GENTQDF

as follows:

xi,s(i),k = fik ∀i ∈ D, k ∈ G, (58)

xi,maxi,k = fik ∀i /∈ D, k ∈ G, (59)

x′

i,s(i),q(i) = fid ∀i ∈ D, (60)

yi,s(i) = 1 ∀i ∈ D, (61)

yi,maxi
=

∑

k∈G

fik

ui,maxi

∀i /∈ D. (62)

All other x-, x′- and y-variables are set equal to 0.
Hence we have proven the following theorem:

Theorem 8:The generalization of more-for-less
GENTQDF can be polynomially transformed to min-
cost flow.

C. Limited number of winning suppliers

Another important consideration apart from cost
minimization is to make sure that the demand is not
procured from too many suppliers (see also [5], [7], [8],
[9] and [14]). Otherwise, overhead costs increase due
to managing this large amount of suppliers. Limiting
the total number of winning suppliers can be done for
the order as a whole (section IV-C.1) or per product
(section IV-C.1).

1) Limited total number of winning suppliers:In
order to model the requirement that a limited number
of suppliers is selected, we need to understand exactly
when a supplier receives a positive amount. This happens
when yij = 1 for somej, except possibly whenj = 0,
and li,0 = 0; the latter situation refers to the case where
interval 0, with a lower bound of 0, is selected. Then
a supplier might receive nothing, while there is ay-
variable with a positive value. To handle this situation,
we ‘split’ each interval that has a lower bound of 0 and
a positive upper bound into two intervals: one interval
with a lower bound and an upper bound of 0 (the dummy
interval), and one interval with a lower bound of 1
and an upper bound equal to the original upper bound
(interval 0). Notice that by setting this lower bound to
1, we assume that the demands and the lower and upper
bounds are or can be scaled to integers. Thus, we have
redefined interval 0 by excluding the option of a zero
amount of goods. Moreover, we letyi,0 correspond to this
new interval 0. Obviously, selecting a supplier’s dummy
interval comes down to not selecting this supplier at
all, in which case the supplier can simply be removed

102 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

from the problem. Selecting another interval of a supplier
implies that this is a winning supplier. This approach
leads to a setD, containing only winning suppliers. In
fact, without loss of generality, we can now focus on
constraining the winning suppliers not inD, and limit
their number toK by adding the following constraint to
GENTQDF:

∑

i∈S\D

∑

j∈Zi

yij 6 K. (63)

If we assume that the highest volume interval of every
supplier in S \ D has the same upper bound, we can
prove a similar result to that of Theorem 5. We refer to
this common upper bound asumax. Given the fact that
in most real-life applications suppliers pose no upper
bound at all to the amount of goods they are willing to
sell, this assumption is quite reasonable.

Theorem 9:If umaxi
= umax ∀i ∈ S \ D,

then GENTQDF with constraint (41) added can be
polynomially transformed to a min-cost flow problem.

PROOF. First, notice that property (22) remains valid
in this setting. Indeed, given thex-values, we can find
y-values for each supplieri ∈ S \ D and each volume
intervalj ∈ Zi satisfying constraints (15) and (16) in the
following interval:

[

∑

k∈G xijk

ui,j
,

∑

k∈G xijk

li,j
]. (64)

Naturally, in order to fulfill constraints (21), the
y-values cannot exceed 1. It is easy to verify that
shifting goods from a supplier’s highest interval to one
or more lower intervals can never decrease the total
y-value of this supplier. Therefore, constraint (41) will
never force the optimal solution of GENTQDF away
from the highest intervals and property (22) still holds.

…

…

…

∑k dk

1

2

m

goodssuppliers

1

g

h

n

0

0

0

0

-d2

-d1

-dm

D

S\D

[0;umax] ; 0

[0;umax] ; 0

B
[0;K umax] ; 0

Fig. 3. GENTQDF with a limited number of winning suppliers as
min-cost flow

We can now construct a min-cost flow network (see
Figure 3). Compared to Figure 1, an extra node, referred
to as nodeB, is added. The arc from the root node to
node B has an upper bound ofKumax, and the arcs
from nodeB to the supplier nodes have upper bounds
of umax.

Let dmin be the minimal amount of goods that needs
to be purchased from suppliers not inD in order to
have a feasible solution, i.e.,dmin = max(

∑

k∈G dk −
∑

i∈D ui,s(i), 0). The min-cost flow problem can only be
infeasible if this demanddmin is too high for the upper
bounds on the arcs, i.e., ifdmin > Kumax. In this case
however, GENTQDF with constraint (41) is infeasible as
well. Indeed, even when choosing they-values as low as
possible, namely asfi/umax, we fail to meet constraint
(41):

∑

i∈S\D

∑

j∈Zi

yij =
∑

i∈S\D

fi/umax

> dmin/umax

> K.

If there exists a feasible flowf to the min-cost
flow problem, then we can always find a solution to
GENTQDF with constraint (41) by setting thex- andy-
variables as in (34)-(37). From Theorem 5, it is clear that
this solution satisfies (13)-(21). Letdmax be the maximal
amount of goods that can be purchased from suppliers
not in D in order to keep the solution feasible, i.e.,
dmax =

∑

k∈G dk −
∑

i∈D li,s(i). Obviously, a feasible
flow will have dmax 6 Kumax. Therefore, the resulting
y-variables will also satisfy (41), as shown below:

∑

i∈S\D

∑

j∈Zi

yij =
∑

i∈S\D

∑

k∈G

fi,k/umax

6 dmax/umax

6 K.

¤

Notice that this proof no longer holds when each
supplieri has an arbitrary value forumaxi

. For instance,
if we set the upper bound on the arc from the source
to node B equal to the sum of theK highest upper
bounds, then it may happen that there exists a feasible
flow f such that the correspondingx- and y-variables
according to (34)-(37) are no feasible solution to
GENTQDF. Indeed, consider the setting in Figure 4,
assumingK = 1. A flow of 2 to nodeB, splitting into
flows of 1 to supplier 1 and supplier 2 is feasible to

D.R. Goossens et al. 103

the min-cost flow model. However, its corresponding
y-values in GENTQDF, 0.5 and 1 respectively, clearly
violate constraint (41). Analogously, setting the upper
bound of the arc to nodeB equal to the sum of the
K lowest upper bounds results in the existence of a
solution of GENTQDF for which the corresponding
flow is no feasible solution of the min-cost flow model.

…

k
d

k

1

2

0

0

S/D

B
[0;3] ; 0

[0;2] ; 0

[0;1] ; 0

Fig. 4. Necessity of commonumaxi

Property (22) is crucial for the possibility to use min-
cost flow to solve LP-relaxations of GENTQDF-type
formulations. For instance, one could also argue that the
number of winning suppliers must be at least a minimum
number, sayL. Indeed, depending on too few suppliers
could move the buyer in a vulnerable position if one
of these suppliers is unable to supply as agreed. This
could be encoded by adding the following constraint to
GENTQDF:

∑

i∈S

∑

j∈Zi

yij > L. (65)

Property (22) is however no longer valid in this setting,
since constraint (43) pushes the optimal solution away
from the highest intervals. Indeed, moving the goods
towards one or more lower intervals can increase the
total y-value of each supplier. This is illustrated by the
following example.

Supplier A Supplier B Supplier C
Interval 1-10 1-10 1-5 6-10

Unit cost 5 1 3 2

Consider a setting where 14 units of one single good
need to be bought from three suppliers with volume
intervals and costs as indicated in the table above. Also,
we wish to order from at least 2 suppliers (L = 2). Solv-
ing GENTQDF for this example results in the following
optimal solution:

xA = 0 yA = 0

xB = 10 yB = 1

xC1 = 0.4 yC1 = 0.4

xC2 = 3.6 yC2 = 0.6

It is clear that property (22) is not valid for this
solution, since it makes use of supplier C’s lowest
interval. Notice that a solution using only the highest
intervals of suppliers B and C can never satisfy
constraint (43) withL = 2. Especially the fact that the
optimal solution makes use of more than one interval
per supplier, prevents us from following a similar
reasoning as in Theorem 5 to transform this variant to
a min-cost flow problem.

2) Limited number of winning suppliers per good:
Suppose now that the buyer is interested in limiting the
number of winning suppliers for one or more specific
goods only. Forcing that goodk can be supplied by at
mostQk suppliers can be done by adding the following
constraints to TQDF:

zik 6

∑

j∈Zi

xijk 6 Mikzik ∀i ∈ S, k ∈ G (66)

∑

i∈S

zik 6 Qk ∀k ∈ G (67)

zik ∈ {0, 1} ∀i ∈ S, k ∈ G. (68)

We introduced a new variablezik which is 1 if
supplier k procures at least 1 unit of goodk and 0
otherwise. This is guaranteed by constraints (66) and
(68). In constraint (66), the parameterMik can be set
equal to min(dk, umaxi

). Constraints (67) state that
no more thanQk suppliers should procure goodk.
We refer to TQDF with constraints (66)-(68) added as
TQDF’.

When constructing GENTQDF from TQDF, we
assume that for some suppliers an interval is
prespecified. Also, we assume that they-variables
are relaxed. Let us now make the additional assumption
that somezik variables get value 1 on beforehand, some
get zik variables value 0, whilst for others no value
is prespecified. When also thez-variables are relaxed,
so that they can take any value between 0 and 1, this
results in a relaxation of this generalization of TQDF’,
to which we refer as GENTQDF’.

104 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

It can easily be verified that property (22) remains
valid for GENTQDF’. Indeed, also in this setting we
can improve any solution that makes use of intervals
other than the highest by shifting goods bought in
these intervals to the highest interval. As we argued
in Theorem 5, it is always possible to adjust the
y-variables in such a way that the solution remains
feasible. Furthermore, this shift has no influence at all
on the z-variables, since thex-variables are summed
over all intervals in constraint (66).

We can now construct a min-cost flow network like
in Figure 1. However, for this variant, the arc from a
supplieri to a good nodek has a lower bound of 1 and
an upper bound ofMik if supplier i is chosen to be one
of the Qk suppliers that will be procuring goodk. On
the other hand, if supplieri is chosen not to be part of
the winning suppliers for goodk, the arc from nodei
to nodek is deleted. A solution of this min-cost flow
problem is characterized by flowsfik on each arc from
supplieri to goodk. This solution corresponds to thex-
andy-variables of the optimal solution of GENTQDF’ as
indicated in (34) to (37). Thez-variables in GENTQDF’
follow from the min-cost flow solution as follows:

zik =
fik

Mik

∀i ∈ S, k ∈ G. (69)

Indeed, constraints (67) force thez-variables towards
the lowest value they can get, which is

∑

j∈Zi
xijk/Mik.

However, from property (22), it follows that
∑

j∈Zi
xijk

equalsxi,s(i),k for suppliers inD andxi,maxi,k for those
not in D, which is exactlyfik (see (34) and (35)). Thus
we obtain the following statement:

Theorem 10:GENTQDF’ can be polynomially
transformed to min-cost flow.

D. Multi-period procurement

A lot of research on quantity discount policies has
been done in the context of lot sizing problems (see
e.g. Xu et al. (2000)). Lot sizing problems typically deal
with when to order what amount of goods and include
inventory costs. Whereas in the basic TQD problem
we assumed a single-period perspective, we generalize
to a multi-period procurement problem in this variant.
Indeed, it no longer suffices for the buyer to decide
what goods to purchase from what supplier, but the
buyer also needs to decide when to order what goods,
taking into account the inventory costs.

We defineP as a series ofr periods, indexed byp.
For each goodk, dkp is now the demand for goodk
in period p. We also definehkp as the cost of holding
one unit of goodk in inventory at the end of periodp
and cijkp as the cost of purchasing one unit of goodk
in period p in the j-th interval of supplieri. In order
to model this variant, we need to generalize thex- and
y-variables with an extra indexp, referring to the period
in which the good is bought. We also generalize the
set D to Dp, being the set of suppliers for which an
interval has been prespecified for the periodp. We refer
to this interval ass(i, p). We also introduce the variable
vkp as the inventory of goodk at the end of period
p. The generalized formulation, to which we refer as
multi-period GENTQDF then looks as follows:

minimize
∑

i∈S

∑

j∈Zi

∑

k∈G

∑

p∈P

cijkpxijkp +
∑

k∈G

∑

p∈P

hkpvkp

(70)

subject to

vk,1 =
∑

i∈S

∑

j∈Zi

xi,j,k,1 − dk,1 ∀k ∈ G (71)

vkp = vk,p−1 +
∑

i∈S

∑

j∈Zi

xijkp − dkp ∀k ∈ G, p ∈ P

(72)
∑

j∈Zi

yijp 6 1 ∀i ∈ S \ Dp, p ∈ P (73)

∑

k∈G

xijkp − yijplij > 0 ∀i ∈ S \ Dp, j ∈ Zi, p ∈ P

(74)
∑

k∈G

xijkp − yijpuij 6 0 ∀i ∈ S \ Dp, j ∈ Zi, p ∈ P

(75)
∑

k∈G

xi,s(i,p),k,p − li,s(i,p) > 0 ∀i ∈ Dp (76)

∑

k∈G

xi,s(i,p),k,p − ui,s(i,p) 6 0 ∀i ∈ Dp (77)

xijkp > 0 ∀i ∈ S \ Dp, j ∈ Zi, k ∈ G, p ∈ P (78)

xijkp = 0 ∀i ∈ Dp, j 6= s(i, p), k ∈ G, p ∈ P (79)

0 6 yijp 6 1 ∀i ∈ S \ Dp, j ∈ Zi, p ∈ P (80)

Generalizing from (22), we claim that there exists an
optimal solution (x∗, y∗) of multi-period GENTQDF in
which for eachp ∈ P and for eachi ∈ S \ Dp :

D.R. Goossens et al. 105

x∗

ijkp = 0 ∀j 6= maxi,∀k ∈ G, and
y∗ijp = 0 ∀j 6= maxi.

(81)

Notice that this claim can be proven in a similar way
as (22).

Let us now construct a min-cost flow problem similar
to the one in Figure 1, but now there are supplier nodes
(i, p) for each supplieri in each periodp. Also, there
are good nodes for each good in each period. Each good
node(k, p), corresponding with goodk in periodp, has
a demand ofdkp. The source node has a supply equal to
∑

k∈G

∑

p∈P dkp. There are arcs from a supplier node
(i, q) to a good node(k, r) if q 6 r. These arcs have a
cost equal toci,s(i,q),k,q +

∑r−1
p=q hkp if the corresponding

supplier is inDq and equal toci,maxi,k,q +
∑r−1

p=q hkp if
this supplier is not inDq. A schematic representation
is given in Figure 5. However, in order not to overload
the figure, only one supplier and one good are drawn.
Also, we assume that for this supplier no interval is
prespecified for any period.

ci,maxi,k,p
+ hk,p +

hk,p+1 + … + hk,r-1

(i,p)

… …

∑k ∑p dk,p

(k,p+1)

goodssuppliers

0

0

0

-dk,p+1

-dk,pci,maxi,k,p

[0;ui,maxi
] ; 0

-dk,r

(k,p)

(k,r)(i,r)

(i,p+1)[0;ui,maxi
] ; 0

[0;ui,maxi
] ; 0

ci,maxi,k,p+1

ci,maxi,k,r

ci,maxi,k,p
+hk,p

ci,maxi,k,p
+ hk,p+1 +

hk,p+2 + … + hk,r-1

Fig. 5. Multi-period GENTQDF as min-cost flow

A solution of the min-cost flow network in Figure 5 is
characterized by flowsfip from the source node to each
supplier node(i, p) and by flowsfipkq from supplier
node (i, p) to good node(q, r). This solution can be
written as a solution of multi-period GENTQDF as
follows:

xi,s(i,p),k,p =
r

∑

q=p

fipkq ∀i ∈ D, k ∈ G, p ∈ P , (82)

xi,maxi,k,p =
r

∑

q=p

fipkq ∀i /∈ D, k ∈ G, p ∈ P , (83)

yi,s(i,p),p = 1 ∀i ∈ Dp,∀p ∈ P , (84)

yi,maxi,p =
fip

ui,maxi

∀i /∈ Dp,∀p ∈ P . (85)

All other x- andy-variables of multi-period GENTQDF
are set equal to 0. Thev-variables can now be computed
from thex-variables using (71) and (72).

Theorem 11:Multi-period GENTQDF can be
polynomially transformed to min-cost flow.

V. EXACT ALGORITHMS

In this section we describe the three exact algorithms
used to solve instances of the TQD problem and its
variants. First, we explain the min-cost flow based
branch-and-bound algorithm. We build a branching tree
such that in every node a min-cost flow problem needs
to be solved (see Theorem 5). The branching tree is
constructed in such a way that every level in the tree
corresponds to a supplier, and that there is a branch for
every volume interval of that supplier.

In the root node, the LP relaxation of the TQD
problem is solved as explained in section III-B. For
each supplier, the sum of itsx-values lies between
the lower and upper bound of one of its intervals, to
which we refer as its LP-interval. We can now compute
for each supplier its priority as the number of volume
intervals minus the index of the LP-interval. Thus,
suppliers that announce a lot of volume intervals but
receive little in the LP-relaxation, are accorded a high
priority. We use this priority to build up the search tree,
as we start with the supplier with the highest priority,
creating branches from the root node for each of its
intervals. In the node from the first branch, we fix the
LP-interval of the supplier with the highest priority.
In the next branch of that level, we fix the interval
directly above this interval; in the following branch and
still within this level, we fix the interval directly below
it and so on (provided that these intervals exist). In
the following level of the branching tree we continue
with the supplier with the second highest priority, again
branching on its intervals as just explained, and so on
(see Figure 6). Naturally, there is no need to create a
node in the branching tree for a supplier with only one
interval, since we can fix this interval right away. To
traverse the tree, we use a standard depth-first search
strategy where, as usual, a node is fathomed if its
solution is dominated by the current best solution or if
it is infeasible. We experimented with different priority
settings, and the choice described above seems to work
best. A partial explanation for this observation can be
that in the current priority setting, suppliers who receive
little are explored first. Given a good solution, the other

106 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

branches of this supplier should be eliminated by the
resulting bound.

Prespecify interval of supplier

with highest priority

LP relaxation of TQDF

Prespecify interval of supplier

with second highest priority

LP int. LP int. + 1
LP int. - 1

LP int.
LP int. + 1

LP int. - 1
LP int. + 2

. . .

Fig. 6. Branching tree for min-cost flow based branch-and-bound

The branching tree for both the market share and
the more-for-less variant is very similar. In the first
variant, we prune the tree by deleting those volume
intervals that fall outside the range imposed by the
market-share constraints. Afterwards, we can adapt
the upper and lower bounds of the highest and lowest
interval respectively according to the market share
constraints. As a result, the branching tree is typically
sparser in the market share variant than in the basic
case. In the more-for-less variant on the other hand,
the branching tree is in general dense compared to its
counterpart in the basic case, because less nodes are
infeasible in the more-for-less setting.

The branching tree for the variant that limits the
number of winning suppliers toK differs from the
branching tree of the basic case, because we need
to introduce an extra branch on every level of the
tree. This branch corresponds to the dummy interval
as introduced in section IV-C and imposes that the
corresponding supplier is not to be used in the solution.
Whereas suppliers with only one interval are left out
of the tree completely in the basic case, they now
appear in the tree with two branches, representing the
decision to buy from that supplier or not. On the other
hand, a node needs no further branching as soon as
K suppliers have been selected. For all three variants,
we use the same depth-first strategy as for the basic case.

The min-cost flow based branch-and-bound algorithm
has been programmed in C and compiled using
Microsoft Visual C++ 6.0. To solve the min-cost flow
problems, we have used the network solver of Ilog
Cplex 8.1.

The description of the other two algorithms is
straightforward. The branch-and-cut algorithm simply
uses the default settings of the MIP solver of Ilog
Cplex 8.1. These default setting include the use of

so-called flow cover cuts that are valid for the TQD
problem and its variants (see Nemhauser and Wolsey
(1988)). To study these effect of the cuts, we have also
investigated another algorithm in which we disallow
the Ilog Cplex MIP solver to generate cuts. We refer to
this algorithm as the linear programming based branch-
and-bound algorithm. This algorithm uses a best-bound
node-selection strategy instead of a depth-first search,
but more importantly, it uses the shadow prices of the
y-variables to select the branching variable at the node
which has been selected for branching.

VI. COMPUTATIONAL RESULTS

In this section we discuss the choices that were made
to construct the instances on which the algorithms have
been tested. We continue with computational results
for the TQD problem and its variants and evaluate the
performance of our algorithms.

A. Structure of the instances

In order to test the performance of the exact
algorithms, two types of instances have been generated:
completely random instances and instances with a
special structure, inspired by the instances studied by
Van de Klundert et al. (2003). All instances have 10, 20
or 50 suppliers and 40 or 100 goods. Furthermore, each
supplier has a maximum of 3 or 5 volume intervals. For
all instances, the total demand for a good is a random
number between 1000 and 10000. For instances with 40
goods, the upperbound-increase from one interval to the
next is a random number between 10000 and 50000,
while for instances with 100 goods, the upperbound-
increase is a random number between 10000 and 100000.

For structured instances, we first determine a base
price for each good, randomly picked between 3 and 7.
The price for a good in a supplier’s first interval is then
computed by adding a random number in the interval
[−2, 2] to the base price. Furthermore, for each supplier
i there is a discount rateδij ∈ [0, 0.1] for every interval
j > 1, which determines the priceci,j,k of good k in
interval j as a function of the price in intervalj − 1 as
follows:

cijk = (1 − δij)ci,j−1,k ∀i, k and∀j > 1 (86)

For random instances, the cost of purchasing a good
from a supplier in its first interval is a random number

D.R. Goossens et al. 107

between 2 and 8. The price for this good in each of the
next intervals is computed by discounting the price in
the previous interval by a percentage picked randomly
between 0 and 75%.

The key difference between the random and the
structured instances is that for the former instances
prices can drop drastically from one interval to the
next, whereas for the latter this decrease in price
is limited to 10%. Furthermore, for the structured
instances, a good that is expensive at one supplier
will very likely be expensive at the other suppliers
too. For the random instances however, this is not
necessarily the case as prices for a good can differ in
a wider range between the various suppliers. Finally,
the discount percentage one receives when moving
from one interval to the next can differ substantially
between the goods for the random instances, while it
is the same for all the goods for the structured instances.

In the variant with the market share constraints,
only global constraints (as in (39)) are included. For
the instances with 10 suppliers, 5 suppliers are picked
randomly from each of whom between 5 and 20
percent of the total demand needs to be purchased. For
instances with 20 suppliers, we pick 10 suppliers and
force between 5 and 15 % of the total demand to go
to each of them and for the instances with 50 suppliers
this becomes 20 suppliers with each 5 to 10 % of the
total demand. The more-for-less variant needs no extra
modifications, apart from allowing to buy more than
what is demanded. For the third variant, the number of
winning suppliers is limited to 5 for all instances. If an
instance has no solution with only 5 winning suppliers,
the interval thresholds are doubled for each supplier
until a solution exists.

B. Results

The results of our experiments are summarized in
tables I to IV. The instances are coded with ’S’ for
structured and ’R’ for random instances. The first
number indicates the number of suppliers, the second
number reflects the number of goods and the third
number is the maximal number of intervals per supplier.
For each of these types of instances, 10 instances
were generated and solved with the three algorithms.
This resulted in computation times (in seconds) and a
number of nodes searched in the branching tree for each
algorithm, averaged per type of instance in the table.
All computations were done on a PentiumIV 2 GHz

computer, with 512 Mb RAM.

In Table I, the results for the basic TQD problem
are presented. Each algorithm solves all instances in a
reasonable amount of time; random instances seem to be
harder to solve than the structured ones. The min-cost
flow based algorithm clearly performs best in terms
of computation time for all instances with 10 or 20
suppliers. However, instances with 50 suppliers prove
to be harder to solve with this algorithm. Although the
solution time per node is undoubtedly the smallest with
the min-cost flow approach, it needs more computing
time than the other two exact algorithms. The branch-
and-cut approach clearly searches the least amount of
nodes, but to achieve this it needs a time-consuming
cut generation process. The results show that it pays to
generate cuts when the number of suppliers is large.

The results of our experiments with the variant with
market share constraints are summarized in Table II.
As in the basic case, the random instances require
more computation time than the structured ones. Market
share constraints are problematic for the branch-and-
cut algorithm, whose computation times sometimes
even double compared to the basic case. The linear
programming based branch-and-bound algorithm deals
with these constraints much better, since it manages to
solve the instances faster than in the basic case. The
min-cost flow algorithm is however by far the fastest
algorithm for all instances. Especially for the instances
with 50 suppliers, adding market share constraints
causes the computations times to slump compared to the
basic case. Moreover, less nodes need to be searched,
which can be explained by the construction of the
branching tree as described in section V.

Table III figures the results for the more-for-less
variant. It turns out that in none of the structured
instances purchasing extra goods leads to a lower total
cost. In the random instances however, it is profitable in
more than 85% of the instances to buy more than strictly
needed. This is explained by the fact that discounts are
substantially larger for the random cases than for the
structured instances (see section VI-A).

Once again, the min-cost flow based algorithm
performs best on all instances with 10 or 20 suppliers.
For instances with 50 suppliers, it is advisable to
use the linear programming based branch-and-bound
algorithm. Compared to the basic case, the min-cost
flow algorithm needs to search slightly more nodes,
resulting in more computation time. Apart from the

108 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

random instances with 50 suppliers, which seem very
difficult for all algorithms, this increase in computation
time remains very modest. The linear programming
based branch-and-bound algorithm is not affected too
much either. The branch-and-cut algorithm however
deals poorly with this variant.

Finally, Table IV describes the results for the variant
that limits the number of winning suppliers. This
constraint proved to be binding for more than 98%
of the structured instances but less than 50% of the
random instances. For the random instances, the prices
drop sharper from one interval to the next, which makes
it more interesting to go for the higher intervals. This
leads to an optimal solution with less suppliers than for
the structured instances. This explains why a constraint
limiting the number of winning suppliers less often
affects the random instances.

As for the computation times, branch-and-cut seems
the best option for the structured instances. For the
random instances, the picture is less clear. The instances
with 10 suppliers are best solved with the min-cost flow
algorithm, although this algorithm is left far behind
by the other two for the instances with 20 suppliers.
For these instances, branch-and-bound based on linear
programming outperforms the other algorithms for
instances where suppliers can have up to 5 volume
intervals. Branch-and-cut is the fastest approach to solve
random instances with 20 suppliers and up to 3 volume
intervals per supplier. Notice that no instances with
50 suppliers are mentioned in this table, because the
computation times for these problems were impractically
high for all algorithms.

VII. C ONCLUSIONS

We presented a procurement problem where suppliers
adopt a discount that depends on the total quantity
ordered. We argued that different versions of this
problem are NP-hard and that it is impossible to find
a polynomial-time approximation algorithm with a
constant ratio (unlessP = NP). We described three
exact algorithms: one algorithm is based on our result
that the problem can be solved by solving a number
of min-cost flow problems; the other two algorithms
are a branch-and-cut and an linear programming based
branch-and-bound algorithm.

The algorithms were tested on fairly large randomly
generated instances of the basic problem and three

variants. Our computational results show that all three
algorithms came to an exact solution in a reasonable
amount of time. However, it also became clear that
each algorithm has instances for which it performs best.
In general, the min-cost flow based algorithm works
best for instances where the number of suppliers does
not exceed 20 (which seems to correspond to most
practical cases). It works especially well for the variant
where we imposed constraints on the market share
a supplier is allowed to obtain. The branch-and-cut
algorithm outperforms the other algorithms on large
instances in terms of suppliers of the basic case and on
the structured instances of the variant that requires a
limited amount of winning suppliers. Finally, the linear
programming based branch-and-bound algorithm is at
its best with the large instances of the variant where the
buyer is allowed to purchase more than strictly needed.

ACKNOWLEDGEMENTS

We wish to thank prof. W. Gochet and prof. W.
Herroelen for their remarks on an earlier version of this
work.

D.R. Goossens et al. 109

APPENDIX

Theorem 1:The decision version of the TQD
problem is strongly NP-complete.

PROOF. We define TQD’ as the decision version of
the TQD problem, where the question is whether it
is possible to buy the required goods at a given total
purchasing costK. Obviously, TQD’ is in NP, since
given a solution it suffices to check the constraints
and the value of the solution, which can easily be
done in polynomial time. The reduction is from the
3-dimensional matching (3DM) problem.

The decision version of the 3DM problem is described
as follows: given a setM ⊆ X × Y × Z of triples,
where each of the setsX, Y and Z has exactlyq
elements, is there a matching inM that containsq
triples? Every instance of 3DM can be reduced to a
TQD’ instance in polynomial time. Suppose that the
3q elements of the setsX, Y , andZ correspond to3q
goods and that each 3-element subset inM corresponds
to a supplier, son = q andm = 3q. Each supplier has
2 intervals. The price of each good in its first interval
is 1. This interval has a lower bound of 0 and an upper
bound of 2. The second interval has a lower bound of
3 and an upper bound of∞. The price of each good in
this second interval is also 1, except for the three goods
in the 3-element subset corresponding to the supplier,
each of which have a price of 0. Each good needs to be
purchased exactly once, i.e.,dk = 1 ∀k. The question is
whether the TQD’ problem can be solved with a total
purchasing cost of 0.

Further, every yes-instance of 3DM corresponds to a
yes-instance of TQD’. A solution of 3DM consists ofq
3-element subsets, corresponding toq suppliers in the
TQD’ problem. Purchasing from each of these suppliers
exactly the 3 goods represented by the 3-element subset
enables us to reach every supplier’s second interval,
where these 3 goods can be bought at price 0. Since
every element ofX ∪ Y ∪ Z occurs exactly once in the
solution of 3DM, every good will also be purchased
exactly once in the TQD’ solution. Therefore, if 3DM
has a solution, it can easily be transformed to a solution
of TQD’.

Vice versa, every yes-instance of TQD’ also
corresponds to a yes-instance of 3DM. A solution of
the TQD’ problem consists of a number of selected
suppliers, together providing every good exactly once at
a total cost of 0. If a supplier would provide less than 3

goods, the quorum to get in the second interval would
not be met, so the cost would not be 0. If the supplier
would provide more, the cost would also be strictly
positive, because all but these 3 goods still have a price
of 1 in the second interval. Providing more than one of
the 0-priced goods would violate the demand constraint
stating that each good is to be supplied exactly once.
Therefore every selected supplier provides precisely 3
goods, namely those that have a price of 0 in the second
interval and since3q goods need to be provided,q
suppliers must be selected. Therefore, for each of theq
suppliers selected in the solution of the TQD’ problem,
there is a corresponding 3-element set inM . Moreover,
theseq triples define a matching, since every good is
bought exactly once. As a consequence, the decision
version of the TQD problem is strongly NP-complete.¤

Theorem 2:No polynomial-time approximation
algorithm with constant worst-case ratio exists for the
TQD problem (unlessP = NP).

PROOF. Assume that aρ-approximation algorithm
for the TQD problem exists. Consider now an instance
of 3DM with M ⊆ X × Y × Z, and let us build
an instance of the TQD problem as in the proof of
Theorem 1 with a price ofρ+1 for any good bought
in the first interval, or bought in the second interval
when not belonging to one of the three goods of that
supplier. Observe that this instance of the TQD problem
either has an optimal solution with cost 0 (namely
when the 3DM-instance has a matching), or it has an
optimal solution with cost at leastρ+1 (when there
is no matching in the 3DM instance). Thus, if there
is a 3DM-matching theρ-approximation algorithm
must return a zero-cost solution, which contradicts the
NP-hardness of 3DM. Hence such an algorithm cannot
exist unlessP = NP . ¤

Theorem 3:The decision version of the TQD
problem with a common discount rateδ is strongly
NP-complete.

PROOF. In order to show that the TQD problem with
a common discount rate is NP-complete, we modify
the reduction used in Theorem 1 as follows. As in
Theorem 1, each supplier has 2 intervals, the first
interval ranges from 0 to 2 goods, the second from 3 to
an unlimited amount of goods. The prices of all goods
in both the first interval are 2, except for the three goods
in the 3-element subset corresponding to the supplier,
each of which have a price of 1. Since all suppliers
use a common discount rateδ, the prices in the second

110 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

interval are(1− δ) for the three goods in the 3-element
subset, and2(1 − δ) for the other goods. Each good
still needs to be purchased exactly once. The question
is now whether this TQD problem can be solved with a
total purchasing cost ofm(1 − δ). The same reasoning
as in Theorem 1 can be applied to verify that every yes-
instance of 3DM corresponds to a yes-instance of the
TQD problem with common discount rate and vice versa
and that indeed the decision version of the TQD problem
with a common discount rate is strongly NP-complete.¤

Theorem 4:The decision version of the more-for-less
variant of TQD problem is strongly NP-complete.

PROOF. In the more-for-less setting, the buyer is
allowed to purchase more thanm goods in order to
reduce the total cost. We can however use the same
reduction as in Theorem 3. Indeed, let each supplier
have 2 intervals, the first ranging from 0 to 2 goods,
the second from 3 to an unlimited amount of goods.
Once again, the prices of all goods in both the first and
second interval are 1, except for the three goods in the
3-element subset corresponding to the supplier, each of
which have a price of(1 − δ). The question remains
whether it is possible to solve this TQD problem with
a total purchasing cost ofm(1 − δ). Clearly this can
not be achieved by purchasing more thanm goods,
which allows us to conclude that every yes-instance of
3DM corresponds to a yes-instance of the more-for-less
variant and vice versa. Hence, the decision version
of the more-for-less variant of the TQD problem is
strongly NP-complete. ¤

REFERENCES

[1] L.M. Austin and W.W. Hogan (1976).Optimizing the procure-
ment of aviation fuels.Management Science, 22(5), pp. 515-
527.

[2] M. Bichler, J.R. Kalagnanam, H.S. Lee and J. Lee. (2002)
Winner Determination Algorithms for Electronic Auctions: A
Framework Design.In: Proceedings of EC-Web 2002, pp. 37-
46.

[3] S.S. Chauhan, A.V. Eremeev, A.A. Romanova, V.V. Servakhand
G.J. Woeginger. (2005)Approximation of the supply scheduling
problem.Operations Research Letters, 33(3), pp. 249-254.

[4] Y. Crama, R. Pascual J. and A. Torres (2004).Optimal procure-
ment decisions in the presence of total quantity discounts and
alternative product recipes.European Journal of Operational
Research, 159(2) pp. 364-378.

[5] A.J. Davenport and J.R. Kalagnanam (2002).Price negotiations
for procurement of direct inputs.In: B. Dietrich and R.V. Vohra,
Mathematics of the internet: e-auction and markets, pp. 27-43.

[6] Z. Degraeve, E. Labro and F. Roodhooft (2000).An evaluation
of vendor selection models from a total cost of ownership
perspective.European Journal of Operational Research, 125 pp.
34-58.

[7] M. Eso, S. Ghosh, J.R. Kalagnanam and L. Ladanyi (2001).
Bid evaluation in procurement auctions with piece-wise linear
supply curves.IBM Research Report RC 22219, 2001.

[8] G. Hohner, J. Rich, E. Ng, G. Reid, A.J. Davenport, J.R.
Kalagnanam, H.S. Lee, and C. An (2003).Combinatorial and
Quantity-Discount Procurement Auctions Benefit Mars, Incor-
porated and Its Suppliers.Interfaces, 33(1) pp. 23-35.

[9] P. Katz, A.A. Sadrian and P. Tendick (1994).Telephone Compa-
nies Analyze Price Quotations with Bellcore’s PDSS Software.
Interfaces, 24(1) pp. 50-63.

[10] J.J. van de Klundert, J. Kuipers, F.C.R. Spieksma and M.
Winkels (2003).Telecommunication Carrier Selection under
Volume Discounts: a Case Study.Research Report 0330, De-
partment of Applied Economics, K.U.Leuven, 2003, accepted
for Interfaces.

[11] A. Kothari, D. Parkes and S. Suri (2003).Approximately-
strategyproof and tractable multi-unit auctions.In: Proceedings
of the ACM Conference on Electronic Commerce 2003, pp.
166-175.

[12] C.L. Munson and M.J. Rosenblatt (1998).Theories and realities
of quantity discounts: an explanatory study.Production and
Operations Management, 7(4) pp. 352-369.

[13] G.L. Nemhauser and L.A. Wolsey (1988).Integer and Combi-
natorial Optimization.Wiley New York (N.Y.).

[14] A.A. Sadrian and Y.S. Yoon (1994).A Procurement Decision
Support System in Business Volume Discount Environments.
Operations Research, 42(1) pp. 14-23.

[15] H. Shachnai, O. Shmueli and R. Sayegh (2004).Approximation
Schemes for Deal Splitting and Covering Integer Programs with
Multiplicity Constraints.Manuscript.

[16] M. Sun (2002).The transportation problem with exclusionary
side constraints and two branch-and-bound algorithms.Euro-
pean Journal of Operational Research, 140 pp. 629-647.

[17] J. Xu, L.L. Lu and F. Glover (2000).The deterministic multi-
item dynamic lot size problem with joint business volume
discount.Annals of Operations Research, 96(1) pp. 317-337

D.R. Goossens et al. 111

mcf branch&bound branch&cut lp branch&bound
Instances comp. time #nodes comp. time #nodes comp. time #nodes

S-10-40-3 0,01 116,6 0,09 0,3 0,08 29,3
S-10-40-5 0,02 161,1 0,15 10,9 0,11 52,5
S-10-100-3 0,02 69,8 0,12 0,2 0,11 17,2
S-10-100-5 0,14 501,6 0,55 3,2 0,36 74,3

S-20-40-3 0,07 389,2 0,12 0,5 0,16 73,5
S-20-40-5 0,38 1.887,8 0,50 4,7 0,58 207,3
S-20-100-3 0,30 749,6 0,34 1,3 0,57 128,8
S-20-100-5 0,67 1.512,8 1,17 2,1 1,07 155,1

S-50-40-3 5,61 16.671,8 0,51 2,7 1,92 719,0
S-50-40-5 32,93 85.210,4 2,99 16,5 7,81 2.087,2
S-50-100-3 21,81 26.595,3 1,45 2,1 4,67 696,1
S-50-100-5 159,77 168.181,3 10,45 14,7 24,41 2.614,0

R-10-40-3 0,01 54,9 0,09 2,1 0,07 24,3
R-10-40-5 0,07 428,9 0,59 30,5 0,31 160,7
R-10-100-3 0,02 46,9 0,14 2,6 0,10 10,1
R-10-100-5 0,31 845,1 1,50 31,7 0,78 160,0

R-20-40-3 0,14 700,5 0,29 9,5 0,25 121,6
R-20-40-5 0,45 2.155,6 1,81 68,5 1,56 659,9
R-20-100-3 0,59 1.249,6 0,83 8,1 1,05 235,0
R-20-100-5 3,18 3.938,2 6,81 70,1 5,34 882,8

R-50-40-3 10,31 28.975,3 1,67 81,6 6,17 2.411,0
R-50-40-5 18,60 48.876,6 14,18 140,9 18,41 4.303,1
R-50-100-3 97,29 103.885,7 8,84 43,8 38,47 6.289,1
R-50-100-5 241,39 237.953,3 61,71 216,8 122,49 11.451,2

TABLE I

COMPUTATIONAL RESULTS FOR THE BASIC CASE

112 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

mcf branch&bound branch&cut lp branch&bound
Instances comp. time #nodes comp. time #nodes comp. time #nodes

S-10-40-3 0,01 55,6 0,12 0,7 0,08 25,3
S-10-40-5 0,01 51,3 0,21 2,7 0,12 34,4
S-10-100-3 0,03 102,0 0,18 0,9 0,14 17,6
S-10-100-5 0,07 223,7 0,82 2,9 0,39 58,5

S-20-40-3 0,05 233,6 0,29 0,8 0,20 56,4
S-20-40-5 0,10 453,8 1,68 17,4 0,91 255,8
S-20-100-3 0,13 267,1 0,86 2,5 0,78 136,6
S-20-100-5 0,35 672,4 3,47 9,3 2,08 268,8

S-50-40-3 0,24 622,5 1,18 5,7 1,07 196,1
S-50-40-5 0,31 858,5 9,36 71,9 5,47 790,7
S-50-100-3 1,21 1.185,0 2,86 5,8 3,58 290,4
S-50-100-5 2,85 3.002,7 20,08 63,7 15,00 807,3

R-10-40-3 0,01 67,9 0,15 7,5 0,08 24,0
R-10-40-5 0,04 248,5 0,80 20,4 0,30 125,1
R-10-100-3 0,02 40,7 0,20 0,2 0,14 15,1
R-10-100-5 0,20 546,7 2,46 27,0 1,04 213,2

R-20-40-3 0,12 484,5 0,60 21,6 0,32 132,7
R-20-40-5 0,24 1.062,4 2,91 62,2 1,50 505,7
R-20-100-3 0,26 453,0 1,81 26,5 1,27 253,6
R-20-100-5 5,50 9.671,1 11,95 105,2 8,44 1.226,5

R-50-40-3 0,19 526,5 2,38 25,8 1,15 214,0
R-50-40-5 0,56 1.552,2 19,18 273,7 7,32 2.099,7
R-50-100-3 2,12 2.046,3 7,66 34,1 3,69 287,5
R-50-100-5 15,55 15.900,1 59,75 228,9 27,79 1.731,3

TABLE II

COMPUTATIONAL RESULTS FOR VARIANT1 (MARKET SHARE CONSTRAINTS)

D.R. Goossens et al. 113

mcf branch&bound branch&cut lp branch&bound
Instances comp. time #nodes comp. time #nodes comp. time #nodes

S-10-40-3 0,02 118,7 0,14 0,4 0,06 27,9
S-10-40-5 0,02 166,8 0,49 23,2 0,11 50,6
S-10-100-3 0,02 69,8 0,29 6,8 0,12 17,5
S-10-100-5 0,16 513,3 2,48 66,5 0,40 75,3

S-20-40-3 0,07 389,9 0,45 5,2 0,17 71,3
S-20-40-5 0,43 1.997,3 4,42 148,7 0,61 219,3
S-20-100-3 0,32 749,9 2,08 43,4 0,63 135,7
S-20-100-5 0,74 1.545,9 11,47 164,2 1,26 185,8

S-50-40-3 5,57 16.724,3 8,90 261,9 1,98 739,7
S-50-40-5 36,90 94.865,4 147,56 2.500,0 9,88 2.491,3
S-50-100-3 22,39 26.625,3 28,42 523,7 5,65 832,3
S-50-100-5 171,14 172.466,7 271,80 3.006,0 32,31 3.365,0

R-10-40-3 0,02 55,5 0,10 0,1 0,06 21,6
R-10-40-5 0,05 428,5 0,67 18,5 0,17 82,9
R-10-100-3 0,01 45,6 0,17 0,2 0,10 9,3
R-10-100-5 0,24 1.068,9 2,49 42,6 0,50 91,5

R-20-40-3 0,13 793,8 0,60 15,9 0,24 117,0
R-20-40-5 0,47 3.167,6 3,55 89,8 0,91 343,9
R-20-100-3 0,53 1.369,0 1,85 17,6 1,00 241,4
R-20-100-5 3,11 10.389,8 25,09 434,8 4,46 801,6

R-50-40-3 15,91 59.066,0 35,16 1.195,8 10,51 4.615,8
R-50-40-5 39,33 171.566,6 169,82 1.511,1 25,54 6.714,3
R-50-100-3 130,42 206.668,9 274,82 6.035,4 79,93 14.059,4
R-50-100-5 446,85 798.002,9 2.036,07 17.577,4 398,31 45.945,3

TABLE III

COMPUTATIONAL RESULTS FOR VARIANT2 (MORE FOR LESS)

114 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

mcf branch&bound branch&cut lp branch&bound
Instances comp. time #nodes comp. time #nodes comp. time #nodes

S-10-40-3 0,26 1.786,3 0,17 3,4 0,29 372,0
S-10-40-5 0,32 2.135,7 0,27 8,1 0,41 421,1
S-10-100-3 0,73 2.017,0 0,35 8,0 1,23 603,4
S-10-100-5 1,43 4.115,9 1,17 16,5 2,65 1.007,4

S-20-40-3 6,70 30.788,1 0,34 2,4 3,00 2.763,0
S-20-40-5 15,48 66.377,0 1,07 27,3 2,39 1.345,2
S-20-100-3 23,83 44.780,9 1,63 17,3 16,76 5.083,6
S-20-100-5 20,02 36.588,2 2,73 12,8 7,15 1.597,2

R-10-40-3 0,03 229,6 0,09 2,1 0,06 25,6
R-10-40-5 0,43 2.697,7 0,57 35,9 0,26 181,9
R-10-100-3 0,10 302,7 0,11 0,0 0,13 26,6
R-10-100-5 0,71 2.040,6 1,33 28,5 0,74 195,9

R-20-40-3 2,06 9.812,6 0,30 8,5 0,37 252,7
R-20-40-5 5,73 25.467,2 1,63 61,2 1,08 578,6
R-20-100-3 7,07 13.881,7 0,91 9,5 2,38 730,9
R-20-100-5 26,47 48.444,9 6,49 66,6 4,19 920,6

TABLE IV

COMPUTATIONAL RESULTS FOR VARIANT3 (LIMITED NR . OF WINNING SUPPLIERS)

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 115

Abstract— Complex systems are everywhere among us:
telecommunication networks, computer systems,
transporting vehicles, and electrical appliances are well
known examples. Designing these as reliable systems is a
very important task for managers and engineers, since
reliability have a strong relationship to other critical
concepts such as quality and security. Furthermore, this
task is extremely difficult, due to the fact that analytical
methods can become too complicated, inefficient or even
inappropriate when dealing with sophisticated systems. In
this paper we present the basic ideas behind a simulation-
based method, called SREMS, which can be very useful
during the design and improvement phases for a wide range
of complex systems. SREMS not only provides good
estimations of system reliability at different target times
(survival function) and system failure-time parameters, but
it also allows to identify those components that play a
critical role in the system durability, something that can be
very useful when improving a system reliability.

Keywords— system reliability, simulation methods, C++
programming

I. RELIABILITY DEFINITION

eliability is often defined as the probability that
a system or device will perform its intended

function, under operating conditions, for a specified
period of time [23]. On the other hand, availability
can be defined as the probability that a system or
device, according to some maintenance policy and
some operating conditions, performs its intended
function at a certain time.

II. MOTIVATION AND APPLICATIONS

There are many complex systems that we use in our
day-to-day life without giving any consideration to
their routine maintenance. Personal computers,
computer networks, television sets, or DVDs players
are some examples of such complex systems.
Malfunctioning of these systems can cause a lot of
inconveniences, not only in terms of time

and money but also in terms of other hidden costs
such as energy and psychic costs [15].

The existence of these consumer costs provides
good business opportunities: producers able to
deliver more reliable goods than competitors can
offer longer warranty periods for their products
which, in turn, will add value to them. Positive
effects of reliable products on brand or company
image should also be considered, since they play an
essential role in a competitive market.

Reliability can also be a desirable property of costly
systems, such as telecommunication networks or
transportation vehicles. Reliability can even be a
necessity for systems related to human safety and
security, such as buildings, bridges, power plants,
airplanes, ships, military weapons, etc.

In all those scenarios, managers and engineers can
benefit from efficient methods and software tools
that help them to design more reliable systems.

III. SIMULATION IN RELIABILITY STUDIES

Reliability and availability of time-dependent
complex systems is a research area with applications
not only to engineering but also to experimental and
social sciences [5], [19], [25].

Different analytical approaches can be used in order
to calculate the exact reliability of a time-dependent
complex system [16]. Unfortunately, when the
system is highly complex, it can become extremely
difficult or even impossible to obtain its exact
reliability at a given target time. Similar problems
arose when trying to determine the exact availability
at a given target time for systems subject to
maintenance policies. Many authors point out that in
those situations only simulation techniques, such as
Monte Carlo Simulation (MS) and Discrete Event
Simulation (DES), can be useful to obtain estimates
for reliability and availability parameters (see [2],
[4], [6], [10], and [11]).

Designing Reliable Systems with SREMS++

R

Angel Juan*, Javier Faulín†, Vicente Bargueño‡ and Anita Goyal§

*Polytechnic University of Catalonia (Spain)
Department of Applied Mathematics I
Email: angel.alejandro.juan@upc.edu

†Public University of Navarra (Spain)
Department of Statistics and Operations Research

Email: javier.faulin@unavarra.es

‡Universidad Nacional de Educación a Distancia (Spain)
Department of Applied Mathematics I

Email: vbargueno@ind.uned.es

§Management Development Institute (India)
Marketing Department

Email: agoyal@mdi.ac.in

116 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

One of the first good ideas and algorithms on the use
of MS techniques to estimate system reliability can
be found in [14]. MS techniques have also been
proposed to study complex systems availability [26].
In fact, during the last years, several commercial
simulators have been developed to study the
reliability and availability of complex systems [27].
More recently, several authors have proposed
spreadsheets models that make use of MS to find out
the reliability of complex systems [9], [13]. As far as
we know, SREMS++, the computer version of the
method we present here, has some characteristics
that cannot be found in those other programs: (i) it
helps to identify critical paths and components –
those which have a fundamental impact over the
system reliability, (ii) it provides statistics about
system failure time, (iii) it allows to model systems
of virtually any size, and (iv) it is freeware.

IV. WHICH SYSTEMS ARE WE CONSIDERING?

The method presented in this paper, SREMS, has
been designed to deal with any kind of logical or
physical system that meets some general criteria.
The hypotheses made by SREMS are common
assumptions in reliability studies and they are less
restrictive than the ones used when applying
analytical methods.

Specifically, when studying the reliability of
systems, which are not subject to any maintenance
policy (i.e.: when components repair or substitution
will not be considered while the system stills
working properly), SREMS will make the following
main assumptions:

A1) Two-state systems: at any given time, the
system will be either operational (working
properly) or not. Observe that the exact
definition of “being operational” is up to the
system managers, since it will vary
depending of the system and its
environmental circumstances

A2) Minimal paths decomposition: the system

logical structure is known and it can be
expressed in the form of minimal paths [16]

A3) Component failure-times distribution: for

each component, its associated failure-times
distribution is perfectly known (i.e.: both the
statistical distribution family and exact
parameters are known)

A4) Failure-times independence: the failure-
time associated to one component is
independent from the failure-time associated
to any other component

Assumptions A2 and A3 guarantee that there is
enough information to study the system reliability.
Assumption A2 often requires a detailed analysis of
logical relationships among components. When
dealing with systems with a lot of components and a
high degree of relationships among them,
determining the system minimal paths structure is
not an easy task at all. In those situations, some
proposed algorithms –also based on simulation
techniques, can be used to find out the minimal
paths decomposition [20]. In the context of
assumption A3, statistical methods such as
accelerated live tests [22] and data fitting techniques
[18] are usually required.

Finally, assumption A4 is the most restrictive one
and it may require considering some abstraction
levels in the system decomposition. For example, if
the system were a PC it could be necessary to join
several pieces, such as the microprocessor and its
associated fan, in just one component. Otherwise, it
could not be possible to assume independence
among components failure-times.

V. STATISTICAL FUNDAMENTALS

SREMS makes use of several mathematical concepts
and techniques. Specifically, the method is based on:

F1) System reliability theory: system
reliability concepts and minimal paths
theory [3], [12], [16], [23]

F2) Simulation techniques: data fitting,

pseudo-random number generation, and
variance reduction methods (if necessary)
[1], [7], [17], [21], [26]

F3) Probability and statistical concepts:

probability theory, descriptive statistics and
inference techniques [8], [17]

The driving idea of the method is explained below:

Given a fixed instant 0 0t ≥ , the main target of the
simulator is to estimate the system reliability at that
time1, i.e.:

0 0 0() () ()s sp t P T t R t= > =

1 In fact, the method will consider several target times at once, since
we will be interested in understanding the system survival function.

Angel Juan et al.

117

Considering that the system has two possible states
at any given time –it will be either operational or
not, it is possible to interpret 0()p t as the
probability of “success” in a Bernoulli distribution,
understanding success as the fact that the system is
operational at 0t , i.e.:

()0()Y tφ= X ~ ()0()Be p t

where 0()tX is the status vector of the system at 0t
(it describes the actual status of each component at

0t), and ()0()tφ X is the binary status function
(value will be 1 if the system is operational at 0t ,
and 0 otherwise).

In that situation, if we are able to obtain –using
some simulation algorithm2, m random and
independent observations, 1 2, ,..., mY Y Y , from the
binary variable Y , which represents the system
status at 0t , we know that the sum of those variables
will be a new one following a binomial distribution
of parameters m (number of proofs) and 0()p t
(probability of “success” in each proof), i.e.:

1

m

i
i

Y
=
∑ ~ ()0, ()Bi m p t

At this point, it is known that the maximum
likehood estimator for ()0 0() ()p t tφ= X is given by
the sample mean [8]:

1'

m

i
i

i

y
p y

m
== =
∑

This is an unbiased estimator, i.e.: [] 0' ()E p p t= .
Furthermore, the law of the large numbers says that
the former estimator will tend to get better as the
number of observations gets larger, more concisely:

()0lim ' () 1
m

P p p t
→∞

= =

Observe that, apart from obtaining a point estimate,
it is also possible to obtain confidence intervals
for 0 0() ()sp t R t= . In effect, for large values of m ,
the central limit theorem says that a confidence
interval for 0 0() ()sp t R t= with a 1 α− confidence
level would be [8]:

()0 0() 1 ()
'

2
p t p t

p z
m

α ⋅ −⎛ ⎞± ⋅⎜ ⎟
⎝ ⎠

2 This algorithm will be SAEDES_A1, which will be explained later.

where
2

z α⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the 1
2
α

− percentile in a standard

normal distribution (in practice, since 0 0() ()sp t R t=
is not known, its value will be substituted by the
point estimate 'p).

The methodology just described here is based on
core statistical concepts. Therefore, it is obvious that
the key point of SREMS consists in the developing
of a simulation-based algorithm, which provides us
the m random and independent observations from
the variableY . That algorithm, which we have
called SREMS_A1, will be explained in the
following section. Observe that the SREMS_A1
algorithm will not only provide us with the m
needed observations, but also with information
about: (a) system critical paths and components, and
(b) system failure time.

VI. ALGORITHM SREMS_A1

The implementation of SREMS_A1 as a computer
program has a lot of technical details, both of
mathematical and programming nature. Therefore,
only the general ideas behind the algorithm will be
presented here:

Given a system with n components, SREMS_A1
performs the following actions:

S1) Using information about the distribution of
each component failure-times and some
high-quality random numbers generator, it
assigns a random failure-time, iT , to each of
the n components

S2) Using results from S1 and information about

system structure (minimal paths), it is
possible to determine each path failure-time
and the failure-time associated to the key-
component in each path (i.e.: the most
durable component, which will determine
the path failure time)

S3) Using results from S2, it is possible to

determine which are the strongest and
weakest paths (that is, the last and the first
paths which are likely to go out-of-service)

S4) Using results from S2 and S3, it determines

the system failure-time, sT

S5) It repeats steps S1 to S4 as many times as it
has been indicated by the number of
iterations to run (m times)

118 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

As a result of S5, a random sample will be
obtained for each of the following variables:
“strongest path”, “weakest path”, “key component
in strongest path”, “key component in weakest
path”, and “system failure-time”

S6) Using information from S5, it obtains point

and interval estimates for the system failure-
time

S7) For each observed value of the variable

“system failure-time” (obtained in S5), it
compares this value with each of the target
times, 0t , and if 0sT t> , a “success” is
assigned to that target time (that is,

0() 1Y t =). Otherwise, 0() 0Y t =

S8) Using information from S7, it calculates
point and interval estimates for the system
reliability at each target time (this parameter
is estimated as the number of “successes”
associated to that target time divided by the
total number of iterations). This will provide
us with information about the system
survival function. Observe that at both
extremes of this function the probability of
system failure will be almost 0 or almost 1,
respectively. Those extreme situations cause
the so called “rare events” problem, which
implies that a lot of iterations must be run in
order to obtain good estimates for the
system reliability at both target times (some
variance-reduction techniques could be used
to reduce the number of iterations, although
we consider that it will not be necessary
since we usually will be more interested in
the middle target times of the survival
function than in the extreme ones)

S9) Finally, using information from S5, it

calculates relative frequencies for each of
the following variables: “strongest path”,
“weakest path”, “key component in
strongest path”, and “key component in
weakest path”

Figure 1 shows a flow diagram that summarizes the
SREMS_A1 algorithm.

VII. SOFTWARE IMPLEMENTATION

Two important objectives are: (a) to validate the
accuracy and effectiveness of the proposed method,
and (b) to provide a computer version of the
mathematical model that could be used by system
managers and engineers. In order to attain those
targets, we have developed SREMS++, a C/C++
software implementation of the method.

As Figure 2 shows, the program, SREMS++, has a
modular structure including: (i) a kernel, which
takes care of the simulation model, (ii) the library
randomVariates, which is a random variables
generator specially developed for SREMS++ (it
includes a well tested and long period pseudo-
random numbers generator), and (iii) the stats
library, which performs all the required statistical
operations (descriptive, confidence intervals, etc.).

The program inputs are entered by the user
employing three simple txt files, and after running
the simulation, the program provides a single txt
file with the results.

Fig. 1. Flow diagram for SREMS_A1

Start

Get
T1, T2, ..., Tn

Failure-time distributions
(components)

Monte Carlo
Simulation

Get TS

Strongest path + key component
Weakest path + key component

New T0?

TS > T0?

Y(t0) = 1 (success) Y(t0) = 0 (failure)

End

System structure
(minimal paths)

Y

Y

N

N

Angel Juan et al.

119

Fig. 2. Modular structure of SREMS++

The three inputs files must contain the following
information:

srems_inputs_first.txt

I1) Number of iterations to run (more iterations
implies not only more accurate estimates,
but also an increase in computational costs
such as simulation length and memory
resources)

I2) Number of components in the system

I3) Number of target times (times when system

reliability has to be determined)

I4) Time interval (step) between consecutive

target times

I5) Number of paths in the logical structure

I6) Seed of the simulation

srems_inputs_second.txt

I7) Failure-times distribution associated to each
component

I8) Length of each path

srems_inputs_third.txt

I9) System path composition (array of
components that make up each path)

On the other hand, once the simulation has been run,
the outputs file, srems_outputs.txt, provides
the following information about the system being
modeled:

O1) Point and interval estimates for the system
reliability at different target times

O2) Descriptive statistics for the variable

“system failure-time”

O3) Information about key components and
paths (i.e.: components and paths that play a
critical role in system failure-time and,
therefore, in system reliability)

Several tests of the program have been carried out,
covering systems with different levels of
complexity. Whenever it has been possible, exact
reliability values (obtained via analytical methods),
have been compared with estimated ones. All tests
have given satisfactory results. The following
section includes three of the experiments that have
been performed to validate the method and to
illustrate the program possibilities.

VIII. CASE STUDY 1: A SIMPLE SYSTEM

A simple system is shown in Figure 3. The system
has seven components and three minimal paths.

Table I contains the failure-time distribution for
each of the components.

Fig. 3. System for case study 1

inputs.txt outputs.txtKERNEL SREMS++

randomVariates

stats

120 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE I

Failure times for components in system 1

Component Distribution Parameter 1 Parameter 2

1 Weibull 1.32 2.13

2 Weibull 1.34 2.12

3 Weibull 1.33 2.11

4 Exponential 1.2 --

5 Weibull 1.22 2.01

6 Exponential 1.22 --

7 Weibull 1.20 2.01

In this case, it is not difficult to find out the exact
value for 0()SR t , the system reliability at 0t . If Pi
represents the ith path, we can use probability theory
[24] to get the exact value for 0()SR t :

0 0 1 0 2 0 3 0

1 0 2 0 3 0

1 0 2 0 1 0 3 0

2 0 3 0 1 0 2 0 3 0

() () ()
 () () ()
 () ()
 () ()

S S P P P

P P P

P P P P

P P P P P

R t P T t P T t T t T t
P T t P T t P T t

P T t T t P T t T t
P T t T t P T t T t T t

= > = > ∪ > ∪ > =

> + > + > −

− > ∩ > − > ∩ > −
− > ∩ > + > ∩ > ∩ >

and, since each path failure-time is independent
from the others, the former expression is equivalent
to:

0 1 0 2 0 3 0

1 0 2 0 1 0 3 0

2 0 3 0 1 0 2 0 3 0

() () () ()
 () () () ()
 () () () () ()

S P P P

P P P P

P P P P P

R t R t R t R t
R t R t R t R t
R t R t R t R t R t

= + + −
− ⋅ − ⋅ −

− ⋅ + ⋅ ⋅

finally, since each minimal path is a series structure
containing independent failure-time components, it
is clear that:

 1 3i∀ ≤ ≤ , 0 0
1

() ()
in

Pi ij
j

R t R t
=

=∏

where in represents the number of components in
the ith path (i.e.: 1 2 2n n= = y 3 3n =) and 0()ijR t

represents the reliability, at 0t , of the jth component
on the ith path.

Using the former expressions and the inputs on each
component failure-time distribution, it is easy to
determine the reliability, at 0t , associated to each
component, to each path and, eventually, to the
whole system. For instance, taking as target
times 0 0.5,1.0,1.5,2.0t = , the exact reliability of the
system at each 0t is:

(0.5) 0.9408SR = (1.0) 0.7039SR =
(1.5) 0.4364SR = (2.0) 0.2414SR =

Once the exact reliability for this system has been
obtained using probabilistic methods (it is to
remember that it will not be possible to obtain this
exact value in most of the cases), the next step will
be to use SREMS++ to get an estimate value of the
system reliability at the different target times
(therefore, we will be able to compare the estimated
value at each 0t with the exact one and, eventually,
the exact survival function with the estimated one).

Figure 4 shows the results provided by SREMS++
for this system after 500,000 iterations:

Fig. 4. SREMS++ outputs for system 1

The following analysis can be derived from the
output:

• The total time used by the program to
complete the 500,000 iterations in a
standard PC (AMD Sempron, 2.2Ghz,
512MB RAM) has been of just 3 seconds

• The estimated value for the “mean time to

system failure” is 1.5318 (this value cannot
be obtained using probabilistic methods)

• The estimated values for the system

reliability at the considered target times are:

Angel Juan et al.

121

(0.5) 0.9405SR = (1.0) 0.7040SR =
(1.5) 0.4360SR = (2.0) 0.2410SR =

In other words, after a few seconds we
have obtained some estimated values that
are very close to the real ones (i.e.: the
estimated survival function and the real
survival function are almost quite similar).

• Path 1 has been the strongest path 52% of

times, where path 3 has been the weakest
path 48% of times. It makes sense,
therefore, to say that a good way to increase
system reliability will be to add redundant
components to these two paths

• Components 1 and 2 have been the key

components associated to the strongest path
26% of times. On the other hand,
components 4 and 6 have been the key
components 26% and 25% of times
associated to the weakest path respectively.
Therefore, it makes sense to say that
improving reliability of components 1, 2
and 6 (either adding redundancies or
increasing components quality) is a good
way to improve global system reliability

IX. CASE STUDY 2: AN INTERMEDIATE SYSTEM

A more complex system containing seven
components can be seen in Figure 5, where the
structure resembles similar to that of some
telecommunication or computer network.

Fig. 5. System for case study 2

The associated failure-times distributions are in
Table II and Table III show the logical (minimal
path) structure of the same system.

TABLE II

Failure times for components in system 2

Component Distribution Parameter 1 Parameter 2

1 Weibull 1.8 2.8

2 Weibull 1.7 2.7

3 Weibull 1.6 2.6

4 Weibull 1.6 2.5

5 Weibull 1.4 2.4

6 Weibull 1.2 2.2

7 Weibull 1.3 2.3

Observe that this system presents some additional
complications -as the fact that several components
are repeated in different minimal paths; those
complications tend to increase the difficulty of the
probabilistic methods. This is yet a relatively simple
system and, therefore, it is still being possible to use
probability theory [8] to obtain the exact value for
its reliability at different target times (i.e.: its
survival function). For instance, taking as target
times 0 0.5,1.0,1.5,2.0t = , the exact reliability of the
system at each 0t is:

(0.5) 0.8156SR = (1.0) 0.5335SR =
(1.5) 0.2799SR = (2.0) 0.1188SR =

TABLE III
Mimimal path structure for system 2

Path Composition

1 1 – 2 – 5 – 7

2 1 – 2 – 4 – 6 – 7

3 1 – 3 – 6 – 7

4 1 – 3 – 4 – 5 – 7

On the other hand, SREMS++ has been used to
estimate the system reliability and other useful
information about the system. Once again, the
simulation experiment, consisting in 500,000
iterations, has been carried out using a standard PC
(AMD Sempron, 2.2Ghz, 512MB RAM). Results
are shown in Figure 6.

2 5

1 4 7

3 6

122 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

 Fig. 6. SREMS++ outputs for system 2

Again, the computer employed only 3 seconds to
run the 500,000 iterations. SREMS++ provided
estimated values for the survival function that are
very close to the real ones:

(0.5) 0.8155SR = (1.0) 0.5323SR =
(1.5) 0.2786SR = (2.0) 0.1186SR =

Furthermore, it also provided the following
information: a 99% confidence interval for the
system reliability at each target time, an expected
value for the system failure-time of 1.1483, and
valuable information about paths and components:

• Path 1 has been the strongest one in 65% of

the cases, while it has been the weakest one
in 54% of the cases (this is not contradictory
since components 1 and 7 are repeated in all
paths and, therefore, the same path could be,
at the same time, the strongest and the
weakest one if the system failure is caused
by one of those repeated components)

• Component 7 has been the key one in the

strongest path in 43% of the cases, while
component 6 has been the key one in the
weakest path in 22% of the cases. From this
information it can be derived that improving
the reliability of components 6 and 7 (or
duplicating them) should be an efficient way
to significantly increase overall system
reliability

X. CASE STUDY 3: A ROUTERS NETWORK

The last system we consider in this paper is a more
complex and realistic one (see Figure 7): a network
of 15 routers that connect two servers, A and B, and
allow to sent IP packets from the server A to the
server B and vice versa.

The associated failure-times distributions are in
Table IV. On the other hand, Table V shows the
logical (minimal path) structure of the system.

Fig. 7. System for case study 3

Angel Juan et al.

123

TABLE IV

Failure times for components in system 3

Component Distribution Parameter 1 Parameter 2

1 Weibull 1.6 2.5

2 Weibull 1.7 2.6

3 Weibull 1.5 2.6

4 Weibull 1.6 2.2

5 Weibull 1.3 2.4

6 Weibull 1.2 2.1

7 Weibull 1.2 2.2

8 Weibull 1.9 2.1

9 Weibull 1.3 2.6

10 Weibull 1.5 2.2

11 Weibull 1.6 2.2

12 Weibull 1.2 2.4

13 Weibull 1.2 2.4

14 Weibull 1.1 2.2

15 Weibull 1.6 2.1

It seems obvious that obtaining the survival function
of this system using probabilistic or analytical
methods, is not an easy task at all. It may take a lot
of time and effort and, for some systems, it could
even be an impossible task to do. On the other hand,
SREMS can obtain, in just a few seconds, good
estimations of the system reliability at several target
times, together with valuable information about
critical components and system failure times.

As Figure 8 shows, this time the computer
employed 8 seconds to run the 500,000 iterations,
providing the following estimated values for the
system reliability at four different target times:

(0.5) 0.7985SR = (1.0) 0.4266SR =
(1.5) 0.1460SR = (2.0) 0.0333SR =

Furthermore, the following notes can also be
concluded from the output file (Figure 9 and Figure
10):

• Path 1 has been the strongest one in 48% of
the cases, while it has been the weakest one
in 29% of the cases.

• Components 1, 15 and 11 are the most

critical components of the network, and

should need to be improved or duplicated.
Also, special attention should be paid to
components 6, 7 and 14.

TABLE V

Minimal path structure for system 3

Path Composition

1 1 – 2 – 5 – 8 – 11 – 15

2 1 – 2 – 5 – 8 – 9 – 12 – 14 – 15

3 1 – 2 – 5 – 8 – 9 – 10 – 13 – 14 – 15

4 1 – 2 – 5 – 7 – 11 – 15

5 1 – 2 – 5 – 7 – 9 – 12 – 14 – 15

6 1 – 2 – 5 – 7 – 9 – 10 – 13 – 14 – 15

7 1 – 2 – 5 – 7 – 6 – 10 – 13 – 14 – 15

8 1 – 3 – 5 – 8 – 11 – 15

9 1 – 3 – 5 – 8 – 9 – 12 – 14 – 15

10 1 – 3 – 5 – 8 – 9 – 10 – 13 – 14 – 15

11 1 – 3 – 5 – 7 – 11 – 15

12 1 – 3 – 5 – 7 – 9 – 12 – 14 – 15

13 1 – 3 – 5 – 7 – 9 – 10 – 13 – 14 – 15

14 1 – 3 – 6 – 7 – 11 – 15

15 1 – 3 – 6 – 7 – 9 – 12 – 14 – 15

16 1 – 3 – 6 – 10 – 9 – 11 – 15

17 1 – 3 – 6 – 10 – 9 – 12 – 14 – 15

18 1 – 3 – 6 – 10 – 13 – 14 – 15

19 1 – 4 – 6 – 7 – 11 – 15

20 1 – 4 – 6 – 7 – 9 – 12 – 14 – 15

21 1 – 4 – 6 – 10 – 9 – 11 – 15

22 1 – 4 – 6 – 10 – 9 – 12 – 14 – 15

23 1 – 4 – 6 – 10 – 13 – 14 – 15

 Fig. 8. SREMS++ outputs for system 3 (1 out of 3)

124 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

 Fig. 9. SREMS++ outputs for system 3 (2 out of 3)

 Fig. 10. SREMS++ outputs for system 3 (3 out of 3)

XI. CONCLUSIONS

In this paper, a simulation-based method called
SREMS has been presented. SREMS can be very
helpful for system managers and engineers when
determining and improving complex systems
reliability. SREMS is able to provide useful
information about complex systems reliability
(system survival function) and can be applied in
most situations where analytical methods are not
well suited. Furthermore, it provides complementary
information about which components should be
improved or duplicated to obtain a significant
increment in system reliability. This information
will be of significance for providing maintenance
services to the buyers of the system.

SREMS has also been implemented as a computer
program written in C/C++. It does not matter how
many components and how many minimal paths the
system contains, the developed program can offer
accurate estimates of system reliability and system
failure-time parameters.

REFERENCES

[1] Banks, J. (ed). 1998. Simulation: Principles, Methodology,

Advances, Applications, and Practice. New York: John
Wiley & Sons.

[2] Bajenescu, T. I. 1998. Predict the Reliability of Complex

Systems by Applying the Monte Carlo Method. In
Proceedings of the 6th International Conference on
Optimization of Electrical and Electronic Equipments
1998. OPTIM '98, 789-792. Brasov, Romania.

[3] Barlow, R., and F. Proschan. 1996. Mathematical Theory

of Reliability. Philadelphia. Society for Industrial &
Applied Mathematics.

[4] Billinton, R., and P. Wang. 1999. Teaching Distribution

Systems Reliability Evaluation Using Monte Carlo
Simulation. IEEE Transactions on Power Systems 14: 397-
403.

[5] Collet, D. 2003. Modeling Survival Data in Medical

Research. Boca Raton. Florida: Chapman & Hall/CRC.

[6] Chisman, J. 1998. Using Discrete Simulation Modeling to

study Large-Scale System Reliability/Availability.
Computers and Operations Research 25: 169-174.

[7] Chung, C. 2004. Simulation Modeling Handbook: A

Practical Approach. Boca Raton. Florida: CRC Press.

[8] Degroot, M. 1988. Probability and Statistics. New York:

Addison-Wesley.

[9] Gedam, S.; Beaudet, S. 2000. Monte Carlo Simulation

using Excel Spreadsheet for Predicting Reliability of a
Complex System. In Proceedings of the 2000 Annual
Reliability and Maintainability Symp., 188-193.

[10] Goel, L., and R. Gupta. 1997. A Windows-based

Simulation Tool for Reliability Evaluation of Electricity
Generating Capacity. International Journal of Engineering
Education 13: 347-357.

[11] Goldfeld, A.; Dubi, A. 1987. Monte Carlo Methods in

Reliability Engineering. Quality and Reliability
Engineering Int., Vol. 3.

[12] Hoyland, A., and M. Rausand. 1994. System Reliability

Theory: Models and Statistical Methods. New York: John
Wiley-Interscience.

[13] Juan, A., and A. Vila. 2002. SREMS: System Reliability

using Monte Carlo Simulation with VBA and Excel.
Quality Engineering, 15: 333-34.

Angel Juan et al.

125

[14] Kamat, S., and M. Riley. 1975. Determination of
Reliability Using Event-Based Monte Carlo Simulation,
IEEE Transactions on Reliability 24: 73-75.

[15] Kotler, P. 2003. Marketing Management. Delhi: Pearson

Education.

[16] Kovalenko, I.N., N.Y. Kuznetsov, and P.A. Pegg. 1997.

Mathematical Theory of Reliability of Time Dependent
Systems with Practical Applications. New York: John
Wiley & Sons, Inc.

[17] Law, A., and D. Kelton. 2000. Simulation Modeling &

Analysis. New York: McGraw-Hill.

[18] Leemis, L. 2003. Input Modeling. In Proceedings of the

Winter Simulation Conference, ed. D.J. Medeiros, E.F.
Watson, J.S Carson, and M.S. Manivannan, pp. 62-73.
Available via <http://www.informs-cs.org> [accessed
January 4, 2005].

[19] Levin, M., and T. Kalal. 2003. Improving Product

Reliability: Strategies and Implementation. New York.
John Wiley & Sons.

[20] Lin, J., and C. Donaghey. 1993. A Monte Carlo Simulation

to Determine Minimal Cut Sets and System Reliability. In
Proceedings Annual Reliability and Maintainability
Symposium, 246-249. Atlanta, GA.

[21] L’Ecuyer, P. 2002. Random Numbers. In the International

Encyclopedia of the Social and Behavioral Sciences, ed.
N.J. Smelser and P.B. Baltes, 12735-12738. Oxford.

[22] Meeker, W., and L. Escobar. 1998. Statistical Methods for

Reliability Data. New York: John Wiley & Sons.

[23] Pham, H. (ed) 2003. Handbook of Reliability Engineering.

New York: Springer-Verlag.

[24] Ross, S.M. 2001. Simulation. San Diego. California:

Academic Press.

[25] Traub, R. 1994. Reliability for the Social Sciences: Theory

and Applications. London: Sage Publications.

[26] Wang, H., and H. Pham. 1997. Survey of Reliability and

Availability Evaluation of Complex Networks using Monte
Carlo Techniques. Microelectronics Reliabiability 37: 187-
209.

[27] Willis, R. 2000. Comparison of Reliability-Availability

Simulators. Available via <www.enre.umd.edu/
rms/simultors.htm> [accessed February 4, 2005]

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 127

Nonconvex optimization using an adapted linesearch
Alberto Olivares∗, Javier M. Moguerza∗ and Francisco J. Prieto‡

∗Universidad Rey Juan Carlos/Departamento de Informática Estad́ıstica y Teleḿatica
C/ Tulipan s/n, 28933 Mostoles (Madrid)

Email: javier.moguerza@urjc.es, alberto.olivares@urjc.es
†Universidad Carlos III de Madrid/Departamento de Estadı́stica

C/ Madrid 126, 28903 Getafe (Madrid)
Email: franciscojavier.prieto@uc3m.es

Abstract— This paper describes a new algorithm for the
solution of nonconvex unconstrained optimization prob-
lems, with the property of converging to points satisfying
the second-order optimality conditions. The algorithm is
based on a procedure which, from two descent directions
(a Newton-type direction and a direction of negative
curvature), selects in each iteration the linesearch model
best adapted to the properties of these directions. The
paper also presents the results of numerical experiments
that illustrate its practical efficiency.

Keywords— Newton’s method, unconstrained optimiza-
tion, negative curvature.

I. I NTRODUCTION

T HE goal of this work is the efficient solution of
optimization problems having the form

min
x

f(x), (1)

wheref : R
n → R is a twice-differentiable function.

Many algorithms have been proposed in the literature
to solve problems of the form (1), but only a few
attempt to use the second-order information available in
the Hessian matrix off . This information may play a
very significant role in the design of efficient algorithms.
Unconstrained optimization problems are usually solved
by applying algorithms based on Newton’s method.
These methods, when properly implemented, have well-
known convergence properties, and in particular they can
be shown to be globally convergent to first-order KKT
points. There are three broad classes of procedures to
ensure these convergence properties: linesearch methods,
trust-region methods and filter methods. The method
described in this paper belongs to the class of linesearch
procedures; in particular, we describe a linesearch that
uses second-order information in an efficient manner.
This information is introduced through the computa-
tion of a negative curvature direction in each iteration.
Note that along these negative curvature directions the
quadratic model is unbounded below, and this property

offers the potential for a significant reduction in the value
of the objective function.

We wish to introduce a methodology for the linesearch
that exploits any nonconvexity that the objective function
may present locally. To this end, in each iteration we
compute a pair of directions(sk, dk). The first one,
sk, is a modified Newton direction that ensures fast
convergence under convexity assumptions. The second
one,dk, is a negative curvature direction that allows the
algorithm to move in an efficient manner away from local
nonconvex regions.

One of the first proposals to take into account second-
order information is that of Fiacco [6]. More recently, the
use of this information has been studied by Fletcher and
Freeman [7], Gill and Murray [8], or Mukai and Polak
[21], among others. In a linesearch context the work of
McCormick [17] is particularly relevant. In this work,
the Armijo rule for the termination of the linesearch
is adapted and modified to include negative curvature
information. Moŕe and Sorensen [20] follow a similar
approach, and their work is the first one to use explicitly
negative curvature directions in the solution of specific
instances of unconstrained problems. Another approach
is discussed in Goldfarb [10]. This proposal is apropriate
in those cases where the current iterate is a negative
definite point. More recently, Moguerza and Prieto [18]
have extended the methodology of Moré and Sorensen to
constrained problems within an interior point framework.

Both in Moŕe and Sorensen [20] and in Moguerza
and Prieto [18], the next iterate is obtained through
a backtracking procedure along a second-order curve
combining the directions. In Moguerza and Prieto [19],
the search is conducted on a curve obtained from the
approximate solution of an ODE related to the problem.
Using a different approach, Gould et al. [11] compute
the directions using a conjugate gradient method: in
each iteration the best direction is chosen and a standard
linesearch is conducted. Another method based in the
selection of directions is suggested by San Matı́as and

128 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Roma [23]. The relation between our proposal and [23]
will be discussed later on in this paper.

The main aim of this work is to identify a criterion
such that in each iteration the best search procedure is
chosen. Depending on the results from the application of
this criterion, the algorithm will apply either a curvilinear
search similar to that proposed by Moré and Sorensen
[20], combining both search directions, or a standard
linesearch similar to that proposed by Gould et al. [11],
using just one of the two directions.

The structure of the paper is as follows: In Section 2
we introduce some basic definitions as well as a method
to compute the descent directions. Section 3 describes
the procedure to select the steplength and discusses its
convergence properties. Section 4 introduces the condi-
tion to identify the search method to be used in a given
iteration. In Section 5 we discuss implementation details
and present a general scheme for the algorithm. Section
6 shows the results from the computational experiments.
Finally, Section 7 presents some conclusions.

II. BASIC DEFINITIONS AND SEARCH DIRECTION

COMPUTATIONS

For the remainder of the paper we will assume that
the following regularity properties hold for problem (1)
and the initial point of the algorithm,x0.

A1. The level setL(x0) = {x : f(x) ≤ f(x0)} is
compact.

A2. The objective functionf is three times continu-
ously differentiable on an open set that contains
L(x0).

We start by introducing some definitions that will be
used in the computation of appropriate search direction
pairs (s, d).

a) Definition 1: Let f : R
n → R satisfy conditions

A1 andA2.

a. A point x is indefinite if∇2f(x) has at least one
negative eigenvalue.

b. If x is indefinite, a vectord is a direction of
negative curvature ifdT∇2f(x)d < 0.

c. At an indefinite pointx, a pair of vectors(s, d)
is said to be a descent pair if∇f(x)T s ≤ 0,
∇f(x)T d ≤ 0 anddT∇2f(x)d < 0.
If x is not indefinite, then(s, d) is a descent pair if
∇f(x)T s < 0, ∇f(x)T d ≤ 0 and dT∇2f(x)d =
0.

Assuming thatx is an indefinite point, a possible
choice for a descent pair would bes = −∇f(x) and
d = ±un, whereun denotes an eigenvector associated
to a negative eigenvalue of∇2f(x). The sign forun

is chosen to ensure that∇f(x)T d ≤ 0. If x is not

indefinite and∇f(x) 6= 0, then second-order information
is not relevant. A possible descent pair would be the
one defined froms = −∇f(x) and d = 0. The only
case in which there exists no descent pair corresponds
to pointsx satisfying∇f(x) = 0 and∇2f(x) positive
semidefinite, that is, satisfying the necessary second-
order conditions.

From a more practical point of view, in a given point
x a direction s is assumed to be a sufficient descent
direction if there exist constantsc1 andc2 such that

sT g(x) ≤ −c1‖g(x)‖2 (2)

and
‖s‖ ≤ c2‖g(x)‖, (3)

whereg(x) ≡ ∇f(x).
Analogously,d is a sufficient direction of negative

curvature atx if there exists a constantc3 such that

dT g(x) ≤ 0,

dT Hd ≤ min
(

0, θλmin(H(x)) + ν(g(x))‖d‖2
)

,

‖d‖ ≤ c3,

where θ ∈ (0, 1), λmin(H(x)) denotes the smallest
eigenvalue of the Hessian matrixH(x) ≡ ∇2f(x), and
the continuous and uniformly bounded functionν(x) ≥
0 satisfies alsoν(x) → 0 wheneverx → 0. This specific
form of the condition was introduced by Lucidi et al.
[16].

We will assume that we have negative curvature di-
rections that satisfy the stronger condition

dT g(x) ≤ 0,

dT Hd ≤ min (0, θλmin(H(x))) , (4)

‖d‖ ≤ c3.

Conditions (2) and (3) are the standard ones for
Newton-type directions. Condition (4) ensures thatd
contains information related to the smallest eigenvalue
of the Hessian matrix.

A. Computing a modified Newton direction

Under assumptionsA1 and A2 it is possible to con-
struct a local quadratic model for the objective function
from the corresponding Taylor series expansion at all
iteratesxk ∈ L(x0) as:

f(xk + p) ≃ f(xk) + g(xk)
T p + 1

2pT H(xk)p. (5)

We introduce the notation

Φk(s) ≡ g(xk)
T s + 1

2sT H(xk)s, (6)

Alberto Olivares et al. 129

for the right-hand side of (5), omitting the constant term
f(xk). As shown for example in Gill et al. [9],sk is a
stationary point ofΦk if it satisfies the linear system of
equations

H(xk)sk = −g(xk). (7)

The directionsk, obtained as a solution of (7), is known
as the Newton direction. An efficient method to compute
this direction uses the modified Cholesky factorization
proposed by Gill and Murray [8]. This modification
adapts the Cholesky procedure to the case when the
Hessian matrix is indefinite, and negative curvature di-
rections exist. Briefly, given the symmetric matrixH(x),
the factorization computes a lower triangular matrixL
with unit diagonal, and diagonal matricesD = diag(di)
and E = diag(ǫi) having di ≥ 0 and ǫi ≥ 0, such that
H(x) + E = LDLT and E is small. In particular, if
H(x) is sufficiently positive definite, thenE = 0. The
modified Newton directions can be obtained by solving
the system

LDLT s = −g(x).

B. Computing a direction of negative curvature

For an iteratexk ∈ L(x0), a direction of negative
curvaturedk will be useful if it satisfies condition (4).
Note that from (4) it follows that

dT
k H(xk)dk → 0 andg(xk) → 0 ⇒ λHk

→ 0, (8)

where λHk
denotes the smallest eigenvalue ofH(xk)

if xk is indefinite, and zero otherwise. The motivation
underlying (4) is to ensure that the iterates move towards
regions of local convexity forf .

If the complete spectral decomposition of the Hessian
matrix H(xk) were available, it would be easy to obtain
directionsdk satisfying condition (4). Unfortunately, the
determination of a complete system of eigenvectors and
eigenvalues for this matrix can be computationally very
expensive.

Alternatively, the modified Cholesky factorization of
Gill and Murray [8] allows the computation of a negative
curvature direction simultaneously with the determina-
tion of a modified Newton direction; in this manner, the
computational cost to obtain a descent pair is reasonable.
If the factorization does not detect any negative curvature
information for the current iterate, it is enough to define
dk = 0. For the details on this procedure to compute
directions of negative curvature, and its properties, see
Gill et al. [9] and Moŕe and Sorensen [20].

III. T HE CURVILINEAR SEARCH

In this section we present some convergence results for
a search based on the use of descent pairs, as defined in
Section II. Many of these results are adapted from those
in Moré and Sorensen [20].

When using a search method to ensure global conver-
gence, in each iteration a parametric curvex(α) is built
from the directions computed in that iteration. The goal
is to find a value of the parameterα > 0 such that

f(x(α)) < f(x). (9)

In our case, in each iterationk we compute a descent
pair (sk, dk), and from it we define a general parametric
curve as:

C = {xk(α) ≡ xk + φ1(α)sk + φ2(α)dk, α ≥ 0},
(10)

where φ1(α) and φ2(α) are appropriate (nonnegative)
weight functions for the linear combination. We build
the curve using both descent directions, in order to use
simultaneously the information available in them.

We now analyze the properties of this search and
reasonable choices for the functionsφ1 andφ2. We start
by studying the problem of finding an appropriate value
for α, ensuring the convergence of the algorithm, from
the analysis of the univariate function

ψk(α) ≡ f(xk(α)). (11)

We needψk to satisfy some basic properties: i)ψk

should be a continuous function ofα, and as a con-
sequence bothφ1 and φ2 should also be continuous
functions of α; ii) we also have to ensure that there
exists a value ofα > 0 such that a condition related
to (9) and ensuring sufficient descent is satisfied. The
following Lemma shows that this is the case as long as
eitherψ′

k(0) < 0 or ψ′

k(0) ≤ 0 andψ′′

k(0) < 0 hold. The
Lemma extends the results in Moré and Sorensen [20], as
it considers general functionsφ1 andφ2 in (10) with the
only assumption that they are three times differentiable.

The Lemma has two parts, the first one presents
an existence result that is sufficient for convergence
under a backtracking search approach. The second part,
including two termination conditions, can be used to
prove convergence independently of the search procedure
used in the algorithm.

Lemma 1:Let ψ(α) : R → R defined as in (11) be
a three-times differentiable function on an open interval
I containing[0, 1], and letγ1 ∈ (0, 1), a given scalar. If
eitherψ′(0) < 0 or ψ′(0) ≤ 0 andψ′′(0) < 0 then there
exists a scalar̂η > 0 in I such that

ψ(α) ≤ ψ(0) + γ1

(

ψ′(0)α + 1
2ψ′′(0)α2

)

130 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

holds for allα ∈ [0, η̂], whereη̂ is bounded away from
zero.

Furthermore, letγ2 be another given scalar such
that 1 > γ2 > γ1 > 0. Either ψ(1) ≤ ψ(0) +
γ1

(

ψ′(0) + 1
2ψ′′(0)

)

holds or there exists a scalarη̃ > 0
satisfyingη̃ ≤ η̂, such that both

ψ(α) ≤ ψ(0) + γ1

(

ψ′(0)α + 1
2ψ′′(0)α2

)

, (12)

ψ′(α) ≥ γ2 min
(

ψ′(0) + ψ′′(0)α, 0
)

(13)

hold simultaneously for allα ∈ [η̃, η̂]. The value ofη̃ is
bounded away from zero.

Proof: Let

Ψ(α) ≡ ψ(α) − ψ(0) − γ1

(

αψ′(0) + 1
2α2ψ′′(0)

)

.

Note that, from the properties ofψ and this definition,
Ψ(0) = 0, Ψ′(0) = (1 − γ1)ψ

′(0) ≤ 0 and Ψ′′(0) =
(1 − γ1)ψ

′′(0) < 0 if Ψ′(0) = 0. Also, Ψ is three-times
differentiable onI.

a) Consider the case whenψ′(0) < 0. From the Taylor
series expansion forΨ around zero andα ∈ I we have

Ψ(α) = Ψ′(0)α + 1
2Ψ′′(ζ1)α

2,

for someζ1 ∈ [0, α]. Let Ī denote a closed subinterval
of I that contains zero. Thenψ and its first, second and
third derivatives are bounded on̄I. Let K1 be a bound for
ψ′′(α) on Ī andβ1 = −2ψ′(0)/K1; for all α ∈ (0, β1) it
holds thatΨ(α) < 0 and it holds that̂η ≥ −2ψ′(0)/K1.

If ψ′(0) < 0 but ψ(1) ≤ ψ(0) + γ1

(

ψ′(0) + 1
2ψ′′(0)

)

does not hold, we have thatΨ(1) > 0 and by continuity
there exists a positive valueβ2 < 1 such thatΨ(β2) = 0
and β2 is the first such value. From the mean-value
theorem there exists a positive valueβ3 < β2, the
smallest positive zero ofΨ′, Ψ′(β3) = 0. Note that (12)
holds for allα ∈ [0, β2].

We study two cases: i) Ifψ′(0) + β3ψ
′′(0) ≤ 0, then

from γ2 > γ1 it holds that

0 = ψ′(β3) − γ1

(

ψ′(0) + β3ψ
′′(0)

)

≤ ψ′(β3) − γ2

(

ψ′(0) + β3ψ
′′(0)

)

= ψ′(β3) − γ2 min(ψ′(0) + β3ψ
′′(0), 0),

implying that both (12) and (13) hold forα = β3. ii) If
ψ′(0) + β3ψ

′′(0) > 0, from Ψ′(β3) = 0 it holds that

ψ′(β3) = γ2(ψ
′(0) + β3ψ

′′(0))

> min(ψ′(0) + β3ψ
′′(0), 0) = 0,

and (13) also holds forα = β3.
From Ψ′(β3) = 0 and Taylor series expansions it

follows that

γ1

(

ψ′(0) + β3ψ
′′(0)

)

= ψ′(β3) = ψ′(0) + β3ψ
′′(ζ3),

(14)

for someζ3 ∈ [0, β3]. Fromβ3 < 1 and our assumptions,
there exists a valueK3 such that|ψ′′(α)| ≤ K3 for any
α ∈ [0, β3]. Any α that satisfies (13) will also satisfy
α ≥ β3 and from (14)

α ≥ β3 ≥ −
(1 − γ1)ψ

′(0)

2K3
. (15)

b) Consider now the case whenψ′(0) ≤ 0 and
ψ′′(0) < 0. Using again Taylor series expansions for
α ∈ [0, 1],

Ψ(α) = Ψ′(0)α + 1
2Ψ′′(0)α2 + 1

6Ψ′′′(ζ2)α
3,

for some ζ2 ∈ [0, α]. Let K2 be a bound forψ′′′(α)
on [0, 1] andβ4 = −3(1 − γ1)ψ

′′(0)/K2. Then, for any
α ∈ (0, β4) it holds that 1

2Ψ′′(0)α2 + 1
6Ψ′′′(ζ2)α

3 < 0
and asΨ′(0) ≤ 0, (12) holds for allα ∈ (0, β4) and we
have that

η̂ ≥ −3(1 − γ1)ψ
′′(0)/K2. (16)

If in addition ψ(1) > ψ(0) + γ
(

ψ′(0) + 1
2ψ′′(0)

)

holds, we apply an argument similar to the preceding
case. AsΨ(0) = 0, Ψ′(0) ≤ 0, Ψ′′(0) < 0 andΨ(1) > 0,
by continuity there exists a positive valueβ5 < 1 such
that Ψ(β5) = 0 and β5 is the first such value. From
the mean-value theorem there exists a positive value
β6 < β5, the smallest positive zero ofΨ′, Ψ′(β6) = 0.
Note that (12) holds for allα ∈ [0, β5].

But under the conditions onψ′(0) andψ′′(0), we have
ψ′(0) + β6ψ

′′(0) < 0, and fromγ2 > γ1 it holds that

0 = ψ′(β6) − γ1

(

ψ′(0) + β6ψ
′′(0)

)

≤ ψ′(β6) − γ2

(

ψ′(0) + β6ψ
′′(0)

)

= ψ′(β6) − γ2 min(ψ′(0) + β6ψ
′′(0), 0),

implying again that both (12) and (13) hold forα = β6.
Again, fromΨ′(β6) = 0 and Taylor series expansions,

γ1

(

ψ′(0) + β6ψ
′′(0)

)

= ψ′(β6) = ψ′(0) + β6ψ
′′(0) + 1

2β2
6ψ′′′(ζ4),

for someζ4 ∈ [0, β6]. As β6 < 1, let K4 denote a bound
for ψ′′′(α) on [0, β6]. Using ψ′(0) ≤ 0 it follows that

−(1 − γ1)β6ψ
′′(0)

≤ −(1 − γ1)
(

ψ′(0) + β6ψ
′′(0)

)

(17)

= 1
2β2

6ψ′′′(ζ4) ≤
1
2β2

6K4.

Any α that satisfies (13) will also satisfyα ≥ β6 and
from (18)

α ≥ β6 ≥ −
2(1 − γ1)ψ

′′(0)

K4
. (18)

Alberto Olivares et al. 131

The following Corollary assumes a backtracking
search to computeα conducted as described in [9], that
is, for a given positive constantδ < 1 we define the
steplengthα as the first value in the sequence{δi}∞i=0

for which condition (12) is satisfied.
Corollary 1: If a backtracking search with parameter

δ is used, the value ofα computed from the search,̂α,
satisfies

α̂ ≥ δη̂,

and is bounded away from zero. If a general search is
conducted to compute a value satisfying both (12) and
(13) then the computed valuẽα satisfies

α̃ ≥ η̃.
Proof: This result follows for the backtracking

search fromαi+1
k = δαi

k andαi
k not satisfying (12) and

consequently satisfyingαi
k > η̂, and the bound for̂η.

For the general search the result follows directly from
the bounds for̃η.

The preceding results establish the existence of suffi-
cient descent given certain conditions on the derivatives
of ψ. The satisfaction of these conditions depends on the
properties of the functionsφ1 and φ2, and those of the
descent pair(s, d). We now analyze our requirements on
these functions. From the definition ofψ(α) it follows
that

ψ′(0) = φ′

1(0)∇f(x)T s + φ′

2(0)∇f(x)T d

ψ′′(0) = (φ′

1(0))2sT∇2f(x)s + (φ′

2(0))2dT∇2f(x)d

+ 2φ′

1(0)φ′

2(0)sT∇2f(x)d + φ′′

1(0)∇f(x)T s

+ φ′′

2(0)∇f(x)T d,

and from the properties of the descent pair(s, d) it
follows that

φ′

1(0) ≥ 0, φ′

2(0) ≥ 0 ⇒ ψ′(0) ≥ 0

φ′

1(0) = 0, φ′′

1(0) ≥ 0, φ′′

2(0) ≥ 0 ⇒ ψ′′(0) ≥ 0.

If in addition to these conditions,φ′

2(0) > 0 andφ′′

1(0) >
0 thenψ′′(0) < 0. We also need the third derivatives to
be bounded on[0, 1].

We assume in what follows that the functionsφ1 and
φ2 satisfy the following condition

C1. It holds that

φ′

1(0) = 0, φ′

2(0) > 0, φ′′

1(0) > 0, φ′′

2(0) ≥ 0.

Note that underC1 for any descent pair(s, d) 6= 0 we
have

ψ′(0) = φ′

2(0)∇f(x)T d ≤ 0

ψ′′(0) = (φ′

2(0))2dT∇2f(x)d + φ′′

1(0)∇f(x)T s

+ φ′′

2(0)∇f(x)T d < 0. (19)

Also, givenxk and a descent pair(sk, dk), we assume
that the the next iteratexk+1 is defined as

xk+1 = xk(αk),

whereα is chosen to satisfy the following condition:
C2. The steplengthαk is defined to be equal to one if

ψ(1) satisfies (12); otherwise,αk is computed to
satisfy both (12) and (13).

Finally, we need a condition on the descent pair that
is sufficiently flexible to allow us to apply an adapted
search that makes use of the best directions in each
iteration. The condition, replacing (2), (3) and (4) is the
following one:
C3. Let c̄1, c̄2, c̄3 and θ̄ be nonnegative constants. For

all iterationsk, the descent pair(sk, dk) satisfies
the conditions

‖sk‖ ≤ c̄1‖gk‖, gT
k sk ≤ 0,

gT
k dk ≤ 0, ‖dk‖ ≤ c̄2,

and defining

wk =

{

sT
k gk/‖gk‖ if gk 6= 0

0 otherwise,

min
(

wk, d
T
k Hkdk

)

≤ min(−c̄3‖gk‖, θ̄λHk
).
(20)

In the following section this condition will be shown
to be satisfied by the choice of directions used in the
proposed algorithm.

The following result shows that, under these con-
ditions and our initial assumptions the procedure is
globally convergent.

Theorem 1:Let f : R
n → R in (1) satisfy assump-

tions A1 andA2. Consider the sequence{xk} generated
under conditionC2 using a descent pair(sk, dk) satisfy-
ing conditionC3. Then,

lim
k→∞

g(xk) = 0, (21)

and if the first-order KKT points off in L(x0) satisfy
the sufficient second-order condition,

lim
k→∞

λHk
= 0. (22)

Proof: From C2 and (12), all iterates remain in
L(x0). As a consequence of assumptionsA1 andA2, the
sequence{f(xk)} is bounded below, and the sequence
{xk} has convergent subsequences.

Consider any of these convergent subsequences, and
add condition (12) for all iterations along the sequence
up to a given iterationr in the subsequence, to obtain

f(xr) − f(x0) ≤ γ1

r−1
∑

k=0

(

ψ′

k(0)αk + 1
2ψ′′

k(0)α2
k

)

.

132 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Taking limits asr → ∞, using the boundedness off
and the signs ofα, ψ′ andψ′′ it follows that

ψ′

k(0)αk → 0 and ψ′′

k(0)α2
k → 0.

From conditionC3, if sk = dk = 0 for some iteration
k, thengk = 0 andλH(x) = 0, implying thatxk satisfies
the second-order necessary conditions. If the descent pair
is not equal to zero in any iteration, fromC1 we have
ψ′

k(0) ≤ 0 andψ′′

k(0) < 0 for all k. For these iterations
from Corollary 1, (16) andψ′′

k(0) < 0, if we conduct a
backtracking search we have that

ψ′′

k(0)α2
k ≤

9δ2(1 − γ1)
2(ψ′′

k(0))3

K2
2

≤ 0,

and if we conduct a general search, from (18),

ψ′′

k(0)α2
k ≤

4(1 − γ1)
2(ψ′′

k(0))3

K2
4

≤ 0,

and if K2 is an infinite subsequence, fromψ′′

k(0)α2
k →

0 and the preceding bounds it must hold along it that
ψ′′

k(0) → 0. But from (19) this implies

dT
k H(xk)dk → 0 and g(xk)

T sk → 0.

If g(xk) = 0 along an infinite subsequence,
from C3 we have λHk

→ 0. Otherwise, assume
g(xk) 6= 0 for all k in the subsequence; we may
have that eitherg(xk)

T sk/‖g(xk)‖ → 0 along all
subsequences, in which case conditionC3 implies
min(−c̄3‖gk‖

2, θ̄λHk
) → 0 and

‖g(xk)‖ → 0, λHk
→ 0,

or along a subsequence there exists a positive con-
stant K such that for all k in the subsequence
g(xk)

T sk ≤ −K‖g(xk)‖ ≤ 0, but this implies
‖g(xk)‖ → 0. From ‖sk‖ ≤ c̄1‖gk‖ we have that
0 ≥ g(xk)

T sk/‖gk‖ ≥ −‖sk‖ ≥ −c̄1‖gk‖ and we
must also haveg(xk)

T sk/‖gk‖ → 0, contradicting our
assumption. Thus, in all cases we have

‖g(xk)‖ → 0, λHk
→ 0,

and the desired result follows from these limits and
assumptionA2.

The preceding convergence results provide a justifi-
cation for the algorithm of interest in this paper but, in
order to have a practical algorithm, we still need to define
in a precise manner both the form of the functionsφ1 and
φ2 and that of the descent pair(sk, dk). Regarding the
functions, the simplest choice that satisfies the desired
conditionsC1 is φ1(α) ≡ α2 and φ2(α) = α; we will
use it in the remainder of the paper. The choice of the
directions in the descent pair will be discussed in the
following section.

IV. T HE ADAPTED SEARCH

As we mentioned before, in each iteration the pro-
posed algorithm computes a descent pair(sk, dk), but
before carrying out a search to satisfyC2, it decides
what information in the descent pair will be used in the
search. This approach is similar to the one discussed in
Gould et al. [11], with the main difference that, while
they only consider two alternatives, we consider the three
following possibilities:

• To conduct a linesearch based just on the use of the
modified Newton direction, using the descent pair
(sk, 0).

• To conduct a linesearch based only on the negative
curvature direction, using the descent pair(0, dk).

• To carry out a curvilinear search combining both
directions, making use of the full descent pair
(sk, dk).

Our choice will be made from a comparison of the de-
scent provided by each direction on a quadratic model of
the objective function. We wish to select the alternative
that offers the most significant descent information. A
similar proposal to this scheme was suggested in San
Mat́ıas and Roma [23], where the proposed method
would select one of these three different possibilities
from a comparison of the descent provided on the
quadratic model of the objective function. The main
differences between this work and the proposal in [23]
are the way in which the weights for the directions
are chosen and the scaling of the direction of negative
curvature.

As previously mentioned, before analyzing the descent
information, it is important to consider the scaling of
each of the directions. The manner in which they are
computed and their properties usually imply a significant
difference in their sizes. The Newton directionsk ensures
good local convergence properties for unit steplengths,
while the negative curvature direction has no specific
scale attached to it (the quadratic model used to define
it would imply an infinite steplength). The recommended
procedure is to scale the direction of negative curvature
to a size that is not very different from that of the Newton
direction, see [18].

Consider now the choice of directions for the search.
LetQk denote the local quadratic model for the objective
function aroundxk, defined as:

Qk(z) = gT
k z + 1

2zT Hkz. (23)

Gould et al. [11] study the two directions in the descent
pair (sk, dk), and select the one that provides the largest
descent ratio, measured against the quadratic model.
Thus, the Newton directionsk is chosen whenever the

Alberto Olivares et al. 133

condition
Qk(sk)

‖sk‖
≥

Qk(dk)

‖dk‖
, (24)

is satisfied. If the Newton direction has not been mod-
ified, and the quadratic model is minimized by this
direction, it holds that

Qk(sk) = 1
2gT

k sk. (25)

If dk is replaced in (23) and in condition (24), together
with (25), we have the following condition equivalent to
(24): Selectsk whenever

gT
k sk

‖sk‖
≥ 2Qk(dk) (26)

holds fordk such that‖dk‖ = 1.
The inequality (26) provides a criterion to determine

which of the two directions in the pair gives the largest
potential for descent in the objective function. The
proposal in Gould et al. [11] could be generalized to the
case when both directions offer a significant potential
for descent. If inequality (26) is extended to consider
this case, we have the condition

τ2Qk(dk) ≥
gT
k sk

‖sk‖
≥ τ1Qk(dk), (27)

whereτ1 andτ2 are prespecified constants satisfying0 <
τ2 < 2 < τ1. This multiple condition can be used as a
criterion to select among the three alternatives introduced
at the beginning of this Section, in the following manner:

• If (27) holds, both directions are considered rel-
evant, the descent pair is defined as(s̄k, d̄k) =
(sk, dk) and the new iterate is obtained from a
curvilinear search as:

xk+1 = xk + α2
ksk + αkdk.

• Otherwise, if

gT
k sk

‖sk‖
< τ1Qk(dk) (28)

holds, the algorithm performs a linesearch based
only on the Newton direction, the descent pair is
defined as(s̄k, d̄k) = (sk, 0) and the next iterate is
obtained from

xk+1 = xk + α2
ksk.

• Also, if both conditions

τ2Qk(dk) <
gT
k sk

‖sk‖
and gT

k dk ≥ τ3d
T
k Hkdk

(29)
hold simultaneously for some positive constantτ3,
then the procedure conducts a linesearch that con-
siders only the direction of negative curvature, the

descent pair is defined as(s̄k, d̄k) = (0, dk) and it
computes the next iterate as

xk+1 = xk + αkdk.

• Finally, if both conditions

τ2Qk(dk) <
gT
k sk

‖sk‖
and gT

k dk < τ3d
T
k Hkdk

(30)
hold simultaneously, then the procedure conducts
a search as in the first case, considering both
directions as relevant, defining the descent pair as
(s̄k, d̄k) = (sk, dk) and computing the new iterate
from a curvilinear search as:

xk+1 = xk + α2
ksk + αkdk.

The following result establishes that the preceding
rules to select the directions in the search satisfy con-
dition C3, and as a consequence that the algorithm is
globally convergent.

Lemma 2:Assume that in each iterationk the iterates
{xk} remain in the setL(x0), assumptionsA1 and A2
hold and we are able to compute a descent pair(sk, dk)
satisfying conditions (2), (3), (4) and‖dk‖ = 1. Then
conditionC3 holds for the descent pair(s̄k, d̄k) defined
as indicated in the preceding paragraphs.

Proof: Note that under assumptionsA1 and A2
and the condition that the iterates remain inL(x0) there
exists a constantc4 such that‖gk‖ ≤ c4 and from
conditions (2), (3) and (4) we have

gT
k sk ≤ 0, ‖sk‖ ≤ c2‖gk‖, gT

k dk ≤ 0, ‖dk‖ ≤ c3.
(31)

As a consequence it is enough that we study condition
(20).

If (27) holds, the desired result follows from̄sk = sk,
d̄k = dk and conditions (2) and (4) implying

s̄T
k gk ≤ −c1‖gk‖

2 and d̄T
k Hkd̄k ≤ θλHk

⇒ min(s̄T
k gk/‖gk‖, d̄

T
k Hkd̄k) ≤ min(−c1‖gk‖, θλHk

).

If (28) holds, thens̄k = sk and d̄k = 0, implying
min(s̄T

k gk/‖gk‖, d̄
T
k Hkd̄k) = sT

k gk/‖gk‖. From (28),
(31), (4) andτ1 > 2,

sT
k gk

‖sk‖
≤ τ1(g

T
k dk + 1

2dT
k Hkdk)

≤ τ1
1
2dT

k Hkdk ≤ dT
k Hkdk ≤ θλHk

. (32)

But (2) implies−‖sk‖‖gk‖ ≤ sT
k gk ≤ −c1‖gk‖

2 ⇒
‖sk‖ ≥ c1‖gk‖ and using this bound in (32) we obtain

sT
k gk

‖gk‖
≤ c1

sT
k gk

‖sk‖
≤ c1θλHk

.

134 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

From this inequality andsT
k gk ≤ −c1‖gk‖

2 we have that

min(s̄T
k gk/‖gk‖, d̄

T
k Hkd̄k) = sT

k gk/‖gk‖

≤ min (−c1‖gk‖, c1θλHk
) .

Consider now the case when condition (29) holds.
Now we have s̄k = 0 and d̄k = dk, implying
min(s̄T

k gk/‖gk‖, d̄
T
k Hkd̄k) = dT

k Hkdk. From (29) and
(3) we have that

sT
k gk

‖gk‖
≥ c2

sT
k gk

‖sk‖
≥ c2τ2(g

T
k dk + 1

2dT
k Hkdk)

≥ c2τ2

(

τ3 + 1
2

)

dT
k Hkdk.

From (2) we then have

dT
k Hkdk ≤ −

c1

c2τ2(τ3 + 1
2)
‖gk‖,

and using (4) and the preceding results we obtain

min(s̄T
k gk/‖gk‖, d̄

T
k Hkd̄k) = dT

k Hkdk

≤ min

(

−
c1

c2τ2(τ3 + 1
2)
‖gk‖, θλHk

)

.

Finally, if (30) holds, then using the same arguments
as in the first case

s̄T
k gk ≤ −c1‖gk‖

2 and d̄T
k Hkd̄k ≤ θλHk

⇒ min(s̄T
k gk/‖gk‖, d̄

T
k Hkd̄k) ≤ min(−c1‖gk‖, θλHk

).

V. A DAPTED CURVILINEAR SEARCH (ACS)
ALGORITHM

The implementation of the proposed algorithm in-
volves several decisions concerning practical details; we
describe some of them in the following paragraphs.

• In those iterations where the negative curvature
direction is used, it is computationally efficient to
scale this direction using the information from the
Newton direction, see [18].

• The direction of negative curvature is computed
from the modified Cholesky factorization. But in
some cases, even if the factorization detects the
presence of negative curvature in the Hessian ma-
trix, it is not efficient to use it in the search. We
consider a negative curvature directiondk to be
useful if it holds that

dT
k H(xk)dk ≤ −εd. (33)

In our implementation we have takenεd = 10−7.
If this condition is not satisfied in a given iteration,
then we setdk = 0.

For the classifying condition (27), determining the
type of search to carry out in each iteration, we have
takenτ1 = 10 andτ2 = 0.05.

The termination condition for the algorithm has been
derived from the optimality conditions for problem (1).
The procedure terminates whenever

‖g(xk)‖ ≤ ε(1 + ‖g(x0)‖),

holds, whereε = 10−5.
The proposed algorithm follows the scheme presented

below:

Adapted Curvilinear Search (ACS) Algorithm
Select an initial iteratex0

Let k = 0
Repeat

Computesk as an approximate solution for the
system (7)

Compute, if it exists, a direction of negative
curvaturedk from the modified Cholesky factorization

Let dk = 0 if (33) is not satisfied
Select the search model from condition (27)
Computeαk to satisfy conditionC2
Update the variables according to the

search model used:
If (27) holds,xk+1 = xk + α2

ksk + αkdk

If (28) holds,xk+1 = xk + α2
ksk

If (29) holds,xk+1 = xk + αkdk

Let k = k + 1
until convergence

VI. N UMERICAL RESULTS

We have conducted a certain number of numerical
experiments using the proposedACS algorithm on a
set of test problems. Both the algorithm and the test
problems have been implemented and executed using
MATLAB 6.5 under Linux.

A. The test problems

We have selected the test problems from the collection
CUTEr (Constrained and Unconstrained Testing Envi-
ronment, revisited) proposed by Gould et al. [12], and
itself an expansion of the original CUTE collection [3].
This set is considered to be a referent for the verification
and comparison of nonlinear programming algorithms as
the one proposed in this paper. The problems used in the
numerical experiments that we have conducted have been
chosen to satisfy the following criteria: they must be
nonlinear unconstrained problems of dimension between
1 and 500, and having continuous second derivatives
available. A total of 70 problems in CUTEr satisfy these
conditions.

Alberto Olivares et al. 135

B. Analysis of the results

Our main motivation for this work has been to analyze
the practical impact of using second order information,
as well as the study of efficient implementations of
algorithms that make use of this information. As a
consequence, we have defined the computational exper-
iments to compare the results obtained on the test set
using the proposed algorithm to those of three alternative
procedures.

The first algorithm,MN , is based on a modified
Newton method and does not use any second-order
information. The second algorithm,ALS, carries out an
adapted linesearch similar to the one described in Gould
et al. [11], where in each iteration the best direction in
the descent pair is selected from condition (26), and used
in a standard linesearch framework. The third algorithm,
CS, is based on the proposal by Moré and Sorensen
[20]. Finally, a fourth algorithm,ACS, uses the adapted
curvilinear search described in the preceding sections. In
all cases, the initial points used have been those specified
as default ones in the CUTEr environment.

Among the 70 problems in the set, the modified
Cholesky factorization detected the presence of signifi-
cant negative curvature in 36 instances. The comparative
study centers on these 36 problems, as for the remaining
cases the four algorithms provide basically equivalent
results. In 9 out of the 36 problems (DECONVU, DJTL,
HEART6LS, HIMMELBF, HYDC20LS, MARATOSB,
PFIT2LS, PFIT3LS and PFIT3LS) none of the algo-
rithms were able to reach convergence in less than 300
iterations, and these problems were removed from the
study.

Tables I, II, III and IV show the results obtained by the
four algorithms on the 27 remaining problems. The mod-
ified Newton method,MN , was unable to solve problem
OSBORNEB, while the adapted search algorithmALS
failed to solve problem HEART8LS. All algorithms were
stopped whenever the iteration count exceeded 250 and
the number of function evaluations exceeded 1250. In
the tables we have used the following labels:

- pnam: Problem name.
- obj: Objective function value at the computed

solution.
- KKT: Norm of KKT conditions at the solution.
- iter: Iteration count.
- fgeval: Number of function and gradient eval-

uations.
- nc: Number of iterations in which negative

curvature is detected.
- und: Number of iterations in which only the

Newton direction is used.

- unc: Number of iterations in which only the
negative curvature direction is used.

- ucs: Number of iterations in which a curvilinear
search, based on both directions, is used.

Problem BARD was the only one in which, though
negative curvature was detected using the modified
Cholesky factorization, none of the methods made use
of it. Also, the adapted linesearch algorithmALS detects
negative curvature in one of the iterations for problem
BOX3, but it is not used there. It is interesting to note
the small number of problems where the norm of the
KKT conditions is larger than10−8: one problem for
MN , two for ALS, two for CS and three forACS.

We study first the correlation between the number of
curvilinear searches and the performance of the algo-
rithm. Figure 1 displays in thex-axis the number of
curvilinear searches used within each problem, while the
y-axis repesents the average decrease in the number of
iterations when using theACS algorithm instead of the
MN algorithm for the preceding problems. In all cases
the average reduction is negative, that is, the algorithm
that uses negative curvature information is more efficient
than the modified Newton algorithm. It is interesting
to note that an increase in the number of curvilinear
searches conducted within the algorithm tends to be
associated with a larger reduction in the total number
of iterations. For example, the average decrease in the
iteration count when the curvilinear search is used three
or more times is always larger than 19. At least for
the test set used in this experiment, this result seems
to imply that the benefits of using negative curvature are
not associated to a particular iteration, but rather have
an impact in all occasions in which they are used.

1 2 3 4 >5
−60

−40

−20

0

20

40

60
Effect of the curvilinear search

Number of iterations in which curvilinear search is used

A
ve

ra
ge

 it
er

at
io

ns
 d

ec
re

as
ed

 (
M

N
−

A
C

S
 it

er
at

io
ns

)

Fig. 1. Correlation between number of curvilinear searches and
performance of the algorithm

From Table V, the worst-case performance of the
adapted curvilinear search algorithmACS, when com-
pared with the modified Newton algorithmMN , cor-
responds to problem HATFLDE, where the number of
iterations required for convergence is increased by 3

136 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

(17,65%), while the largest improvement corresponds
to problem HUMPS with a decrease in the number of
iterations of 36 (47%). The worst case for theACS
algorithm when compared toALS implies an increase
of 56 iterations (40,57%) in problem PFIT1LS, while
the largest improvement corresponds to a decrease of
72 iterations (64,29%) in problem HUMPS. Regarding
the curvilinear search algorithmCS, the worst perfor-
mances forACS correspond to problems HAIRY and
HIMMELBB, where iteration counts are increased by 4
and 2 (20%) respectively, while the largest improvement,
17 iterations (54,84%), corresponds to problem GULF.

Tables VI and VII present a summary of iteration
and function evaluation counts for each one of the
algorithms, both including and excluding those problems
were the algorithms may have failed. From these tables
it is interesting to note that the lowest average number of
iterations corresponds to the proposed algorithmBCA;
the lower numbers of function evaluations for algorithms
MN andALS is explained by the complexity of a search
that uses two directions. This effect can be reduced
by using a specialized quadratic search procedure, see
for example [9]. Nevertheless, the number of function
evaluations forBCA is lower than the one forCS.

Similar conclusions can be reached from Table VIII.
This table provides the proportion of cases in which each
algorithm has been the most efficient one (including ties),
both regarding iteration and function evaluation counts.

Finally, Tables IX, X and XI show a comparison of
the number of cases in which there was an improvement,
a worsening or no change regarding iteration counts
when comparing the proposed algorithmACS to the
other methods. In all cases, the number of improved
cases associated to theACS algorithm is significant.

VII. C ONCLUSIONS

We have described an efficient procedure that uses
directions of negative curvature for the solution of
nonconvex unconstrained problems, selecting the most
appropriate search to obtain local solutions for these
problems. The algorithm is based on a modified Newton
model to compute the search directions, and a new pro-
posal of an adapted curvilinear search to combine these
directions. Particular attention has been paid regarding
the conditions to impose on directions of negative cur-
vature before they are considered as a part of the search
process.

The computational results illustrate the impact of an
appropriate use of negative curvature information: in
approximately 50% of the problems negative curvature
information was used. Due to the low computational
cost to obtain these directions, it seems highly advisable

to integrate them within algorithms for unconstrained
optimization. Furthermore, the results seem to show that
using an adaptive search model increases the efficiency
of Newton based algorithms.

An important issue raised by the results in this work
is to determine the impact of the quality of the negative
curvature direction on the computational efficiency of
the overall algorithm, that is, if an improvement of
the directions based on iterative methods, for example,
would yield even better computational results for the
algorithm.

Another interesting and promising task would be to
verify the performance of the proposed approach within
numerical procedures based on the use of approximate
directions such as conjugate gradient or quasi-Newton
methods.

VIII. A CKNOWLEDGEMENTS

This work has been partially financed by the Spanish
grants MCYT TIC2003-05892-C05-05 and URJC PPR-
2004-05. Special thanks must be given to Julio Holgado
and Dominique Orban for their comments and clarifica-
tions regarding the installation of CUTEr.

REFERENCES

[1] L. Armijo, Minimization of functions having Lipschitz continuos
first parcial derivatives, Pacific Journal of Mathematics 16
(1966) 1-3

[2] E.G. Boman,Infeasibility and negative curvature in optimiza-
tion, Ph. D. Thesis, Stanford University (1999)

[3] I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint,CUTE:
Constrained and unconstrained testing environment, Trans.
ACM Math. Software 21, (1995)123-160

[4] J.R. Bunch and B.N. Parlett,Direct methods for solving sym-
metric indefinite systems of linear equations, SIAM Journal on
Numerical Analysis, 8 (1971) 639-655

[5] D.K. Fadeev and V.N. Faddeeva,Computational Methods for
Linear Algebra, W.H. Freeman and Co. (1963)

[6] A.V. Fiacco and G.P. McCormick,Nonlinearprogramming: se-
quential unconstrained minimization techniques, Wiley, New
York (1968)

[7] R. Fletcher and T.L. Freeman,A modified Newton method for
minimization, Journal of Optimization Theory and Applications
23 (1977) 357-372

[8] P.E. Gill and W. Murray,Newton type methods for uncon-
strained and linearly constrained optimization, Mathematical
Programming 7 (1974) 311-350

[9] P.E. Gill, W. Murray and M.H. Wright,Practical Optimization,
Academic Press, London/New York (1981)

[10] D. Goldfarb,Curvilinear path steplength algorithms for mini-
mization which use directions of negative curvature, Mathemat-
ical Programming, 18 (1980), 31-40.

[11] N.I.M. Gould, S. Lucidi, M. Roma and Ph.D.L. Toint,Exploit-
ing negative curvature directions in linesearch methods for un-
constrained optimization, Optimization Methods and Software,
14 (2000), 75-98

[12] N.I.M. Gould, D. Orban and Ph.L. Toint,CUTEr (and SifDec),
A Constrained and Unconstrained Testing Environment, revis-
ited, Technical Report TR/PA (2004)

Alberto Olivares et al. 137

[13] L.V. Kantorovich and G.P. Akilov,Functional Analysis, Perga-
mon Press (1964)

[14] W. Kahan, Numerical linear algebra, Canad. Math. Bull 9
(1966) 757-801

[15] A.V. Knyazev and A.L. Skorokhodov,On exact estimates of
the convergence rate of steepest ascent method in symmetric
eigenvalue problem, LAA 154 (1991) 245-257

[16] S. Lucidi, F. Rochetich and M. Roma,Curvilinear stabilization
techniques for truncated Newton methods in large scale uncon-
strained optimization, SIAM Journal on Numerical Analysis, 8
(1998) 916-939

[17] G. McCormick, A modification of Armijo’s step-size rule for
negative curvature,Mathematical Programming 13 (1977) 111-
115

[18] J.M. Moguerza and F.J. Prieto,An Augmented-Lagrangian
interior-point method using directions of negative curvature,
Mathematical Programming 95 (2003) 573-616

[19] J.M. Moguerza and F.J. Prieto,Combining search directions
using gradient flows, Mathematical Programming 96 (2003)
529-559

[20] J. J Moŕe and D.C. Sorensen ,On the use of directions of
negative curvature in a modified Newton method, Mathematical
Programming 16 (1979) 1-20

[21] H. Mukai and E. Polak,A second order algorithm for the gen-
eral nonlinear programming problem, Journal of Optimization
Theory and Applications, 4 vol. 26 (1978)

[22] J.M. Ortega and W.C. Rheinboldt,Iterative solution of nonlin-
ear equations in several variables, Academos Press, New York
(1970)

[23] S. San Mat́ıas and M. Roma,Un método de b́usqueda lineal con
direcciones combinadas para optimización irrestringida, Actas
del XXVI Congreso Nacional de Estadı́stica e Investigación
Operativa,Úbeda, Spain (2001)

APPENDIX

TABLES

pnam obj KKT iter fgeval
ALLINITU 5.7443849103 2.99e-15 8 10

BARD 0.0082148773 3.43e-10 9 9
BEALE 6.08e-26 9.14e-13 9 63
BIGGS6 3.75e-17 1.37e-11 42 69
BOX3 5.40e-19 2.51e-11 8 8

DENSCHND 9.10e-14 8.46e-09 48 70
DENSCHNE 4.79e-18 4.38e-09 11 14
ENGVAL2 1.87e-21 2.98e-09 17 23
EXPFIT 0.2405105939 1.21e-10 8 34

GROWTHLS 1.0040405841 1.75e-11 20 32
GULF 2.75e-19 5.12e-09 22 39
HAIRY 20.00 1.67e-10 25 95

HATFLDD 6.62e-08 1.08e-09 22 38
HATFLDE 5.12e-07 4.76e-14 14 17
HEART8LS 7.87e-20 1.05e-09 241 664

HELIX 2.34e-24 2.44-11 16 21
HIELOW 874.1654321149 1.54e-10 8 10

HIMMELBB 1.95e-30 1.64e-13 14 18
HUMPS 1.48e-19 1.72e-10 76 488

KOWOSB 3.0780094673e-04 1.56-12 10 12
LOGHAIRY 0.1823215568 9.42-09 96 720
OSBORNEA 5,46e-05 4.67e-14 18 25
OSBORNEB - - > 250 > 1250

PFIT1LS 2.48e-22 7.30e-11 189 267
SNAIL 2.29e-32 3.03e-16 104 215

STRATEC 2212.2622909 2.24e-06 17 24
YFITU 6.67e-13 4.99e-12 36 46

TABLE I

DETAILED RESULTS FOR THEMN ALGORITHM

MN ALS CS ACS
iter 33.88 30.96 33.48 28.52
feval 96.71 96.88 130.54 110.46

TABLE VI

AVERAGE NUMBERS OF ITERATIONS AND FUNCTION

EVALUATIONS OVER THE TEST PROBLEMS, EXCLUDING THOSE

PROBLEMS WHERE AN ALGORITHM MAY HAVE FAILED

138 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

pnam obj KKT iter fgeval nc und unc
ALLINITU 5.7443849103 4.60e-09 8 8 2 6 2

BARD 0.0082148773 3.40e-10 9 9 3 9 0
BEALE 3.04e-23 5.40e-11 10 42 1 9 1
BIGGS6 1.36e-16 2.20e-09 39 87 20 28 11
BOX3 5.40e-19 2.50e-11 8 8 1 8 0

DENSCHND 7.96e-14 7.80e-09 48 49 7 42 6
DENSCHNE 8.17e-21 1.80e-10 12 12 8 9 3
ENGVAL2 1.85e-20 9.40e-09 14 14 1 13 1
EXPFIT 0.2405105939 2.40e-14 11 17 4 7 4

GROWTHLS 1.0040405841 5.10e-10 24 58 7 18 6
GULF 2.87e-25 6.30e-12 26 41 5 22 4
HAIRY 20.00 1.40e-08 24 125 12 12 12

HATFLDD 6.62e-08 3.90e-10 23 28 1 22 1
HATFLDE 5.12e-07 4.40e-10 17 26 4 14 3
HEART8LS - - > 250 > 1250 - - -

HELIX 2.29e-21 9.40e-10 14 14 8 8 6
HIELOW 874.1654321149 9.70e-07 9 13 3 7 2

HIMMELBB 1.96e-23 4.30e-10 12 12 10 11 1
HUMPS 7.09e-18 1.20e-09 112 1010 75 37 75

KOWOSB 3.08e-04 1.10e-13 10 14 3 9 1
LOGHAIRY 0.1823215568 2.80e-10 84 300 67 19 65
OSBORNEA 5.46e-05 2.30e-14 22 137 5 20 2
OSBORNEB 0.0875947241 1.00e-12 32 104 15 19 13

PFIT1LS 6.57e-23 3.70e-11 82 98 1 81 1
SNAIL 5.03e-23 1.40e-11 103 185 4 99 4

STRATEC 2212.2622909 4.30e-06 15 18 4 12 3
YFITU 6.67e-13 1.80e-09 38 48 2 37 1

TABLE II

DETAILED RESULTS FOR THEALS ALGORITHM

MN ALS CS ACS
iter 49.56 39.11 39.44 34.41
feval 162.88 141.5 153.46 133.31

TABLE VII

AVERAGE NUMBERS OF ITERATIONS AND FUNCTION

EVALUATIONS OVER THE TEST PROBLEMS, INCLUDING THOSE

PROBLEMS WHERE AN ALGORITHM MAY HAVE FAILED

MN ALS CS ACS
% best iter 29.63 33.33 37.04 48.15
% best feval 25.93 48.15 22.22 22.22

TABLE VIII

PERCENTAGE OF PROBLEMS WITH BEST PERFORMANCE

Number of problems 27
ACS 14
MN 7
Tied 6

TABLE IX

COMPARISON BETWEENACS AND MN . NUMBER OF PROBLEMS

SHOWING BEST PERFORMANCE

Number of problems 27
ACS 16
GD 6
Tied 5

TABLE X

COMPARISON BETWEENACS AND ALS . NUMBER OF PROBLEMS

SHOWING BEST PERFORMANCE

Number of problems 27
ACS 13
CS 6
Tied 8

TABLE XI

COMPARISON BETWEENACS AND CS. NUMBER OF PROBLEMS

SHOWING BEST PERFORMANCE

Alberto Olivares et al. 139

pnam obj KKT iter fgeval nc
ALLINITU 5.7443849103 1.34e-11 9 11 2

BARD 0.0082148773 9.68e-11 11 14 2
BEALE 6.10e-26 9.20e-13 9 88 1
BIGGS6 7.83e-17 1.47e-09 71 112 14
BOX3 8.50e-19 3.45e-10 8 8 1

DENSCHND 7.76e-14 7.69e-09 48 68 5
DENSCHNE 8.17e-21 1.81e-10 9 9 3
ENGVAL2 4.95e-21 4.84e-09 14 16 1
EXPFIT 0.2405105939 3.51e-13 10 40 1

GROWTHLS 1.0040405841 7.81e-10 27 44 5
GULF 2.18e-30 4.74e-15 31 60 7
HAIRY 20.00 7.42e-08 16 80 9

HATFLDD 6.62e-08 7.11e-10 23 30 1
HATFLDE 5.12e-07 4.22e-13 26 44 5
HEART8LS 4.19e-29 3.59e-13 212 818 201

HELIX 2.06e-36 9.52e-18 19 36 5
HIELOW 874.1654321149 3.02e-08 6 9 1

HIMMELBB 1.04e-29 4.78e-13 10 11 7
HUMPS 6.44e-26 1.14e-13 78 1119 55

KOWOSB 3.08e-04 7.79e-14 11 15 3
LOGHAIRY 0.1823215568 1.49e-12 66 797 48
OSBORNEA 5.46e-05 4.58e-13 20 30 4
OSBORNEB 0.0401377363 4.85e-15 16 39 6

PFIT1LS 1.38e-20 4.88e-10 159 222 3
SNAIL 3.16e-22 3.55e-11 106 247 4

STRATEC 2212.2622909 3.78e-11 16 23 3
YFITU 6.67e-13 2.58e-10 34 47 3

TABLE III

DETAILED RESULTS FOR THECS ALGORITHM

pnam obj KKT iter fgeval nc und unc ucs
ALLINITU 5.7443849103 1.30e-11 9 11 2 7 0 2

BARD 0.0082148773 3.40e-10 9 9 3 9 0 0
BEALE 6.08e-26 9.10e-13 9 88 1 8 1 0
BIGGS6 3.75e-17 3.40e-14 43 90 19 25 3 15
BOX3 8.50e-19 3.50e-10 8 8 1 7 0 1

DENSCHND 7.60e-14 7.60e-09 47 70 6 41 4 2
DENSCHNE 8.03e-20 5.70e-10 11 11 6 9 0 2
ENGVAL2 4.93e-28 1.60e-12 14 16 1 13 1 0
EXPFIT 0.2405105939 3.50e-13 10 40 1 9 0 1

GROWTHLS 1.0040405841 6.00e-12 21 99 7 14 4 3
GULF 6.72e-18 1.00e-09 14 27 6 8 4 2
HAIRY 20.00 7.80e-08 20 158 10 12 2 6

HATFLDD 6.62e-08 1.10e-12 22 32 4 19 3 0
HATFLDE 5.12-07 1.00e-12 17 33 4 14 3 0
HEART8LS 5.55e-29 4.30e-13 197 761 183 44 37 116

HELIX 8.14e-38 1.90e-18 18 36 7 12 3 3
HIELOW 874.1654321149 3.00e-08 6 9 1 5 0 1

HIMMELBB 1.10e-30 7.80e-14 12 13 9 10 0 2
HUMPS 1.08e-22 4.60e-12 40 848 22 26 10 4

KOWOSB 3.08e-04 2.80e-09 6 11 2 5 0 1
LOGHAIRY 0.1823215568 3.80e-14 68 557 54 27 10 31
OSBORNEA 5.46e-05 5.90e-13 14 19 3 13 0 1
OSBORNEB 0.0401377363 3.30e-11 19 54 7 4 12 3

PFIT1LS 3.08e-20 5.80e-10 138 195 3 135 2 1
SNAIL 3.16e-22 3.60e-11 106 247 4 102 1 3

STRATEC 2212.2622909 4.50e-06 17 24 3 14 1 2
YFITU 6.67e-13 5.50e-12 34 47 3 31 1 2

TABLE IV

DETAILED RESULTS FOR THEACS ALGORITHM

140 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

iter fgeval
pnam MN ALS CS ACS MN ALS CS ACS

ALLINITU 8 8 9 9 10 8 11 11
BARD 9 9 11 9 9 9 14 9
BEALE 9 10 9 9 63 42 88 88
BIGGS6 42 39 71 43 69 87 112 90
BOX3 8 8 8 8 8 8 8 8

DENSCHND 48 48 48 47 70 49 68 70
DENSCHNE 11 12 9 11 14 12 9 11
ENGVAL2 17 14 14 14 23 14 16 16
EXPFIT 8 11 10 10 34 17 40 40

GROWTHLS 20 24 27 21 32 58 44 99
GULF 22 26 31 14 39 41 60 27
HAIRY 25 24 16 20 95 125 80 158

HATFLDD 22 23 23 22 38 28 30 32
HATFLDE 14 17 26 17 17 26 44 33
HEART8LS 241 - 212 197 664 - 818 761

HELIX 16 14 19 18 21 14 36 36
HIELOW 8 9 6 6 10 13 9 9

HIMMELBB 14 12 10 12 18 12 11 13
HUMPS 76 112 78 40 488 1010 1119 848

KOWOSB 10 10 11 6 12 14 15 11
LOGHAIRY 96 84 66 68 720 300 797 557
OSBORNEA 18 22 20 14 25 137 30 19
OSBORNEB - 32 16 19 - 104 39 54

PFIT1LS 189 82 159 138 267 98 222 195
SNAIL 104 103 106 106 215 185 247 247

STRATEC 17 15 16 17 24 18 23 24
YFITU 36 38 34 34 46 48 47 47

TABLE V

OVERALL COMPARISON OF ITERATION AND FUNCTION EVALUATION COUNTS

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 141

Abstract— Hazardous materials classification and

ranking is a multi-criteria problem; no single property
can be used for assessing the fire hazards of chemical
substances or materials. This paper explores the use of a
multi-criteria decision-making technique, Analytic
Hierarchy Process, in better incorporating the different
properties or parameters, in hazardous materials
assessment.

Based on this approach, a methodology has been
developed and is introduced, for the rapid assessment and
relative ranking of the fire hazards of chemical
substances. Fuzzy logic was also used, for handling both
linguistic variables and uncertainties present in hazard
assessment. The proposed approach has been applied in
developing two hazard ranking indices: ‘Substance Fire
Hazard Index’, , and ‘Consequences Index’, presented
here.

Finally some conclusions on the efficiency of using the
multi-criteria approach in hazard indices development
are also discussed.

Keywords— Fuzzy sets; AHP; Hazard assessment;
ranking indices; Multi-criteria decision making.

I. INTRODUCTION
major challenge that chemical industry and
regulatory authorities are facing nowadays is

the comprehensive management of the risks
resulting from industrial activities and hazardous
materials use, production, transportation or
disposal.

First step in risk management is hazards
identification and assessment, which requires
systematic and methodical study and analysis of
the hazards. For this purpose, a wide range of
hazard identification and assessment techniques
has been developed; among them are relative
assessment and ranking techniques [1, 2, 3]. The
main advantage of this kind of techniques is that
they do not require the commitment of many
resources, in manpower and time. The most
known and widespread among this category of
techniques are Dow’s ‘Fire & Explosion Index’

[4] and ICI ‘Mond’ index [5], aiming at the rapid
hazard assessment at installations that use
hazardous substances. Other indices have also
been proposed for ranking toxic [6, 7], ecotoxic
[8] and reactive substances [9]. Recent
developments in this field include, among other, a
range of indices and similar tools [10-15]. Tixtier
et al [16] have recently presented a collection and
comparative analysis of 62 hazard and risk
analysis methodologies, including indices, relative
assessment and ranking techniques.

II. A MULTI-CRITERIA PROBLEM
Is it widely acknowledged, both in chemical

process safety and fire safety literature, that there
is no single fire hazard property or parameter that
could be used for the assessment of the fire
hazards of materials or substances. More
specifically, it has been stated that: ‘Νo single fire
hazard property, such as flash point or ignition
temperature, should be used to describe or
appraise the fire hazard or fire risk of a material,
product, assembly, or system under actual fire
conditions’ [17]. Moreover, ‘there is no single
parameter which defines flammability, but some
which are relevant are: a) flash point, b)
flammability limits, c) auto-ignition temperature,
d) ignition energy, and e) burning velocity’ [18].
‘The fire hazard properties may be used as
elements of a fire risk assessment only when such
assessment takes into account all of the factors
that are pertinent to the evaluation of the fire
hazard of a given situation.’ [17]

There is a wide variety of fire hazard
properties that could be taken into account in such
an assess-ment. Different methods, tools, codes,
legislation requirements, guidelines, etc, [19, 20],
use varying sets of properties to access the fire
hazards of chemical substances. Such properties
included, for example, are the parameters outlined
above [18], or those described in ref. [17],

A multi-criteria and fuzzy logic based approach for the relative
assessment of the fire hazards of chemical substances and installations

A

Apostolos N. Paralikas *, †,§, Argyrios I. Lygeros*
* School of Chemical Engineering, National Technical University of Athens,

15780 Zografos Campus, Athens, Greece.
†National Operations & Emergency Response Centre, Greek Fire Brigade,

1 Rizariou & Mikras Asias str., Halardi, 15233, Athens, Greece.
§Corresponding author. Tel.: +30 210 6549911, fax: +30 210 6828382,

Email: aparalik@mail.ntua.gr

142 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

namely: flash point, ignition temperature,
flammable (explosive) limits, specific gravity
(relative density), vapour density, boiling point,
melting point, water solubility.

The scope of this work is to develop a new
methodology for developing safety-related
indices, aimed at the relative ranking and

comparative assess-ment of hazardous substances,
installations, units, or processes. The proposed
methodology handles the issue of relative
assessment and ranking as a multi-criteria
decision-making problem; therefore aims in
incorporating the different decision criteria in the
assessment. For this purpose, a multi-criteria
analysis technique, Analytic Hierarchy Process
(AHP) [21], has been employed. Furthermore, the
development of the proposed methodology was
also based on fuzzy logic concepts.

Based on the proposed methodology two

indices, the ‘Substance Fire Hazard Index’, SFHI,
and the ‘Consequences Index’, CI, have been
developed and are presented, in order to

demonstrate the application of the methodology.
SFHI is proposed as a tool for the relative ranking
and comparative assessment of hazardous
substances, according to their fire hazard
properties. It is focused on estimating the fire
hazards of the substances related to accidents that
could take place at installations that use, process,
produce, or store hazardous substances. The
calculation of the proposed index is based on a
total of 16 hazardous properties. The
‘Consequences Index’, CI, is introduced as a tool
for the ranking of industrial facilities, units or
processes that use hazardous substances,
according to the magnitude of the possible
consequences at the installation, as well as the
natural and human environment around it, from a
possible accident that could take place.

The proposed methodology could also be used
for the development of similar indices, based on
any organization’s need and views. Also the
proposed indices could be modified by any user to
include their own priorities, or decision
environment. It should be emphasized that the
principal aim of this work is to present a new
methodological approach in dealing with chemical
accidents hazards, namely the multi-criteria
approach, not to introduce a new index or two.
Each body, institution, authority, etc using or
adopting this approach could in the first place
adapt the proposed methodology and indices in a
way to better suit its needs, or the decision
environment within it is working.

This paper is organized as follows: in section
III principles of fuzzy sets theory are presented; in
section IV Analytic Hierarchy Process is briefly
described; in section V the proposed methodology
is intoduced. In Sections VI and VII the
developed indices are outlined. Following in
Section VIII, a demonstration example of the
proposed ‘Consequences Index’, CI, is presented.
Finally in Section IX, some conclusions are
presented.

III. FUZZY SETS CONCEPTS

Fuzzy Sets theory was introduced by L.Zadeh
in 1965 to deal with imprecision, uncertainty and
vagueness that are inherent in many ‘real world’
problems [22]. There have been many successful
applications of fuzzy sets and logic since,
including chemical process safety related issues.

Central point in fuzzy sets theory is the notion
of membership. In classic sets, an element may or
may not belong to a given set. In fuzzy sets, an
element may belong to a set up to some degree,
the membership degree, which takes values
between 0 and 1. Fuzzy numbers are fuzzy sets
with membership functions represented
mathematically, allowing the performance of
arithmetic operations. Common shapes, used in
this work, are triangular and trapezoid fuzzy
numbers.

Fuzzy numbers can be used effectively to
describe Linguistic Variables, such as ‘very tall’,
‘tall’; and furthermore, for handling qualitative
data (e.g. ‘slightly soluble’, etc.). In existing
hazard classification systems, levels, classes or
categories of the various hazardous properties of
chemical substances are usually determined with
the use of intervals defined by ‘crisp’ boundaries.
For example, according to NFPA 704 [23], a
substance (e.g. gasoline) with flash point -43oC
has Fire Hazard Rating, NF=4. The same rating
applies to a substance with flash point 13 oC (e.g.
ethanol), while for a substance with flash point 32
oC (e.g. xylene), NF=3 and kerosene, with flash
point 37,8 oC, has NF=2.

As it will be described later on, fuzzy
linguistic variables have been used in the
development of the proposed index, for describing
the various levels, classes or categories of each
hazardous property, and also in the development
of utility functions for assigning penalty values to
each hazardous property.

IV. AHP: AN OUTLINE
The use of decision-making tools, among

Apostolos N. Paralikas and Argyrios I. Lygeros 143

them Analytic Hierarchy Process (AHP), has been
suggested in literature [24-25] for the assessment
of chemical safety related issues. AHP, developed
by T.L. Saaty in late 70s [21], is designed to deal
with complex decision-making problems
involving multiple criteria, in a wide range of
application fields [26]. It can be used for ranking
decision alternatives, using a set of parameters
that are taken into account in the assessment. The
assessment and ranking of the fire hazards of
chemical substances, or facilities that use produce
or store hazardous substances, process units, etc,
can be viewed as such a complex problem, with
multiple parameters involved; various substances,
facilities, processes or units can be viewed as
decision alternatives. AHP allows for intangible
and quantitative factors to be successfully
involved in the assessment process. It has already
been employed in fire safety assessment of
buildings and structures [27-30], as well as in
safety related issues [31-32]. The use of the multi-
criteria approach in chemical risks management is
a relatively new application field [33-34],
although J.J. Buckley [35] had used the example
of chemicals ranking in introducing Fuzzy
Hierarchical Analysis, the fuzzy sets extension of
AHP.

As it has been mentioned already, no single
fire hazard property can be used to describe or
appraise the fire hazards or risks of materials;

therefore AHP is a suitable multi-criteria method
for incorporating different parameters in the

assessment. Two major steps can be distinguished
in the procedure: First, structuring the problem
under consideration in a hierarchical form. This
involves ‘decomposition’ of the problem into
components, namely the identifica-tion of the
parameters that are considered relevant, as well as
the organization of these parameters in groups and
subgroups, which are then linked in a hierarchical
manner. This results in forming the Hierarchy, the
hierarchical structure that is repre-sentative of the
analysis of the specific problem. The lowest level
of the Hierarchy is consisted by the alternatives,
or, in the ‘ratings’ mode, by the parameters that
are employed in the assessment. This mode is
suitable in cases of large number of alternatives or
for the development of a general index. In this
case, the assessment is performed in a spreadsheet
manner, where a Weight Factor is assigned to
each parameter and for the different alternatives
relevant Penalty Factors representing the
magnitude of each parameter are assigned.

Second step is the assignment of weights to
each parameter of the problem. This is done

through pair-wise comparative judgments among
all parameters that belong to the same group or
sub-group of the decision hierarchy. The
parameters are compared in respect to their
importance, likelihood or preference, depending
on the nature of the problem under consideration.
The pair-wise comparisons are performed by an
expert, or group of experts, capturing their
knowledge, expertise or understanding, which are
incorporated in the final results. To compare
parameter ith with parameter jth, the decision-
maker assigns a linguistic value aij, which
corresponds to a numeric value, an integer in the
range 1-9. The meaning of each value on the scale
is presented in Table I.

TABLE I

THE PAIR-WISE COMPARISONS SCHEME IN AHP

aij=1

 3
 5
 7
 9

2,4,6,8

The two parameters are equally important (likely
/ preferred, etc…)

parameter i is weakly more …. than j.
parameter i is strongly more …. than j.

parameter i is very strongly more …. than j.
parameter i is absolutely more …. than j.

interval values between to adjacent choices.

Pairwise comparisons of all elements within each
group or subgroup form an nxn matrix, A. Rows
and columns of the pair-wise comparisons matrix

are the n elements of the respective group or sub-
group. The local priorities vector on the group’s
or sub-group’s elements is elicited from the
eigenvector that corresponds to the maximum
eigenvalue of matrix A. The synthesis of the local
priorities of all levels results to the weight vector
of the priorities of all parameters taken into
account.

A final step, assigning Penalty Factors
representing the value of the respective parameter
under consideration, is also included when the
assessment is performed using the ‘ranking’ mode
and not through the pair-wise comparisons among
the alternatives. The procedure adopted in the
proposed methodology for assigning Penalty
Factors is described later on.

V. THE PROPOSED METHODOLOGY

The development of the proposed
methodology for the relative assessment and
ranking of hazardous substances and facilities that
use, produce or store hazardous substances was
based on the above-mentioned approach. The

respective steps in the development of the
proposed indices are outlined as following:

144 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

a) Determination of the criteria - parameters
taken into account in the index calculation.

b) Assignment of a Weight factor, Wj, to each
criterion / parameter, and

c) Development of utility functions (or value
functions) for the calculation of the
Performance measure (or Penalty factor), Pj

S,
attributed to the j criterion / parameter for the
Sth substance/facility.
The combination of the Weights for each

parameter and the respective Penalties provides
the total value of the relative ranking for the Sth
element under consideration:

∑=
j

S
jjS PWI)*((1)

where: Wj: the Weight factor of the j Parameter,
and

Pj
S: the Penalty attributed to the jth

Parameter.

In the following sections the above-mentioned
steps are presented in more detail.

VI. THE ‘SUBSTANCE FIRE HAZARD INDEX’
The proposed ‘Substance Fire Hazard Index’,

SFHI, is introduced as a tool for the relative
ranking and comparative assessment of hazardous
substances, according to their fire hazard
properties. Its calculation is based on a total of 16
properties, which include fire hazards, physical
properties, special hazards and burning properties
of chemical substances. SFHI is focused on
estimating the fire hazards that are related to
major accidents that could take place at

installations that use, process, produce, or store
hazardous substances.

The stages followed in the development of the
proposed index, are presented in more detail:

A. Fire hazard properties taken into account
First stage in the development of the proposed

SFHI, was the determination of the substance pro-
perties to be taken into account in the
development and calculation of the index. For this
purpose, all relevant properties related to the
behavior of chemical substances under conditions
of an accident were recorded. A wide range of
relevant sources has been consulted, including
chemical substances classification and labelling
systems [36]; hazardous chemicals legislation [37,
38]; codes, guides and guidelines [17], [19, 20],
[39, 40]; risk evaluation models [41] and fire
safety literature [42-46].

The properties to be incorporated in
calculation of the proposed Substance Fire Hazard
Index, 16 in total, were identified, selected, and
then classified in groups and subgroups, as
presented in Figure 1.

B. Determination of Weighting Factors, WJ.
Second stage in the development of the

proposed index was the determination of the
weights for each parameter/property taken into
account in the index calculation. For each
Parameter, Ij, a Weight Factor, Wj, has to be
ascribed. For their determination, Ana-lytic
Hierarchy Process has been employed. First step
in the implementation of AHP, as it has already
been described, is the development of the
Hierarchy, the hierarchical structure, which

Substance Fire Hazard Index,
SFHI

a. Boiling point,
b. Vapor density,
c. Specific gravity,
d. Water solubility,
e. Vapor pressure.

a. Heat of Combu-
stion, ΔΗC

b. Burning

a. Flash Point
b. Ignition Temperature
c. Flammability Limits

c.i. Lower F.L.
c.ii.Flammability

Range

a. Explosives
b. Self Reactivity
c. Self Heating
d. Water reactivity.
e. Oxidizing properties
f. Organic Peroxides

Fire Hazard
Properties

Special Hazard
Properties

Burning
Properties

Physical
Properties

Fig. 1 Hierarchical structure of the Hazard Properties taken into account in SFHI calculation.

Apostolos N. Paralikas and Argyrios I. Lygeros 145

represents the problem under consideration. The
Hierarchical structure developed and used is
shown in Figure 1.

Then the user of the proposed index will have
to perform the pair-wise comparisons among all
elements of each subgroup, at all levels of the
hierarchy, in order to elicit the ‘local’ weights of
the parameters, according to his/her own
perception and understanding of the problem.

The volume of the pair-wise comparisons

produces the ‘local’ weights or priorities, which
are then synthesized to produce the final Weights,
Wj, of the parameters. For performing these
calculations and also for developing the hierarchy,
a software program, ‘Expert Choice 2000’ [47],
has been used.

C. Assignment of penalties, Pj
S

Third stage in the development of the proposed
index was the elaboration of the procedure for
assigning Penalty Factors, Pj

S, to the parameters
(hazardous properties), Ιj, taken into account in
the calculation of the index. The development of
this procedure was based on fuzzy logic, as well
as on AHP. These Penalty Factors are
representative of the value Tj

S, of the respective
hazardous property Ιj, for the Sth substance or
material under consideration. For the assignment
of Penalty Factors a ‘Utility Function’ (or value
function) has been developed for each one of the
parameters taken into account. The 3-steps
procedure for the development of the Utility
Functions is outlined as following:

1) Development of Linguistic Variables for each
parameter-property: The various properties
taken into account in the calculation of the
proposed index have been described as a set of
Linguistic terms, representing the various levels,
classes or categories of the hazardous properties
of chemical substances. These classes are usually
determined by using intervals that are defined by
‘crisp’ boundaries; examples are provided in

Table II. The linguistic terms that compose each
Linguistic Variable were then represented as
triangular or trapezoid fuzzy numbers. In order
to develop the Linguistic terms for each
Variable, all major classification systems for
each property were examined and their levels,
classes or categories, as well their crisp

boundaries were recorded. Different
classification systems may use different number
of classes, or these classes may correspond to
different values or value intervals; even different
definitions of hazardous properties are being
used. Based on these recordings, the Linguistic
terms of each Variable were determined, and
then represented as fuzzy numbers. For example,
for the property ‘Flash Point’ (in oC), the

following classification is used in two major
classification systems, GHS [36] and NFPA 30
[39], as shown in Table II:

Linguistic Variable: Flash Point

0

0,2

0,4

0,6

0,8

1

1,2

-20 0 20 40 60 80 100
Flash Point, O C

m
em

be
rs

hi
p

fu
nc

tio
n

CombustibleExtremely
Flammable

 Very
Flammable

Flammable
Slightly

Flammable

Figure 2: Fuzzy Numbers describing the Linguistic Variable ‘Flash Point’ Categories.

146 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE II

‘FLAMMABILITY’ CLASSES IN NFPA 30 AND GHS

GHS
Class Limits

1 B.P. =<35 oC.
2 B.P.>35 OC & F.P. <23 OC.
3 B.P>35 OC & 23 OC < F.P.< 37,8 OC
4 60 OC < F.P..< 93 OC

NFPA 30

Classes Limits
Ι Α F.P.<22,8 OC & BP<37,8 OC
Ι B F.P.<22,8 OC & B.P.>37, OC
Ι C

Flammable
Liquid

22,8 OC < F.P. < 37,8 OC
IΙ 37,8 OC < F.P. < 60 OC

IIΙ Α 60 OC < F.P. < 93 OC
ΙII B

Combustible
Liquid

 F.P. > 93 OC

Based on the above-mentioned classification
systems, codes, etc, five Linguistic terms
describing the Linguistic Value ‘Flash Point’
were developed for use in the proposed index.
These terms where then described as triangular or
trapezoid fuzzy numbers, fnk, as presented in
Table III and pictured in Figure 2.
The physical meaning of these linguistic terms is
that a specific Flash Point value of a given
substance may belong not only to a sole class,
but also to more than one (e.g. ‘flammable’ and
‘very flammable’), with different degrees of
membership to each. Introducing the value Tj

S of
the property Ij for substance S in Figure 2
produces the member-ship degree, mj

k, of the
specific value to each one of the fuzzy linguistic
terms, k. The membership degrees belong to the
interval [0,1] (0≤ mj

k ≤1), and are used for the
determination of the Penalty Factor that
corresponds to the specific value Tj

S, as it will be

described in the next paragraphs.
2) Assignment of a weight factor to each
Linguistic term: Next step in the development of

the procedure for calculating the Penalty Factors
Pj

S, is the assignment of a weight factor, wk, to
each linguistic term, k, of each Linguistic
Variable. For this purpose AHP was also
employed, through pairwise comparisons among
all linguistic terms, based on their relative
importance. The weights, wk, assigned to the
linguistic terms, k, of the Linguistic Variable
‘Flash Point’, are presented in Table III.
3) Calculation of the Penalty Factor: The
Penalty Factor, Pj

S, is then calculated through the
combination of the membership degrees, mj

k, of
the property value, Tj

S, for the Sth substance, to
each linguistic term, and the weight factors, wk,
of each linguistic term, using the following
relation:

∑
∑

=

k

S
jk

k

j
k

S
jk

S
j m

wm
P

)*(
 (2)

where j
kw : the weight factor of the k linguistic

term
S
jkm : membership degree of the property

value, Tj
S, for the Sth substance,

k: the kth linguistic term of the jth property.

This procedure, called ‘defuzzification’, results
to the transformation of the membership degrees
to a ‘normal’, or crisp, number. The technique
employed is ‘center-of-maximum’ method, one
of the simplest, with minimum complexity in

calculations.
After calculating all penalty factors that

correspond to each property value, Tj
S, belongng

to the set of values of the given property, the
‘Utility Function’ curve can be generated.

Apostolos N. Paralikas and Argyrios I. Lygeros 147

Penalty factors belong to the interval [0,1]. The
Utility Function for the Linguistic Variable
‘Flash Point’ is presented in the Figure 3.

The above-mentioned procedure has been
repeated for all the hazardous properties taken
into account in the calculation of the proposed
index. In cases of hazardous properties that do not
have a continuous set of values, but use discreet
levels or classes (e.g. reacting with water:
‘violently’, ‘reacting’, ‘slowly’, ‘not reacting’), no
Utility Function can be developed. In such cases,
a standard Penalty Factor was preassigned to each
hazardous property level, using AHP.

D. CALCULATION OF THE INDEX
The ‘Substance Fire Hazard Index’ for the S

substance is calculated from the following
equation:

∑=
j

S
jjS PWSFHI)*((3)

where: jW : the Weight factor of the j Property, and
S
jP : the Penalty factor, attributed to the jth

Property for the Sth substance.

VII. THE ‘CONSEQUENCES INDEX’
The proposed ‘Consequences Index’ is

introduced as a tool for ranking industrial
installations, units or processes that use, produce

or store flammable and toxic substances, based on
accident consequence analysis. Units and
installations are classified according to their
inherent ‘Consequences Potential’, defined as the
total of the consequences to Human Health,
Environment and Property that is possible to be
caused by an accident at the installation.

The calculation of the Index is based on the
21 Consequences Categories (CCs) that have been
identified. These include Consequence Categories
incorporated in other similar indices and ranking
tools, as well as legislative requirements and the
associated technical guidance documents. For each
CC, j, a Weight Factor, Wj, has been assigned,
using AHP. A Penalty Factor, Pij, is attributed to
each CCj, for each ith installation under
consideration, representing the extent of the
expected or possible damages from an accident at
the installation. The assignment of these values is
based either on calculation tools, or on estimation.
For the calculation of the Penalty Factors, a
‘Utility Function’ has been developed.

The development of the Consequences Index
was based on the same procedure outlined in the
previous section. The different parameters that are
taken into account on the index calculation, 21
Consequences Categories, were then organized in
groups and subgroups, forming the decision
Hierarchy, as it is displayed in Figure 4. There are
three groups of parameters: Human Health,
Economic and Environmental Consequences.

'Flash Point' Utility Function

0

0,2

0,4

0,6

0,8

1

1,2

-20 0 20 40 60 80 100
oC

P i
j

Figure 3: Utility Function for the Linguistic Variable ‘Flash Point’

148 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

The first group represents numbers of people,
in four different population categories. These
numbers are calculated using three different
exposure radii, or Hazard Distances,
corresponding to different levels of expected
Human Health consequences. The calculation is
performed by using relevant consequences
assessment tools, like the Greek ‘Major
Technological Accidents Response Plan’
(SATAME [48}) in Greece, or CATS
(Consequences Assessment Tool Set), introduced
in Greek Fire Brigade Operations Center within
the framework of Athens 2004 Olympics Security
Action Plan. Both are using a Geographical
Information System (GIS) platform for storing
and handling demographic data and other
information, e.g. on special installations,
vulnerable populations, etc.

Furthermore, a unique Utility Function has
been developed for all 21 CCs, since all of them
are of the same nature and can be described by the
same linguistic terms. The procedure for utility
function development is the same as it has been
already outlined in the previous section. Relevant
industrial accidents scaling and classification
schemes have been taken into account.

VIII. A DEMONSTRATION EXAMPLE

The proposed C.I. has been applied and tested
in the case of a typical storage facility [34]. The
tested scenarios involved 4 different toxic
chemical substances with varying characteristics
and behavior: Ammonia-AM, Chlorine-CL,
Ethyleneoxide-EO and Propyleneoxide-PO. Two
different types of storage have been considered:
pressurized-P and refrigerated-R. Finally, two
types of toxic release have been examined for
each case: rapture of the sphere and of a 10’’
pipeline; summing up to a total of 16 accident
scenarios. The technical details of the calculation
parameters are outside the scope of this
presentation and are not repeated here. The
weights, Wj, used in the C.I., presented in Table
IV, were assigned by the authors.

Consequences Index, C.I.

G
ro

up
s o

f
C

on
se

qu
en

ce
s

Su
b-

gr
ou

ps
 o

f
C

on
se

qu
en

ce
s

C
at

eg
or

ie
s o

f
C

on
se

qu
en

ce
s - Damage to property

- Damages to
infrastructure

- Environmental
restoration costs

- Ecosystems
Cultural

Assets

- Workers
- Neighbors
- Special population

groups
- Transient population

- Equipment
& facilities

- Business
Interruption

- Soil
- Water

On-site Off-site Deaths Injuries Annoyance Pollution Damage

Human Health Economy Environment

Figure 4. Hierarchical structure of the Consequences Categories.

Apostolos N. Paralikas and Argyrios I. Lygeros 149

TABLE IV

CONSEQUENCE CATEGORIES (CCJ), & THEIR WEIGHTS,
WJ

CCs Description Wj

A Consequences to Human Health
A.1. Number of people inside the ‘deaths’ radius

A.1.a
A.1.b

A.1.c

A.1.d

Workers of the installation
Residents around the installation
Special population categories
(schools, hospitals, jails, etc)
Transient population (in recreation,
shopping & sports areas, etc)

0,024
0,046

0,11

0,363

A.2. Number of people inside the ‘injuries’ radius
A.2.a
A.2.b
A.2.c
A.2.d

Workers of the installation
Residents around the installation
Special population categories
Transient population

0,006
0,012
0,029
0,095

A3. Number of people inside the ‘annoyance’ radius
A.3.a
A.3.b
A.3.c
A.3.d

Workers of the installation
Residents around the installation
Special population categories
Transient population

0,002
0,004
0,009
0,031

B Economic Consequences
B.1 On-site

B.1.a
B.1.b

Damages to equipment, facilities, etc
Business Interruption

0,007
0,02

B.2 Off-site
B.2.a

B.2.b
B.2.c

Damage to property (houses, other
facilities, etc)

Damages to infrastructure
Cost of Environmental restoration

0,006

0,013
0,035

C Environmental Consequences
C.1 Pollution

C.1.a
C.1.b

Soil
Water (lakes, rivers, shores, aquifers)

0,028
0,113

C.2 Damages

C.2.a

C.2.b

ecosystems, biotopes, protected
areas, riverbanks, seashores

Cultural Assets (historical sites,
cemeteries, churches, etc)

0,038

0,009

The results and rankings obtained have been

compared with those calculated for each scenario
using a similar established index, Dow’s
‘Chemical Exposure Index’ (CEI, [6]). Both C.I.

and CEI rankings obtained for each scenario are
presented in Table V.

TABLE V

C.I. & CEI RANKINGS & THEIR DEVIATIONS.

C.I CEI Installation/
senario index rank index rank deviation

1 AM-P-sphere 0,7280 1 957 3 2

2 AM-P-10” 0,6255 5 217 7 2

3 AM-R-sphere 0,1755 11 114 11 0

4 AM-R-10” 0,0143 16 105 12 -4

5 CL-P-sphere 0,7280 1 1000 1 0

6 CL-P-10” 0,7280 1 1000 1 0

7 CL-R-sphere 0,5875 6 925 4 -2

8 CL-R-10” 0,7280 1 853 5 4

9 EO-P-sphere 0,3517 8 207 8 0

10 EO-P-10” 0,4169 7 233 6 -1

11 EO-R-sphere 0,1785 10 171 9 -1

12 EO-R-10” 0,2165 9 158 10 1

13 PO-P-sphere 0,0745 12 76,5 13 1

14 PO-P-10” 0,0485 13 71 14 1

15 PO-R-sphere 0,0351 14 60 15 1

16 PO-R-10” 0,0320 15 56 16 1

Most of the results are within a margin of 1 or 2
positions shift, with only a couple of exceptions,
one because of the large number of scenarios
taking the same position (1st) in C.I.

The referenced CEI uses the 3 Hazard
Distances approach for the determination of the
possible accident consequences. Therefore, in
order for the results to be comparable, the C.I. was
calculated using only Human Health group of
consequences (12 out of 21 Consequences
Categories), assuming that both Economic and
Environmental consequences equal to zero. It
should be noted that the C.I. can be extended to
include economic and environmental
consequences as well, with no similar
methodology existing in the field of chemical
accidents assessment, to compare results with.

Furthermore, for each scenario or case, further
analysis can be conducted using the proposed C.I.,
to indicate specific parameters, where possible
action taken could pay a lot in return in reducing
the index ranking, and consequently the hazards to
people, property or the environment. For example,

150 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

moving a school, a nursery or a hospital in or out
of the hazard distance, could have an impact on
the C.I., while in the case of CEI only the distance
itself is included in the calculations.

IX. CONCLUSIONS-DISCUSSION

A methodological approach for the
development of hazard classification indices was
introduced and presented in this work. The
development of the proposed methodology was
based on multi-criteria decision-making, as well
as on fuzzy logic. Based on the proposed
methodology, two new indices, the Substance Fire
Hazard Index, SFHI, which is focused on the
major-accident hazards of the substances, as the
Consequences Index, for the rapid ranking of
industrial facilities that use, produce, process or
store hazardous substances have been developed
and presented. Aim of the proposed indices is the
rapid assessment and relative ranking of fire
hazards and risks of chemical substances or
materials and the ranking of facilities based on
accident consequences potential. A number of
similar indices are under development, for the
relative assessment of toxic and ecotoxic
substances, based on different sets of properties.
Furthermore, the multi-criteria approach could be
also used for handling trade-offs between different
substances with both fire and toxic or ecotoxic
characteristics.

The proposed methodology could also be used
for the development of similar indices, based on
any organization’s need and views. Also the
proposed indices could be modified by any
possible user to include their own priorities, or
decision environment. It should be emphasized
that the principal aim of this work is to present a
new methodological approach in dealing with
chemical accidents hazards, namely the multi-
criteria approach. Each body, institution,
authority, etc using or adopting this approach
could in the first place adapt the proposed
methodology and indices in a way to better suit its
needs, or the decision environment within it is
working.

For the development of the proposed
methodology, the issue of hazard classification
was viewed as a multi-criteria decision making
problem. Therefore, a multi-criteria decision-
making technique, Analytic Hierarchy Process,
has been employed. As it has already been stated,
AHP is capable for dealing with complex
problems, involving multiples criteria of different
nature, by analyzing their parameters in a

hierarchical manner. One of its disadvantages, on
the other hand, is its inability to deal effectively
with problems that cannot be represented by a
strict hierarchical structure, namely when there are
interconnections or interdependencies among
parameters or elements of different subgroups of
the same or different levels. This could also be the
case in fire hazards classifications and assessment,
where various properties could be considered as
connecting, or dependant to each other. Such an
example of interdependencies between ‘Flash
Point’ and ‘Boiling Point’ is demonstrated in
Table III.

For dealing with this issue, an extension of
AHP, the Analytic Network Process – ANP [49],
has been introduced. ANP allows for feedback
among different elements to be taken into account
in the ranking of the alternatives. Therefore, the
Hierarchical structure is transposed to a Network
structure, resulting in the formation of a
‘Supermatrix’. Nevertheless, the number of
alternatives cannot exceed a threshold (7-9),
because of the size of the ‘Supermatrix’ that is
formed. This limitation is making ANP not
suitable as a basis for the development of a
generic index aiming in the classification or rapid
assessment of a big, or unlimited, number of
chemical substances or installations, although its
employment for this purpose has been tested.

In order to deal with this issue, further use of
fuzzy logic is being examined. More specifically,
the use of a ‘fuzzy control system’ is being
examined, to account for any predefined
interdependencies among properties, taking into
account the values of those properties during the
pair wise assessment process.

Possible applications of the proposed Substance
Fire Hazard Index, SFHI, could include:

 Tool for the rapid assessment of substances,
based on their instinctive properties.

 Tool for the relative assessment of substances
for the selection of a less hazardous one.

 Support tool for the substitution of a
hazardous substance with a less hazardous one.

 Tool for ‘risk communication’ regarding the
magnitude of the inherent hazard of a substance.

Possible application fields of the
‘Consequences Index’ could include:

 Tool for the assessment of existing
installations through their relative ranking, and for
focusing on installations with the bigger disaster
potential.

Apostolos N. Paralikas and Argyrios I. Lygeros 151

 Tool for the assessment of proposed new
installations and for the rapid ranking of
alternative sites.

 Tool for the assessment of progress made at
an existing installation on the reduction of its
“consequences potential” (or the opposite).

 Tool for “Risk communication” regarding the
magnitude of the potential impacts of an accident.

Possible users the introduced methodology or
the presented indices could include, among others:

 Public authorities responsible for industrial
accidents preparedness, prevention and response.
E.U. ‘Sevezo’ Directive, for example, requires
that Safety Reports are submitted by certain
installations and facilities, and that accident
scenarios are included in these reports. Competent
national authorities could use such ranking tools
to prioritise facilities for inspection, as required by
the directive.

 Existing E.U. occupational safety legislation
requires that, in cases where hazardous chemicals
are being used, screening should be done for any
available safer alternative. Ranking tools could be
useful for fast screening in such cases.

 Furthermore, many different agencies or
companies, non-governmental organizations, etc,
have developed similar tools, as it has already
been mentioned, based on their own needs. The
multi-criteria approach could provide a more
suitable framework for a ‘holistic’ assessment of
the inherent hazards of chemical substances and
installations.

REFERENCES
[1] Centre of Chemical Process Safety, Guidelines for

Hazard Evaluation Procedures, 2nd ed. New York:
AIChE/CCPS, 1992.

[2] J.M. Watts, “Fire Risk Ranking”, in: Handbook of Fire
Protection Engineering. Quincy, MA: Society Fire
Protection Engineering / National Fire Protection
Association, 1995

[3] F. Crawley and B. Tyler, Hazard Identification
Methods. Rugby, UK: European Process Safety Center /
IChemE, 2003.

[4] Dow, Dow’s Fire & Explosion Index Hazard
Classification Guide, 7th ed. New York: AIChE, 1994

[5] ICI, The Mond Index, 2nd ed., Imperial Chemical
Industries, Cheshire, UK: Imperial Chemical Industries,
1993.

[6] Dow, Dow’s Chemical Exposure Index Guide. New
York: AIChE, 1994.

[7] B.J. Tyler, A.R. Thomas, P. Doran, and T. Greig, “A
Toxicity Hazard Index”, Chem. Health. Saf., 3: 19-25,
1996.

[8] A. Scott, “Environment-accident index: validation of a
model”, J. Haz. Mat., 61: 305-12, 1998.

[9] D.R. Stuhl, Fundamentals of Fire and Explosion. New
York: AIChE, 1976.

[10] F.I. Kahn and S.A. Abbasi, “Multivariate Hazard
Identification and Ranking System’, Proc. Saf. Progr.,
17: 3, 157-70, 1998.

[11] F.I. Khan, T. Husain, and S.A. Abbasi, “Safety
Weighted Hazard Index (SWeHI): A New, User-friendly
Tool for Swift yet Comprehensive Hazard Identification
and Safety Evaluation in Chemical Process Industries”,
Proc. Saf. Env. Prot., 79: 2: 65-80, 2001.

[12] F.I. Kahn, and S.A. Abbasi,, “Accident Hazard Index: A
Multi-attribute Method for Process Industry Hazard
Rating”, Proc. Saf. Env. Prot., 75: 4: 217-224, 1997.

[13] S. Shah, U.Fischer, and K.Hungerbühler, “A
Hierarchical Approach for the Evaluation of Chemical
Process Aspects From the Perspective of Inherent
Safety”, Proc. Saf. Env. Prot., 81: 430-443, 2003.

[14] M. Gentile, W.J. Rogers, and M.S. Mannan,
“Development of a Fuzzy Logic-based Inherent Safety
Index”, Proc. Saf. Env. Prot., 81: 444-456, 2003.

[15] M.Y. Gunasekera, and D.W. Edwards, “Estimating the
Environmental Impact of Catastrophic Chemical
Releases to the Atmosphere. An Index Method for
Ranking Alternative Chemical Process Routes”, Proc.
Saf. Env. Prot., 81: 463-474, 2003.

[16] J. Tixier, G. Dusserre, O. Salvi, and D. Gaston, “Review
of 62 risk analysis methodologies of industrial plants”,
J. Loss Prev. Proc. Ind., 15: 291–303, 2002.

[17] NFPA 325, Guide to Fire Hazard Properties of
Flammable Liquids, Gases and Volatile Solids, 1994
ed., Quincy, MA: National Fire Protection Association,
par.1-3.1, 1994.

[18] F.P. Lees, Loss Prevention in the Process Industries.
Oxford: Butterworth-Heinemann, p.16/25, 1996.

[19] NFPA 49, Hazardous Chemicals Data, 1994 ed., ,
Quincy, MA: National Fire Protection Association,
1994.

[20] Centre of Chemical Process Safety, Guidelines for
Engineering Design for Process Safety. New York:
AIChE / CCPS, 1996.

[21] T.L Saaty, The Analytic Hierarchy Process. New York:
McGraw Hill, 1980.

[22] R.R. Yager, S. Ovchinnikov, R.M. Tong and H.T.
Nguyen, (Editors), L.A. Zadeh: Selected Papers on
Fuzzy Sets and Applications. New York: John Wiley &
Sons, 1987.

[23] NFPA 704, Standard System for the Identification of the
Hazards of Materials for Emergency Response, 1996
ed., Quincy, MA: National Fire Protection
Association, 1996.

[24] Center of Chemical Process Safety, Inherent Safer
Chemical Processes: A Life Cycle Approach, New
York: AIChE / CCPS, 1996

[25] D.C. Hendershot, “Inherently safer chemical process
design”, J. Loss Prev. Proc. Ind., 10: 151-157, 1997.

[26] D.R, Anderson, D.J. Sweeney, and T.A. Williams, An
introduction to management science: quantitative
approaches to decision making. 6th ed., St. Paul, Minn.:
West Publishing, 1991.

[27] J. Shields and G. Silcock, “An apllication of the
Hierarchical Approach to Fire Safety”, Fire Saf J, 11:
235-242, 1986.

152 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

[28] F.J. Doddand and H.A. Donegan, “Prioritisation
Methodologies in Fire Safety Evaluation”, Fire
Technology, pp.232-249, 2nd Quarter 1994.

[29] F.J. Dodd and H.A. Donegan, “Some considerations in
the combination and use of expert opinions in Fire
Safety Evaluation”, Fire Saf J, 22: 315-327, 1994.

[30] C.M. Zhao, S.M. Lo, J.A. Lu, and Z. Fang,
“Asimulation approach for ranking of fire safety
attributes of existing buildings”. Fire Saf. J. , 39: 557-
579, 2004.

[31] S.H. Yeo and K.G Neo, “Inclusion of environmental
performance for decision making of welding processes”,
J. of Materials Processing Techn., 82: pp.78-88 1998.

[32] E. Cagno, F. Caro, M. Mancini, and F. Ruggeri F.,
“Using AHP in determining the prior distributions on
gas pipeline failures in a robust Bayesian approach”,
Reliab. Engn. Syst. Saf., 67: 275-284, 2000.

[33] F.I. Khan, R. Sadiq, and M.M. Haddara, “Risk-based
Inspection and Maintenance (RBIM): Multi-attribute
Decision-making With Aggregative Risk Analysis”,
Proc. Saf. Env. Prot., 82 (B6), pp. 398-411, 2004.

[34] A.N. Paralikas and A.I. Lygeros, “A Multi-Criteria and
Fuzzy Logic Based Methodology for the Relative
Ranking of the Fire Hazards of Chemical Substances
and Installations”, Proc. Saf. Env. Prot., 83 (B2), pp.
122-134, 2005.

[35] J.J. Buckley, “Fuzzy Hierarchical Analysis”, Fuzzy Sets
and Systems, 17: 233-247, 1985.

[36] ILO, Globally Harmonized System for the Classification
and Labeling of Chemicals-GHS. Geneva: International
Labor Organization, 2001. [Online]. Available:
http://www.ilo.org/public/english/protection/safework/g
hs/ghsfinal/index.htm

[37] DOT, Hazardous Materials Regulations, Title 49 CFR.
Washington D.C.: U.S. Department of Transportation,
2001.

[38] European Commission, Council Directive 96/82/EC “on
the control of major-accident hazards”, (OJ No L 10 of
14 January 1997). [Online]. Available:
http://europa.eu.int/comm/environment/seveso/#2

[39] NFPA 30, Flammable and Combustible Liquids Code,
1996 ed., Quincy, MA: National Fire Protection
Association, 1996.

[40] Federal Emergency Management Agency, U.S.
Department of Transportation, and U.S. Environmental
Protection Agency, Handbook of chemical hazard
analysis procedures. Washington D.C.: Federal
Emergency Management Agency Publications Office,
1998.

[41] A. Suarez and C. Kirchsteiger, A Qualitative Model to
Evaluate the Risk Potential of Major Hazardous
Industrial Plant., Ispra: European Commission, JRC,
Major Accident Hazards Bureau, 1998.

[42] T. Ludwig, Industrial Fire Prevention and Protection,
N.York: Van Nostrand Reinhold, 1991.

[43] D. Tuhtar, Fire and Explosion Protection: A Systems
Approach, Chichester: Horwood E, 1989.

[44] D. Drysdale, Introduction to Fire Dynamics. 2nd ed.,
Chichester: John Wiley and Sons, 1999.

[45] D. Crowl and J. Louvar, Chemical Process Safety–
Fundamentals with Applications. N.Jersey: Prentice-
Hall, 1990.

[46] C. Kirchsteiger, “Absolute and relative ranking
approaches for comparing and communicating industrial
accidents”, J. Haz. Mat., 59: 31-54, 1998.

[47] Expert Choice Inc, Expert Choice 2000: Quick start
guide & tutorials. Pittsburgh, PA: Expert Choice Inc,
2000.

[48] N.C. Markatos, C.T. Kyranoudis, K. Zografos, and I.
Ziomas, “An operational center for managing major
chemical industrial accidents”, in Seveso 2000 Conf.,
pp.282-291, Athens, Nov. 10-12, 1999.
http://mahbsrv.jrc.it/Proceedings/Greece-Nov-1999/I2-
KYRANOUDIS-z.pdf.

[49] T.L. Saaty, The Analytic Network Process: Decision
Making With Dependence And Feedback. Pittsburgh,
PA: RWS Publications, 1996.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 153

Supply Chain Games
Federico Perea∗

∗University of Seville /Dept. Statistics and OR
Faculty of Mathematics. c/Tarfia sn 41012 Seville

Email: perea@us.es

Abstract— The Supply Chain Problem we propose in
this paper arises when, over a graph, a group of nodes
offers certain commodity, other nodes require it and a
third group of nodes does not need this material nor offer
it but is strategically relevant to the distribution plan.
The transport of one unit of material to a demand node
generates a fixed profit, and the shipping of the material
through the arcs has an associated cost. In this work we
study the possible cooperation between the nodes of the
network, prove that such a cooperative situation is totally
balanced and show the relation between these games and
other well-known games.

Keywords— Cooperative games, networks, core, bal-
ancedness.

I. I NTRODUCTION

OPTIMIZATION problems over graphs are exten-
sively used in real applications to model situations

like production planning, communication, scheduling,
transportation or assignment among others. In such prob-
lems it is normally assumed that the resources used in
the model are under the control of a individual or a
group of individuals having identical interests. In this
paper we deal with a situation in which the resources
are owned by agents with conflicting objectives, which
may consider cooperating with each other in order to get
a better global solution. Situations like that may arise,
for instance, when there is group of warehouses having a
certain product and several shops where that product can
produce benefits. The transportation of the material from
one point to another generates costs. The warehouses and
the shops have to decide how to distribute the material in
order to obtain the highest profit. It directly follows that
game theory can be employed to analyze such a situation
and find fair allocations of the joint profit that the group
of agents can make.

A game is a decision process in which a group of
agents, called players, converge and act, independently or
collectively, under certain rules in order to obtain a result,
called payoff. When studying games, one may assume
that either all players will cooperate with each other or
that the game will be played noncooperatively. Several

models of cooperation on graphs have been studied in
the literature, see [3], [5], [6], [9] or [13]. In this paper
we study the possible cooperation over a graph when
the particular problem we propose, called Supply Chain
Problem, is given.

The paper is structured as follows. In section II we
introduce graphs and cooperative games, for a more
detailed description see [14] and [8]. In section III we
present our model of Supply Chain Problem (SChP for
short) and its formulation as a linear program. Section
IV is devoted to introduce the class of cooperative
games arising fromSChP , called Supply Chain Games
(SChG for short), and show some of its properties,
including balancedness. In section V we propose a core
allocation that can be computed in polynomial time.
Section VI revises some known games on networks and
their relation withSChG.

II. PRELIMINARIES

Let N be a nonempty finite set, which is interpreted
as the set of players. We consider a set of ordered pairs
of distinct members ofN , A ⊂ N × N . We refer to
these ordered pairs asarcs, and we denote the arc from
i to j as (i, j). (So (i, j) 6= (j, i)). Then, we say that
G = (N, A) is a directed graph.

Given the set of playersN = {1, . . . , n}, a coalition of
N is anyS ⊂ N . The set of all those possible coalitions
of N is denoted by2N .

For a game with set of playersN = {1, . . . , n}, we
define itscharacteristic functionas

v : 2N → R.

For every S ⊂ N , v(S) can be interpreted as the
maximum profit that the coalitionS can make by acting
on its own, without taking into account what the other
playersN \ S can do. So,v(N) is the best payoff that
the coalition formed by all the players can make. This
coalition, N , is called the grand coalition.We define
v(∅) = 0.

Thus, we have that a cooperative game can be rep-
resented by its player setN = {1, 2, ..., n} and its

154 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

characteristic function

v : 2N −→ R

S −→ v(S).

Depending on the properties of the characteristic func-
tion, players may want to join together or not. Some
properties that characteristic functions are desirable to
satisfy are the following.

Definition II.1 (0-normality) The game(N, v) is said
to be 0-normalized if

v({i}) = 0 ∀ i ∈ N.

Definition II.2 (Superaditivity) We say that the game
(N, v) is superaditive if

∀ S, T ⊂ N : S ∩T = ∅ ⇒ v(S) + v(T) ≤ v(S ∪T).

Definition II.3 (Monotonicity) The game (N, v) is
monotonic if

∀S ⊂ T ⊂ N, v(S) ≤ v(T).

The most important problem we face when dealing
with cooperative games is how to divide the total benefit
among the players, that is, how to allocatev(N). We
define an allocation for the game(N, v) as a vector
x ∈ R

n, where itsith coordinate represents the payoff
that playeri receives after the allocationx. An accept-
able property for allocations to satisfy is thecollective
rationality principle, which assures that every coalition
S of N receives at least what they would obtain by acting
without the help of the other playersN \S. Allocations
satisfying that principle are calledcore allocations.

Definition II.4 Let (N, v) be a cooperative TU-Game.
The core of(N, v), denotedC(N, v), is the set

{x ∈ R
n : x(S) ≥ v(S) ∀S ⊂ N,

n
∑

i=1

xi = v(N)},

wherex(S) =
∑

i∈S

xi, that is, the payoff that coalitionS

receives from allocationx.

We remark thatx ∈ C(N, v) iff no coalition can
improve uponx. Thus, each member of the core consists
of a highly stable payoff distribution.

Unfortunately not all TU-Games have core allocations.
The concept of balancedness provides us with a theorem
that characterizes those games that have non-empty core.

Definition II.5 Given is(N, v) a cooperative game. Let
Ψ = {S1, S2, . . . , Sr} be a collection of coalitions ofN .
We say thatΨ is a balanced collection if there exist some
coefficientsγ1, γ2, . . . , γn, with γl ≥ 0 ∀ l = 1, 2, . . . , r,
such that

∑

l:i∈Sl

γl = 1 ∀ i ∈ N.

The coefficientsγl are called balancing weights.

Bondareva [2] and Shapley [11] independently identified
the class of games that have non-empty core as the class
of balanced games.

Theorem II.1 (Bondareva and Shapley)The core of
the game(N, v) is non-empty iff for every balanced col-
lection {S1, . . . , Sk} with balancing weightsλ1, . . . , λk

the inequality

k
∑

j=1

λjv(Sj) ≤ v(N)

holds.

III. SUPPLY CHAIN PROBLEM

The classical transportation problem arises when an
optimal distribution plan to transport a good on a bi-
partite network (the set of nodesN is divided into two
disjoint groupsP, Q) must be determined. The nodes of
P offer that good and the nodes ofQ require the same
good. The set of arcs isA = {(i, j) : i ∈ P, j ∈ Q}, in
other words, there is an arc joining each node that offers
material with each node demanding it. In this problem
we assume that the transportation of one unit of material
from a supply nodei to a demand nodej gives rise to a
profit equal tobij , the goal being to maximize the total
profit generated when covering the demand.

The problem we now deal with is a generalization
of the transportation problem, as we will see later. We
assume that we have a directed networkG = (N, A),
where N and A are the set of nodes and the set of
arcs of the graph respectively. Each nodei ∈ N has a
scalar numberbi ∈ R associated with it. If this number
is positive, nodei is said to be asupplynode (nodei
can offerbi units of the material to be transported), if it
is negative we say that nodei is a demandnode (nodei
requires−bi units) and if it is null we say that nodei is
a transfernode. We denote each arc ofA by the ordered
pair formed by its initial node and its final node, that
is, the arc(i, j) joins verticesi andj in this way. Each
arc (i, j) has a scalar numbercij ∈ R associated with it,
which is interpreted as the necessary cost of the shipping

Federico Perea 155

of one unit of material through the arc(i, j). We also
assume that each unit of covered demand generates a
profit of K units. So, the problem consists of finding a
feasible distribution plan that maximizes the total benefit.

Example III.1 Let us consider the transportation net-
work as depicted in figure 1. The numbers in the nodes
represent the amount of material, or demand depending
on the sign of the number, that each node has. The
number on the arcs are the unitary costs of shipping one
unit of material through them. If we suppose that the
benefit generated after covering one unit of demand is
equal to 15 monetary units,K = 15, we have a Supply
Chain Problem as defined in this section. So, the goal is
to maximize the general profit.

3

5

−4

−1

−1

−2

2

6 2

2

3

6

5

4

1
1

1

1

1

2

3

4

5

6

K = 15

Fig. 1. Transportation Network

Note that in this model it is not necessary to cover
all the demand nor to launch all the available offer. The
demand of a nodej will be covered if and only if there
is a profitable path from the supply nodes toj and there
is some available material.

A. Formulation

In this section we defineSChP in a mathematical
way. Given a directed graphG = (N, A), a vectorb ∈
R

n and a matrixC ∈ R
n×n where cij represents the

unitary cost of shipping one unit through arc(i, j) ∈ A,
we define the following sets:

P := {i ∈ N : bi > 0}, Q := {i ∈ N : bi < 0},

R := {i ∈ N : bi = 0}.

We shall call these setssupply set, demandset and
transfer set respectively. It is clear that

P ∪ Q ∪ R = N, P ∩ Q = P ∩ R = Q ∩ R = ∅,

that is,P, Q andR form a partition ofN .

So, given the set of nodesN , where |N | = n, the
set of arcsA ⊂ N × N , a matrixC ∈ R

n×n, a vector
b ∈ R

n and a unitary benefitK ∈ R, we define a Supply
Chain Problem as the 5-tuple

(N, A, C, b, K).

Example III.2 In the transportation network described
in example III.1, the correspondingSChP is defined as

(N, A, C, b, K)

where
N = {1, 2, 3, 4, 5, 6},

A =
{(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5),
(2, 6), (3, 5), (5, 3), (5, 6), (6, 4)},

C =

− 2 6 − 2 −
2 − 3 6 5 4
− − − − 1 −
− − − − − −
− − 1 − − 1
− − − 1 − −

b =

3
5
−4
−1
−1
−2

andK = 15.

In the rest of the section we formulate Supply Chain
Problems as linear programs. Let(N, A, C, b, K) be a
Supply Chain Problem. Let us considerxij as the amount
of shipped-through-arc-(i, j) material,∀ (i, j) ∈ A. A
feasible distribution plan must satisfy several conditions:

• Supply nodes cannot produce new material; that
is, the amount of material leaving from certain
supply node,outgoingmaterial, minus the amount
of material that goes to it,incomingmaterial, must
be less than or equal to what the node can offer.
Thus we have that:

∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki ≤ bi ∀ i ∈ P.

(1)
• The incoming material must be equal to the out-

going material in every transfer node, that is, the
transfer nodes can not neither create material nor
keep material. Mathematically we have that:

∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki = 0 ∀ i ∈ R.

(2)
• In our model, it is also necessary that in a feasible

distribution plan every demand node can not receive
more than what they request: the amount of incom-
ing flow minus the amount of outgoing flow must

156 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

be less than or equal to its demand. In terms ofxij

one has that:
∑

k∈N :(k,i)∈A

xki −
∑

j∈N :(i,j)∈A

xij ≤ −bi ∀ i ∈ Q.

(3)
• Besides, the flow must be non-negative,

xij ≥ 0 ∀ (i, j) ∈ A. (4)

One can observe that the inequalities (2) can be separated
into:

∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki ≤ 0 = bi ∀ i ∈ R,

∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki ≥ 0 = bi ∀ i ∈ R,

this last equation being equivalent to
∑

k∈N :(k,i)∈A

xki −
∑

j∈N :(i,j)∈A

xij ≤ 0 = −bi ∀ i ∈ R.

Thus, the feasibility constraints (1), (2) and (3) can be
expressed as:

∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki ≤ bi ∀ i ∈ P ∪ R.

(5)

∑

k∈N :(k,i)∈A

xki −
∑

j∈N :(i,j)∈A

xij ≤ −bi ∀ i ∈ Q∪R.

(6)
Regarding the objective function, let us calculate it

step by step:
• We want to maximize the total benefit, that is, the

sum of the demands covered in each node ofQ. Let
us consideri ∈ Q. The total demand of material
that is covered in nodei after the distribution plan
(xij)(i,j)∈A is:

∑

k∈N :(k,i)∈A

xki −
∑

j∈N :(i,j)∈A

xij ,

that is, the amount of incoming material toi minus
the amount of outgoing material fromi. Thus, we
have to maximize the total demand covered by the
flow, which is:

∑

i∈Q

∑

k∈N :(k,i)∈A

xki −
∑

j∈N :(i,j)∈A

xij

 . (7)

The reader should note that we have to multiply
the above expression times the unitary benefitK in
order to obtain the expression of the exact profit.

Equation (7) can be simplified as follows:
∑

i∈Q

(
∑

k∈N :(k,i)∈A

xki −
∑

j∈N :(i,j)∈A

xij) =

∑

i∈Q

∑

k∈N :(k,i)∈A

xki −
∑

i∈Q

∑

j∈N :(i,j)∈A

xij =

∑

i∈Q

(
∑

k∈P∪R:(k,i)∈A

xki +
∑

k∈Q:(k,i)∈A

xki)−

∑

i∈Q

(
∑

j∈P∪R:(i,j)∈A

xij +
∑

j∈Q:(i,j)∈A

xij) =

∑

i∈Q

(
∑

k∈P∪R:(k,i)∈A

xki −
∑

j∈P∪R:(i,j)∈A

xij).

• The transportation through each arc gives rise to a
cost, so we must minimize

∑

(i,j)∈A

cijxij .

Therefore, our objective function is to maximize

K
∑

i∈Q

(
∑

k∈P∪R:(k,i)∈A

xki −
∑

j∈P∪R:(i,j)∈A

xij)−

∑

(i,j)∈A

cijxij .

(8)
To summarize, given a Supply Chain Problem

(N, A, C, b, K)

whereN = {1, . . . , n}, A ⊂ N × N, C ∈ R
n×n, b ∈

R
n andK ∈ R, an optimal distribution plan is given by

one optimal solution to the linear program consisting of
maximizing (8) under the constraints (5), (6) and (4).

Example III.3 The formulation of the example III.1 is

max 15(x13 + x15 + x23 + x24 + x25 + x26)−
∑

(i,j)∈A cijxij

s.t.: x12 + x13 + x15 − x21 ≤ 3
x21 + x23 + x24 + x25 + x26 − x12 ≤ 5
x13 + x23 + x53 − x35 ≤ 4
x24 + x64 ≤ 1
x15 + x25 + x35 − x53 − x56 ≤ 1
x26 + x56 − x64 ≤ 2
xij ≥ 0 ∀ (i, j) ∈ A

and one can see that an optimal solution to this linear
program is given by the distribution plan:

x15 = 3, x26 = 1, x23 = 4, x64 = 1, x56 = 2,

andxij = 0 in any other case.

In the previous example all the demand was covered,
but this is not a general characteristic ofSChP . There

Federico Perea 157

existSChP where an optimal distribution plan does not
cover all the demand, or does not launch all the material
that supply nodes own, or both cases at the same time,
as we can see in the following example.

Example III.4 One can check that the distribution plan
x12 = 2, x23 = 0, x13 = 0 is optimal in the Supply
Chain Problem described in figure 2 and, nevertheless,
the supply node1 keeps one surplus unit and the demand
node3 does not have its demand covered. This is due
to the fact that the necessary cost of sending one unit of
material from node1 to node3 is higher than the benefit
that this unit would generate in node3.

3

−2

−1

6

12

5

1

2

3

K = 10

Fig. 2. Transportation Network

IV. SUPPLY CHAIN GAMES

After having defined Supply Chain Problems, we
are now interested in studying the possible cooperation
that can arise within the set of nodes. So, given a
Supply Chain Problem(N, A, C, b, K) we define the
corresponding Supply Chain Game as follows.

The set of players isN = {1, . . . , n}, every node
is owned by one player and each player is associated
with the only node that it owns. Then, to avoid a more
complicated notation, we denote the player that owns
node i by i. Thus, we have supply players, demand
players and transfer players, depending on the kind of
node they own, that is, we have the set of supply players
P = {i ∈ N : bi > 0}, the set of demand players
Q = {i ∈ N : bi < 0} and the set of transfer players
R = {i ∈ N : bi = 0}.

Now we have to definev, the characteristic function
of the game,

v : 2N → R

S → v(S)

That is to say, we need to find the maximum profit that
each group of players can make by acting on their own,
without taking into account what the other players do.

For eachS ⊂ N we have a transportation subnetwork
(S, AS , CS , bS , K), whereAS = (S×S)∩A, andCS and
bS are the restrictions ofC and b to S respectively. In
the same way, we have the supply, demand and transfer
sets ofS, defined as:

PS = P ∩ S, QS = Q ∩ S, RS = R ∩ S.

The above subnetwork has an optimal distribution plan
that gives us the maximum profit that the coalitionS can
make, and is the solution to the linear program which
consists of maximizing the function

K
∑

i∈QS

(
∑

k∈PS∪RS :(k,i)∈AS

xki −
∑

j∈PS∪RS :(i,j)∈AS

xij)−

∑

(i,j)∈AS

cijxij ≡ fS(x)

subject to the constraints
∑

j∈S:(i,j)∈AS

xij −
∑

k∈S:(k,i)∈AS

xki ≤ bi ∀ i ∈ PS ∪RS ,

∑

k∈S:(k,i)∈AS

xki −
∑

j∈S:(i,j)∈AS

xij ≤ −bi ∀ i ∈ QS∪RS

and
xij ≥ 0 ∀ (i, j) ∈ AS .

This problem is denoted byPr(S) ∀ S ⊂ N .
Then, we define the cooperative game with transfer-

able utility associated with the Supply Chain Problem
(N, A, C, b, K) as follows.

Definition IV.1 Let (N, A, C, b, K) be a Supply Chain
Problem. The associated Supply Chain Game is the
cooperative game with transferable utility(N, v), where
v(S) is the optimal value of problemPr(S) for every
nonempty coalitionS ⊂ N , andv(∅) = 0.

Example IV.1 Let us consider the Supply Chain Game
arising from the Supply Chain Problem on figure 3. One
can check that the characteristic function of this game is

S {1, 3} {2, 3} {1, 2, 3}

v(S) 10 7 12

andv(S) = 0 in any other case.

The first consequence that one can get from the definition
of Supply Chain Games is that they are well defined.
This is due to the fact that, for each coalitionS, the

158 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

2

1

−2

2

5

3

1

2

3

K = 10

Fig. 3. Transportation Network

distribution plan consisting of every player doing nothing
(xij = 0 ∀ arc (i, j)) is feasible and gives rise to a value
of the objective function equal to 0.

A. Properties of Supply Chain Games

In this section we explore some interesting properties
of Supply Chain Games. The first ones are summarized
in the following proposition.

Proposition IV.1 Let (N, v) be a Supply Chain Game.
One has that:

1) (N, v) is 0-normalized.
2) (N, v) is superaditive.
3) (N, v) is monotonic.

Proof:

1) Let (N, v) be aSChG. Giveni ∈ N , it is clear that
A{i}, the arcs thati owns, is the empty set. Thus,
the objective function of the problem to be solved
in order to calculatev({i}), f{i}, is the function
equal to zero. Then we conclude thatv({i}) = 0.

2) Let (N, v) be aSChG. ConsiderS, T ⊂ N such
that S ∩ T = ∅. Let us see thatv(S) + v(T) ≤
v(S ∪ T).
Let xS and xT be two optimal distribution plans
for the coalitionsS and T respectively, that is,
fS(xS) = v(S) andfT (xT) = v(T).
We define

x∗ = (x∗

ij) : x∗

ij :=

xS
ij if (i, j) ∈ AS

xT
ij if (i, j) ∈ AT

0 otherwise

for every (i, j) ∈ AS∪T .

By definition

AS∪T = A ∩ ((S ∪ T) × (S ∪ T)).

Let us see thatx∗ is feasible forPr(S ∪ T). To
do so, we have to prove that

∑

j∈S∪T :(i,j)∈A

x∗

ij −
∑

k∈S∪T :(k,i)∈A

x∗

ki ≤ bi, (9)

∀ i ∈ PS∪T ∪ RS∪T . We also need to prove that
∑

k∈S∪T :(k,i)∈A

x∗

ki −
∑

j∈S∪T :(i,j)∈A

x∗

ij ≤ −bi, (10)

∀ i ∈ QS∪T ∪ RS∪T , and

x∗

ij ≥ 0 ∀ (i, j) ∈ AS∪T . (11)

We prove (9), the proof of (10) being analogous.

•

∑

j∈S∪T :(i,j)∈A

x∗

ij −
∑

k∈S∪T :(k,i)∈A

x∗

ki =

∑

j∈S:(i,j)∈A

x∗

ij −
∑

k∈S:(k,i)∈A

x∗

ki+

+
∑

j∈T :(i,j)∈A

x∗

ij −
∑

k∈T :(k,i)∈A

x∗

ki.

(12)
We have thatPS ∪PT ∪RS ∪RT is a partition
of PS∪T ∪RS∪T . Let us suppose thati ∈ PS ,
the proof for the other cases is analogous, then

x∗

ij =

{

xS
ij if j ∈ S

0 otherwise

Thus (12) becomes

∑

j∈S:(i,j)∈A

xS
ij −

∑

k∈S:(k,i)∈A

xS
ki ≤ bi, (13)

sincexS is feasible forPr(S).
• Clearly x∗

ij ≥ 0 ∀ (i, j) ∈ AS∪T .

Thus, x∗ is feasible forPr(S ∪ T). By the op-
timality of v(S ∪ T) in Pr(S ∪ T) one has that
fS∪T (x∗) ≤ v(S ∪ T).
Besides, it is easy to check thatfS∪T (x∗) =
fS(xS) + fT (xT). So we conclude that

v(S) + v(T) = fS(xS) + fT (xT) =
fS∪T (x∗) ≤ v(S ∪ T).

(14)

3) By joining the nonnegativity property ofv with the
fact thatSChG are superaditive, we conclude that
SChG are monotonic.

Federico Perea 159

The following step is to prove thatSChG have non-
empty core.

Theorem IV.1 Supply Chain Games have non-empty
core.

Proof: Let (N, A, C, b, K) be a Supply Chain Prob-
lem and(N, v) its associated Supply Chain Game. We
firstly prove that(N, A, C, b, K) is balanced.

Let {S1, . . . , Sr} be a balanced collection and
{y1, . . . , yr} its balancing weights, that is,

∑

j:i∈Sj

yj =

1 ∀ i ∈ N . In order to prove the balancedness of(N, v)

we have to prove that
r

∑

l=1

ylv(Sl) ≤ v(N).

Let xl be an optimal distribution plan for the coalition
Sl, l = 1, . . . , r. We have that

v(Sl) = fSl
(xl).

Let us consider

δl(i, j) =

{

yl if (i, j) ∈ ASl

0 otherwise

∀ l = 1, . . . , r.
Let us definex∗, a distribution plan for the complete

network, as follows:

x∗

ij =
r

∑

l=1

δl(i, j)xl
ij .

We shall see thatx∗ is feasible forPr(N), that is to
say, thatx∗ is a feasible distribution plan for the whole
network. To do that we need to check:

1) x∗

ij ≥ 0. Clearly by its definition.
2) Let i ∈ P ∪ R. We have to prove that

∑

j∈N :(i,j)∈A

x∗

ij −
∑

k∈N :(k,i)∈A

x∗

ki ≤ bi.

∑

j∈N :(i,j)∈A

x∗

ij −
∑

k∈N :(k,i)∈A

x∗

ki =

∑

j∈N :(i,j)∈A

r
∑

l=1

δl(i, j)xl
ij −

∑

k∈N :(k,i)∈A

r
∑

l=1

δl(k, i)xl
ki =

r
∑

l=1

(
∑

j∈N :(i,j)∈A

δl(i, j)xl
ij −

∑

k∈N :(k,i)∈A

δl(k, i)xl
ki) =

∑

l: i∈Sl

(
∑

j∈Sl:(i,j)∈ASl

ylx
l
ij −

∑

k∈Sl:(k,i)∈ASl

ylx
l
ki) =

∑

l: i∈Sl

yl(
∑

j∈Sl:(i,j)∈ASl

xl
ij −

∑

k∈Sl:(k,i)∈ASl

xl
ki) ≤

∑

l: i∈Sl

ylbi = bi

∑

l: i∈Sl

yl = bi. And we conclude

that the inequality holds.
3) Analogously to 2) we prove that

∑

k∈N :(k,i)∈A

x∗

ki −
∑

j∈N :(i,j)∈A

x∗

ij ≤ −bi ∀ i ∈ Q∪R

From 1), 2) and 3) we conclude that the distribution
planx∗ is feasible for the linear programPr(N), which
defines the value ofv(N).

On the other hand,
r

∑

l=1

ylv(Sl) =
r

∑

l=1

yl(K
∑

i∈QSl

(
∑

k∈PSl
∪RSl

:(k,i)∈ASl

xl
ki −

∑

j∈PSl
∪RSl

:(i,j)∈ASl

xl
ij) −

∑

(i,j)∈ASL

cijx
l
ij) =

K
r

∑

l=1

∑

i∈QSl

∑

k∈PSl
∪RSl

:(k,i)∈ASl

ylx
l
ki −

K
r

∑

l=1

∑

i∈QSl

∑

j∈PSl
∪RSl

:(i,j)∈ASl

ylx
l
ij −

r
∑

l=1

∑

(i,j)∈ASl

ylcijx
l
ij =

K
r

∑

l=1

∑

i∈Q

∑

k∈P∪R:(k,i)∈A

δl(k, i)xl
ki −

K
r

∑

l=1

∑

i∈Q

∑

j∈P∪R:(i,j)∈A

δl(i, j)xl
ij −

r
∑

l=1

∑

(i,j)∈A

δl(i, j)cijx
l
ij =

K
∑

i∈Q

∑

k∈P∪R:(k,i)∈A

r
∑

l=1

δl(k, i)xl
ki −

K
∑

i∈Q

∑

j∈P∪R:(i,j)∈A

r
∑

l=1

δl(i, j)xl
ij −

∑

(i,j)∈A

r
∑

l=1

δl(i, j)cijx
l
ij = K

∑

i∈Q

∑

k∈P∪R:(k,i)∈A

x∗

ki −

K
∑

i∈Q

∑

j∈P∪R:(i,j)∈A

x∗

ij −
∑

(i,j)∈A

cijx
∗

ij =

K
∑

i∈Q

∑

k∈P∪R:(k,i)∈A

x∗

ki −
∑

j∈P∪R:(i,j)∈A

x∗

ij −

∑

(i,j)∈A

cijx
∗

ij = fN (x∗) = ≤
︸︷︷︸

x∗ is feasible for Pr(N)

v(N).

We have proven that
r

∑

l=1

ylv(Sl) ≤ v(N) for each

balanced collection{S1, . . . , Sr} with balancing weights

160 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

(y1, . . . , yr). Thus, we can assure that the game(N, v)
is balanced.

Since every subgame of a Supply Chain Game is also
a Supply Chain Game, we can say that(N, v) is totally
balanced and, applying the Bondareva-Shapley theorem,
see theorem II.1, we have that the core of(N, v) is non
empty.

V. DUALITY : AN ALLOCATION IN THE CORE

In this section we give an allocation in the core of
any Supply Chain Game. InSChG the characteristic
function is given by the optimal value of the linear
problem Pr(S). One can check that its dual problem,
called from now onDr(S) ∀ S ⊂ N , is the following
linear program:

min gS(u) ≡
∑

i∈PS

biui −
∑

j∈QS

bjuj

s.t.: ui − uj ≥ −cij ∀ {i, j} ∈ (PS ∪ RS)2

ui + uj ≥ −cij + K ∀ {i, j} ∈ (PS ∪ RS) × QS

−ui − uj ≥ −cij − K ∀ {i, j} ∈ QS × (PS ∪ RS)
−ui + uj ≥ −cij ∀ {i, j} ∈ Q2

S

ui ≥ 0 ∀ i ∈ PS ∪ QS

ui ∈ R ∀ i ∈ RS

(15)
Obviously, the above constraints are restricted to those
pairs{i, j} such that(i, j) ∈ AS .

Consideru∗ an optimal solution toDr(N) and t∗ an
optimal solution toPr(N). By the duality theorem, see
[1], one has that

∑

i∈P

biu
∗

i −
∑

j∈Q

bju
∗

j = gN (u∗) = fN (t∗) = v(N).

Let us define the following allocation:

x = (xi)i∈N , xi = u∗

i |bi| ∀ i ∈ N,

where | · | is the absolute value function. We shall see
that x is an allocation in the core of the game.

1) x(N) =
n

∑

i=1

xi =
n

∑

i=1

u∗

i |bi| =
∑

i∈P

bi −
∑

j∈Q

bi =

v(N). So, the efficiency property is satisfied.
2) We now have to prove thatx(S) ≥ v(S) for all

S ∈ 2N . Let S be a coalition inN .

x(S) =
∑

i∈S

xi =
∑

i∈PS

u∗

i bi −
∑

i∈QS

u∗

i bi = gS(u∗).

(16)
Let xS ∈ R

|S| : xS
i = u∗

i bi ∀ i ∈ S. Clearly the
restriction ofu∗ to S is feasible forDr(S), which
is the same problem asDr(N) but without some
of its constraints. LetuS be an optimal solution to

Dr(S). We have that equation (16) is less than or
equal to

gS(uS) = v(S). (17)

Thus, we have proven that the allocationx satisfies
the collective rationality principle.

From 1) and 2) we conclude thatx ∈ C(N, v).
The set consisting of all the allocations that can be

obtained from optimal solutions toDr(N) following the
above process is the well-known Owen Set, see [7].

Since solvingDr(N) can be done in polynomial time
(see [12]), the reader may note that the given procedure
provides a core allocation in polynomial time.

Example V.1 Let us consider the Supply Chain Game
given by the Supply Chain Problem described in figure
4.

1

1

−2

4

9

2

1

2

3

K = 7

Fig. 4. Transportation Network

The characteristic function of this game is:

S {2,3} {1,2,3}
v(S) 5 6

and v(S) = 0 for any other coalition. One can check
that the dual linear program associated to this game is:

max u1 + u2 + 2u3

s.t.: u1 − u2 ≥ −4
u1 + u3 ≥ −2
u2 + u3 ≥ 5
u1, u2 ≥ 0

One optimal solution to this problem is

u∗ = (1, 5, 0)

and the corresponding Owen allocation is

(1, 5, 0),

which is an allocation in the core of the game.

Federico Perea 161

VI. SUPPLY CHAIN GAMES AND THE STATE OF THE

ART

Now we explore the relationship betweenSChG and
some other games that have been studied in the literature.

A. Flow Games and Supply Chain Games

One interesting conclusion from the balancedness of
Supply Chain Games is that they are flow games. This
is due to the fact that every totally balanced game is a
flow game itself, see [4].

B. Transportation Games and Supply Chain Games

Now we are going to see that the class of Trans-
portation Games is included in the class of Supply
Chain Games. Let(N, v) be a Transportation Game
defined from the Transportation Problem(P, Q, B, p, q),
see [10]. If we considerR = ∅, C = −B, K =
0, b = ((pi)i∈P , (−qj)j∈Q), A = P × Q, N = P ∪ Q,
then the Supply Chain Game(N ′, v′) defined from the
Supply Chain Problem(N, A, C, b, K) is equivalent to
the transportation game(N, v) defined before. Let us
prove it.

• N ′ = P ∪ Q ∪ R = P ∪ Q = N .
• The value ofv′(S) is given when we solvePr(S).

If we take

K = 0, cij = −bij , A = P × Q

then the objective functionfS(x) is equal to

max
∑

i∈P

∑

j∈Q

bijxij ,

and the constraints ofPr(S) become
∑

j∈Q

xij ≤ pi ∀ i ∈ P

and
∑

k∈P

xki ≤ qi ∀ j ∈ Q.

Moreover, due to the fact thatA = P × Q, we get
that the problem we have to solve in order to find
the value ofv′(S) is

max
∑

i∈P

∑

j∈Q

bijxij

s.t.:
∑

j∈Q

xij ≤ pi ∀ i ∈ P

∑

k∈P

xki ≤ qi ∀ j ∈ Q

xij ≥ 0 ∀ i ∈ P, ∀ j ∈ Q

which is an equivalent problem to the one we have
to solve in order to calculatev(S). So, we conclude
that v′(S) = v(S) for all S ⊂ N .

Theorem VI.1 Transportation Games are Supply Chain
Games.

Proof: The above discussion.
The reciprocity of the previous theorem is not true,
that is, there are Supply Chain Games that are not
Transportation Games. Let us see an example.

Example VI.1 Let us consider theSChG as depicted
in figure 5.

1 0 −11 1

1 2 3

K = 3

Fig. 5. Supply Chain Game

One can see thatv(N) = 1, andv(S) = 0 ∀ S 6= N . It
is obvious that in a Transportation Game withv(N) >
0, there exists a pair{i, j}, i ∈ P, j ∈ Q such that
v({i, j}) > 0. This does not happen in this example, so
we conclude thatSChG Ã TG.

Since Assignment Games are a particular case of Trans-
portation Games, we conclude that Assignment Games
are Supply Chain Games as well.

C. Shortest Path Games and Supply Chain Games

In this section we study the relationship between
Supply Chain Games and Shortest Path Games (SPG
for short) as presented in [3].

SinceSChG have been proven to be monotonic, and
in [3] it is shown that the class ofSPG coincides with
the class of monotonic games (MO), we conclude that
SChG ⊂ SPG.

The converse implication is not true, as shown in the
following example:

Example VI.2 Consider the shortest path gameσ given
by N = {1, 2}, g = 6 andΣ ando as depicted in figure
6.

The characteristic functionv for this game is

v({1}) = 3, v({2}) = 2, v({1, 2}) = 4.

162 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

s1

s2

t1

t2

3

2

4

1

2

1

2

Fig. 6. Shortest Path Game

Clearly C(N, v) = ∅, so (N, v) cannot be a Supply
Chain Game, sinceSChG are balanced.

Nevertheless, we prove that a subclass ofSPG is
included in the class ofSChG.

Proposition VI.1 Consider Shortest Path Gameσ =
(Σ, N, o, g) whereΣ = (N, A, L, s, t) ando(i) = i ∀ i ∈
N . If |s| = 1 or |t| = 1 thenσ is a Supply Chain Game.

Proof: It is clear that, if |s| = 1, the objective
for any profitable coalition is to send the only unit of
commodity froms to the nearestj ∈ t. Analogously, if
|t| = 1 then the optimal transportation plan would be to
find the closesti ∈ s to t and ship the unit thati offers
to t. In both cases, from the definition ofSChG, it is
the same objective as inSChG, and the result follows.

In [3] some conditions forSPG to have non-empty core
are given. From proposition VI.1 we have the following
result.

Theorem VI.2 If |s| = 1 or |t| = 1, then the corre-
spondingSPG is balanced.

Proof: It is clear from the fact that thoseSPG are
SChG, which are balanced.

ACKNOWLEDGEMENTS

The author would like to thank the anonymous refer-
ees for their valuable comments and advise.

REFERENCES

[1] Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.“Linear programming
and network flows.”John Wiley & Sons(1990).

[2] Bondareva, O.Certain Applications of the methods of linear
programming to the theory of cooperative games.(In Russian).
Problemy Kibernetiky, 10:119-139 (1963).

[3] Fragnelli, V., Garćıa-Jurado, I., Ḿendez-Naya, L.On Shortest
Path Games. Mathematical Methods of Operations Research
52:251-264. Springer-Verlag (2000).

[4] Kalai, E. & Zemel, E.Totally Balanced Games and Games of
Flow, Mathematics of Operations Research 7(vol 3):476-478
(1982).

[5] Markakis, E., Amin, S.On the core of the multicommodity flow
game,Decision Support Systems 39:3-10, (2005).

[6] Myerson, R.B.Graphs and cooperation in games,Mathematics
of Operations Research Vol.2 No.3 (1977).

[7] Owen, G. On the Core of Linear Production Games,Mathe-
matical Programming 9:358-370 (1975).

[8] Owen, G. “Game Theory.”Academic Press, San Diego(1995).
[9] Puerto, J., Garćıa-Jurado, I., Ferńandez, F.R.On the core of a

class of location games, Mathematical Methods of Operatoins
Research 54:373-385, (2001).

[10] Sánchez, J.El problema del transporte. Una aproximación
desde la Teorı́a de Juegos.PhD Thesis. Murcia (1998).

[11] Shapley, L.On balanced sets and cores.Naval Research Lo-
gistics Quarterly 14:453-460 (1967).

[12] Vazirani, Vijay V. “Approximation Algorithms,” Springer-
Verlag, (2001).

[13] Voorneveld, M., Grahn, S.Cost allocation in shortest path
games. Mathematical Methods of Operations Research 56:323-
340 (2002).

[14] Wilson, R.J., Watkins, J.J. “GRAPHS: An Introductory Ap-
proach” Library of Congress Cataloging-in-Publication Data
Singapore (1990).

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 163

Abstract—In this paper we present a new approach to
support the operational decisions for supply chain
networks by combining LP-modelling and discrete-event
simulation. The network structure is assumed as given,
but the trans-portation, production and inventory
amounts are optimized. We develop an LP model of a
general supply chain network including production,
inventory and transportation using different
transportation modes. Furthermore we extend it to a
multi-objective problem and present a solution method
for that extension. The LP is connected with a discrete-
event simulation model representation of the supply chain
including its full complexity and nonlinearities.
Alternating the LP model is solved and using its solution
simulation runs are performed to gain new estimates for
the linearized parameters of the LP. This method allows
improving the supply chain by approximating an optimal
solution.

Keywords—Supply chain management, LP-Models,
Discrete-event simulation, Multi-objective optimization.

I. INTRODUCTION
HE development in the economy during the last

decades shows a clear globalization trend. Firms
act globally and large networks of manufacturing and
distribution facilities are built to meet these trends.
Hence, supply chain networks increase in size, i.e., the
number of facilities within the network, as well as in
material flow. So managing supply chains becomes a
more important but also a more sophisticated task.

In this paper we want to investigate a general supply
chain network with different facilities (suppliers,
manufacturers, distributors) and different
transportation modes connecting those facilities. The
aim is to reduce costs by simultaneously optimizing the
production/transportation schedule and reducing
inventory levels. If we compare our problem to the
tasks in the supply chain matrix (cf. [18]), the problem
is a combination of several tasks in the matrix:
production planning, distribution planning and
transport planning. Aspects of the integration of
transport and production planning within supply chains
have been investigated in several papers (e.g. [1], [4]),
whereas Meyr [11] and Schneeweiss [16]) present

combined planning approaches for different levels of
decision making. For simplicity, we assume that there
is a central decision maker in the supply chain with
perfect information.

Traditionally there are two approaches for analyzing
and improving supply chain networks and the material
flow through them: (1) modelling the supply chain as
an LP or MIP and applying either exact methods or
heuristics to find “good” solutions; (2) using a
simulation based approach to analyze the complex
behaviour of a supply chain and try improving the
current situation based on a trail-and-error principle.

The first approach is well known and is often
discussed in the literature. Pankaj and Fisher [13]
showed that based on an MIP model the coordination
of production and distribution can reduce the operating
cost substantially. Erengüc, Simpson, and Vakharia [4]
summarized the developments on LP modelling of the
production and distribution planning in a supply chain,
whereas Owen and Daskin [12] gave an overview on
facility location problems. In general the problems
solved with LPs and MIPs are usually very restricted in
order to keep them solvable. For example, Tsiakis,
Shah, and Pantelides [22] did some work on designing
supply chain networks, where manufacturing and
customer zones are already fixed, and only warehouses
and distribution centres are of unknown locations.
Dogan and Goetschalckx [2] showed that larger design
problems can be solved using decomposition. Other
papers concentrate on the transportation aspect as
Vidal and Goetschalckx [23].

In the field of supply chain simulation Kleijnen [8]
gives a short overview of simulation tools and
techniques used for supply chains. He distinguishes
between four different approaches: spreadsheet
simulation, system dynamics, discrete-event dynamic
systems simulation, and business games. Clearly,
discrete-event simulation is the most powerful tool to
consider complex stochastic systems. For discrete-
event simulation numerous software packages are
available, both very specialized ones for a specific part
of the supply chain and general ones with a high
functionality in modelling and visualization of supply
chains (cf. [7], [9]). Most of today’s simulators include

Hybrid Supply Chain Modelling – Combining
LP-Models and Discrete-Event Simulation

T

Margaretha Preusser*, Christian Almeder*, Richard F. Hartl*, and Markus Klug†
*University of Vienna

Depatment of Business Studies
Brünnerstr. 72, 1210 Vienna, Austria

Email: {margaretha.preusser, christian.almeder, richard.hartl}@univie.ac.at
†ARC Seibersdorf research
2444 Seibersdorf, Austria

Email: markus.klug@arcs.ac.at

164 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

possibilities to do a black-box parameter optimization
of a simulation model. But Swisher et al. [19] and Fu
[6] show in their papers, that so far implemented
methods are very rudimentary. In research much better
optimization methods for a stochastic environment are
known, but yet not included in the software packages.

The point we are focusing on is to investigate the
possibilities of combining optimization and simulation
in the field of network flow optimization. The idea is to
iteratively exchange data between a simulation model
and the optimization model, in order to be able to
consider nonlinearities within the model and combine
the advantages of discrete-event simulation and
optimization via linear programming.

There are a few papers on optimization of network
flows in the context of supply chain management
simulation. Yaged [24] discusses in his paper a static
network model which includes nonlinearities. He tries
to optimize the flow by solving a linearized version of
the network and improve the flow in the network.
Paraschis [14] discusses several different possibilities
to linearize such networks and Fleischmann [5]
presents several applications of network flow models,
which are solved through linearization. But all three
papers do not include any stochastic elements. Lee and
Kim [10] show a real combination of simulation and
optimization for the case of a production-distribution
system. They use simulation to check the result of the
simpler optimization model in a more realistic
environment and to update the parameters for the
optimization. After several iterations they end up with
a solution of the optimization model which is also
within the constraints of the stochastic simulation
model. Truong and Azadivar [21] developed an
environment for solving supply chain design problems,
where they combine simulation with genetic algorithms
and mixed-integer programs. But they remain on a
strategic level with the questions of facility location
and partner selection.

In our paper we want to present a general LP-Model
for supply chain networks including also a multi-
objective version. Furthermore we demonstrate how
simulation and LP/MIP optimization can be combined
on the operational level. We do not use the
optimization on top of the simulation (optimizing
parameters), but we include simulation and
optimization in an iterative process in order to gain the
advantages of optimization (exact solution) and
simulation (nonlinearities, complex structure) [15].

The supply chain is represented as a discrete-event
model (D-E model) and a linearized version of it is
modelled as an LP. Due to the structure of the LP
model, it is possible to consider only specific
subsystems of the supply chain. At first we perform
several simulation runs including all stochastics in
order to get average values of the parameters (e.g. unit

transportation costs) which are then fed into the LP
model. Now we can solve the LP. The result is
transformed into decision rules and is used in the
discrete-event model. Then we start again with further
simulation experiments (see Figure 1).

The paper is organized as follows: In Section II we

describe the underlying LP-Model. The multi-objective
solution method is described in Section III. Section IV
contains a small example for combining the LP model
with a simulation model. We conclude the paper and
give an outlook for further research in Section V.

II. THE MODEL
In order to facilitate the understanding of the

following sections we now want to give a brief
description of the underlying LP model. A detailed
description of the whole model has already been
presented in [15].

The basis for our supply chain model is a predefined
network, i.e., the locations of all actors and the
distances between them are given. Within the network
we differentiate between three types of participants: (i)
suppliers providing raw materials; (ii) customers who
demand certain products at a specific time; (iii)
intermediate nodes where production, stocking, and
transshipment takes place. Additionally we consider
different transportation modes and different products.
We distinguish between 4 different categories of
decision variables to account for transportation,
production, transshipment, and inventory decisions.
Therefore it is necessary to determine for every period
the amount of each product, that has to be transported
from one location to another and which of the
transportation modes should be used. The intermediate
nodes either transship the incoming products or use
them as raw materials for manufacturing other goods.
At every location we may keep products on stock,
intermediate nodes actually have two inventories
(inbound and outbound). The decisions concerning the
optimal inventory levels are included in the model.

The supply chain consists of J locations, which
can be separated into three subsets, i.e the suppliers J S,
the intermediates J 0 and the customers J C.
Furthermore the model includes a set of products P and
a set of transportation modes V. T indicates the number

Solutions of simulation
experiments

LP Model

LP-Solution

Decision rules in
D-E Model

linearize

optimize interpret

simulate

Fig. 1. Interaction between Simulation and Optimization

Margaretha Preusser et al. 165

of periods. The model implies three types of decision
variables:)(tx p

ij
v ,)(tm p

i and)(tu p
i . Each of them can

be assigned to one subproblem, i.e. transportation,
production and transshipment. The problem is
formulated as follows (for a detailed explanation of the
variables and the notation see the Appendix):

))(()(

)()(

)()(min

,..1,..1

,..1,..1

,..1,..1

0

00

0

tltlh

tlhtuz

tmwtxc

p
i

inp
i

TtPpJi

p
i

outp
i

out

TtPpJJi

p
i

inp
i

in

TtPpJi

p
i

p
i

TtPpJi

p
i

p
i

TtPpJi

p
ij

vp
ij

v

VvTtPpJij

cs

−⋅+⋅+

⋅+⋅+

⋅+⋅

∑∑∑∑∑∑

∑∑∑∑∑∑

∑∑∑∑∑∑∑

=∈∈=∈∪∈

=∈∈=∈∈

=∈∈∈=∈∈

ρ

 (1)

)()(tCtxg ij
v

Pp

p
ij

vpv ≤⋅∑
∈

 (2)

)()(tCaptx p
ij

vp
ij

v ≤ (3)

)()(tCtma i
prod

Pp

p
i

p
i ≤⋅∑

∈

 (4)

)()(tCaptm p
i

prodp
i ≤ (5)

)()(tCtud p
i

ta

Pp

p
i

p
i ≤⋅∑

∈

 (6)

)()(tCaptu p
i

tap
i ≤ (7)

sp
i

out Jitl ∈∀≥ 0)((8)
00)(Jitl p

i
in ∈∀≥ (9)

00)(Jitl p
i

out ∈∀≥ (10)

cp
i

in Jitl ∈∀≤ 0)((11)

0)()(JitLtlq i
in

Pp

p
i

inp
i ∈∀≤⋅∑

∈

 (12)

0)()(JitCaptl p
i

invinp
i

in ∈∀≤ (13)
0)()(JitLtlq i

out

Pp

p
i

outp
i ∈∀≤⋅∑

∈

 (14)

0)()(JitCaptl p
i

invoutp
i

out ∈∀≤ (15)

∑∑
∈

<
∈

∪∈∀−=
Vv

c
ij

vp
ij

v

t
Ji

p
j

in JJjtxtf

ij
v

0)()(τ

τ

 (16)

0)()(JJjtxtf s

Ji Vv

p
ji

vp
j

out ∪∈∀=∑∑
∈ ∈

 (17)

sp
i

p
i

outp
i

outp
i

out JitStftltl ∈∀+−−=)()()1()((18)

0)()()()(

)()1()(

Jitrtutmp

tftltl
p

i
p
i

Pp

p
i

p
i

p
i

inp
i

inp
i

in

∈∀+−⋅′−

+−=

∑
∈′

′α (19)

0)()(

)()()1()(

Jitbtu

tmtftltl
p

i
p
i

p
it

p
i

p
it

p
i

outp
i

outp
i

out

p
i

p
i

∈∀+−⋅+

−⋅+−−=

≥

≥

σχ

δχ

σ

δ
, (20)

⎩
⎨
⎧

<
≥

=≥ ε
ε

χ ε t
t

t 0
1

cp
i

p
i

p
i

inp
i

inp
i

in JitrtDtftltl ∈∀+−+−=)()()()1()((21)

0)(≥tx p
ij

v (22)

0)(≥tm p
i (23)

0)(≥tu p
i (24)

The overall goal, which is represented by the

objective function (1), is to minimize the total costs. In
principle, there are four types of costs: transportation
cost, production cost, transshipment cost, and
inventory cost.

The objective function is minimized with respect to
several constraints :

Constraints (2) and (3) ensure that given transport
capacities for both the individual and the aggregated
case are not exceeded. Constraints (4) and (6) are
similar to the capacity constraints. They state, that
given production capacities, and given transshipment
capacities are not exceeded. Constraints (5) and (7)
impose individual upper bounds on transshipment or
production at a certain intermediate. Constraints (8),
(9) and (10) ensure the nonnegativity of all inventory
levels of suppliers and intermediates. The inbound
inventory level at customer nodes can only take
negative values. This restriction is given in constraint
(11). The inbound and outbound inventories at the
intermediates are furthermore capacitated. These
capacities are considered in constraints (12) and (14).
Additionally there are capacity restrictions for each
product itself, i.e. restrictions (13) and (15).

In order to calculate the total inflow or outflow at
every node, auxiliary equations (16) and (17) have
been included. Equations (18) to (21) represent the
inventory balance equations for each node. The
nonnegativity of the decision variables is ensured in
constraints (22) to (24).

The first implementation of the LP model has been
done in Xpress/MP, the LP solver of Dash
Optimization1. Since the goal is to couple the
optimization with the simulation in an iterative
procedure, it is important to ensure that the
optimization algorithm does not exceed a certain time
limit. In order to find the limitation of the
implementation regarding the problem size, we
generated several different sized test instances. The
results of these tests have been published in [15]. For
example, a problem with 3 suppliers, 29 intermediate
nodes, 2 customers, 2 transportation modes, 12
products and 40 periods has been solved in 29.64
seconds.

1 www.dashoptimization.com

166 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

III. MULTICRITERIA LINEAR PROGRAMMING
In a further step we want to distinguish between (i)

production, transportation and inventory costs, which
can easily be measured in monetary units; and (ii)
penalty costs where it is quite difficult to assign a cost
factor. Hence, the objectives are:

)(

)()(

)()(

,..1

,..1,..1

,..1,..1
1

0

00

0

tlh

tlhtuz

tmwtxcZ

p
i

outp
i

out

TtPpJJi

p
i

inp
i

in

TtPpJi

p
i

p
i

TtPpJi

p
i

p
i

TtPpJi

p
ij

vp
ij

v

VvTtPpJij

s

⋅+

⋅+⋅+

⋅+⋅=

∑∑∑

∑∑∑∑∑∑

∑∑∑∑∑∑∑

=∈∪∈

=∈∈=∈∈

=∈∈∈=∈∈

))((
,..1

2 tlZ p
i

inp
i

TtPpJi c

−⋅= ∑∑∑
=∈∈

ρ

213)1()(ZZZ λλ −+= ,
where]1,0[∈λ is a weight factor measuring the

importance of the different objectives.

This 2-objective LP model has been implemented on

the basis of an algorithm on parametric linear
programming by Ehrgott [3]. Applying this algorithm it
is possible to identify those values of the weights λ ,
which lead to a change of the basis and therefore to a
possible change of the solution. The goal is to solve the
problem with respect to Z3 using a specific weight λ .
Based on the resulting basic feasible solution the
reduced costs with respect to Z1 and Z2 are calculated
and are used to determine the next threshold for λ , i.e.
the point where the next change in the basis will occur.

Due to the fact that Xpress/MP does not include
features for solving multicriteria optimization
problems, we had to use a special combination of
Xpress/MP functions in order to get the reduced costs
for both objectives. The algorithm has been
implemented as follows:

λ :=1
while (λ >0) do
 minimize Z3
 calculate reduced costs c1 of Z1
 with respect to current basis
 (apply primal simplex with 0
 iterations)
 calculate reduced costs c2 of Z2
 with respect to current basis
 (apply primal simplex with 0
 iterations)
 if (all c2 ≥ 0)

 λ :=0
 else

)max(: 21

2

jj

j

cc

c

−

−
=λ , 0,0 12 ≥<∀ jj cc

 end-if
 end-do

As soon as the reduced costs for objective 2 are all
positive, the algorithm stops. There will be no further
change in the basis, i.e. the current optimal solution
will stay the same, even if λ is set to 0.

For the validation of the implementation we
generated a small test instance. The network consists of
3 suppliers, 3 intermediates and 3 customers, who
demand only one kind of product. The planning
horizon consists of 3 periods. In each period, each of
the suppliers produces 10 pieces of the products, which
can be transported to the intermediates and further to
the customers by two different transportation modes.
The first one is quite fast and guarantees a delivery in
time, whereas the second one will cause a delay in
delivery, but it is 4 times cheaper than the first one. As
already men-tioned above, the decision maker has to
decide between minimizing the transportation cost
versus avoiding penalty costs. Table I shows the
results for this small example.

TABLE I

RESULTS OF THE TEST INSTANCE FOR THE MULTI-
OBJECTIVE CASE

Z1 Z2 Z3

[1;0.909] 0 600 0
[0.909;0.476] 0 600 54.55

[0.476;0] 660 0 314.29

λ

There are two changes in the basis, the first one as
soon as λ gets the value 0.909 and the second one at
the value 0.476. The latter one is the point where the
decision maker for the first time chooses transportation
mode 1 instead of transportation mode 2. At the value
0.909 there is also a change in the basis, but since the
values of both objective functions stay the same, the
change of the basis consists of an exchange of slack
variables. As long as λ is greater than 0.476, the
optimal solution for the decision maker is to use the
slow transportation mode, because it is more important
to have low transportation costs than to avoid penalty
costs.

IV. INTERACTION BETWEEN SIMULATION AND
OPTIMIZATION

In this section we want to explain in more detail the
interaction between the simulation model, which
displays the structure of the supply chain network, and
the optimization model, which is a linearization of the
previous. The cycle is visualized in Figure 2.
 The simulation model includes the complexity of the
given supply chain network, considering nonlinearities
and stochastics. This discrete-event model should be
close to reality as far as possible, respectively
necessary, but it should be implemented in a way that
facilitates the transformation into a linearized version

Margaretha Preusser et al. 167

Data via RES-File
(ASCII)

Data via DAT-File
(ASCII)

Simulation model
(AnyLogic)

Discrete-event
implementation of the
model with non-
linearities and
stochastics.

LP-Model
(XPRESS/MP)

Linearized model

LP->SIM
Transfer of decision rules based on the solution
of the LP-Model (optimal solution, sensitivity
analysis, pareto front);

SIM->LP
Initialisation:

1. Structure of the model
2. Parameters as a result of the simulation

runs

Fig. 2. Interaction between Simulation and Optimization, including information on the data exchange

of the model.
The interface between the simulation model and the

LP-Model will be a data file in Xpress/MP format,
including all parameters for the LP-Model. At the
beginning of the cycle two things have to be delivered
from the simulation model to the LP-Model: the
structure of the model and the starting values for all
parameters used in the model.

For the latter one there are two possibilities to obtain
the relevant information: (i) the values for the
parameters are determined by taking the average values
after the first simulation runs; (ii) a couple of
simulation runs with different assumptions are
implemented, and further used for an estimation of the
initial parameter values. In the following iterations the
parameters can in either case be estimated based on the
solutions of the former simulation runs.

The data transfer from the LP-Model to the
simulation model is done via another data file. These
data contain information about: (i) the optimal solution
of the problem; (ii) the solution of the sensitivity
analysis; (iii) the paretofront (in case of a multicriteria

decision problem). All this information is used to
determine decision rules for the simulation.

This approach has been already tested using a small
example. The basis for our experiments is Comparison
14, a simulation reference model published by the
ARGESIM working group in the SNE (Simulation
News Europe, cf. [20]). The simulation model has been
implemented in AnyLogic, the simulation tool from XJ
Technologies.

The comparison addresses a discrete modelling and
simulation problem. It considers a relatively simple
network, consisting of four factories, four distributors
and a customer. Some parameters of the original
definition of the comparison have been changed
slightly in order to apply optimization and to meet the
requirements of the LP model.

The time horizon considered consists of 10 days
(240 hours). We assume that the factories produce 12
different products, whereas each factory produces only
6 of them.

Factories F1 and F3 supply products P1 to P6, and
factories F2 and F4 supply products P7 to P12. The
amounts of products supplied at each factory have been
generated randomly. The 4 distributors order products
at the suppliers and deliver them to the customer.

In the simulation model the distributors order the
products following an ordering plan, which is at first
determined in the optimization model and afterwards
fed into the simulation. Both the suppliers and the
distributors are provided with an initial inventory level
for each product. Furthermore, the network is actually

separated into two parts. Distributors D1 and D2 can
only order products at factories F1 and F2, and
distributors D3 and D4 order their products only at
factories F3 and F4. Transporting the products from a
supplier to a distributor takes some periods of time.

The customer orders products from the distributors,
the transportation time between factories and
distributors is not taken into account within the model.

The deliveries between factories and distributors can

168 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

only take place once a day, i.e. in every 24th period.
The inventory levels are always measured at the end of
each period.

Therefore, the total costs of the system consist of the
inventory costs of the suppliers, the inventory costs of
the distributors and the transportation costs between
suppliers and distributors. The inventory costs for
suppliers and distributors are calculated once a day
based on the stock level just before the distributors
place their orders. Without taken into account any
stochastics, the goal of this experiment was to find the
optimal solution for the whole network. For the
inventory cost of the factories we use a piecewise
linear function, and for the distributors’ inventory cost
we tested 3 different costs functions: (i) a piecewise
linear convex function; (ii) a concave function, and
(iii) a piecewise linear step function.

The above cost functions are used only in the
simulation model. For the optimization model we
linearized these functions.
With all three types of cost functions for the
distributors’ inventories we performed our algorithm in
the following form: After having simulated the flow of
products within the system for the complete time
horizon, the average inventory costs at the different
nodes were computed and incorporated into the
optimization model. Clearly, the updated inventory
costs led to an adjustment concerning the
transportation amounts. For the piecewise linear
convex function three iterations of this ping-pong
game had to be performed, until the simulation model
provided the same average inventory costs as in the
previous round.

For the second experiment we used a concave cost
function for the distributors’ inventories. Again we get
the same total cost values from simulation and
optimization after 3 iterations.

Although we can gain convergence in these first two
examples, we do not know if we are trapped in a local
minimum or if we have found the global optimum.
Especially if we consider more complex networks with
different types of nonlinearities, it will be very difficult
to find some general conditions under which we can

guarantee to find a global optimum.
In the case of the step function we cannot reach

convergence. After the fifth iteration we get the same
results as in the third iteration. Here the problem arises
that it is not possible to guarantee convergence in the
general case. (For more details of the results see [15]).

In the next example we include a stochastic element.
We assume that the time needed for transporting
products from the factory to the distributor has a
constant part (which is four fifth of the value in the
previous examples) and a stochastic part, where we use
an exponential distribution (the average transportation
time does not change compared to the deterministic
case).

The transportation costs are independent of the

transportation time. We allow backorders at the
distributors, but they are penalized with 100 monetary
units per unit short per period. For the inventory costs
we consider the same situation as in the first case, i.e.
piecewise linear, continuous cost functions at the
factory and at the distributor. Now for each iteration
we do 5 simulation runs and use the average results as
input to the LP-Model. The results are shown in Table
II.

We see that after 3 iterations the changes of the
parameters are less than 1%, but the difference of the
total costs are varying between 0.75% in the third
iteration and 2.23% in the fourth iteration. If we
perform 5 simulation runs instead of 20 simulation
runs in the last iteration the gap is only 1.29% (value
given in parentheses). So in the stochastic case, we
cannot expect to close this gap completely, but we
have to analyze the simulation results in more detail
and determine a threshold for the gap between the
results of the LP-Model and the simulation model.

V. CONCLUSIONS AND OUTLOOK
Analyzing and improving supply chains are difficult

problems and several different approaches have been
proposed in the literature. We presented a new
possibility to combine the two main tools, namely
simulation and optimization. The aim is to put the

 TABLE II

RESULTS OF THE EXAMPLE WITH A STOCHASTIC ELEMENT: UNIT INVENTORY COSTS

It. F1 F2 F3 F4 D1 D2 D3 D4 LP Total costs

1 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 16195 17978

2 3.44 3.29 3.23 3.19 1.00 1.03 1.02 1.01 17159 16672

3 3.39 3.11 3.04 2.96 1.02 1.04 1.05 1.03 16993 16867

4 3.39 3.11 3.04 2.96 1.02 1.04 1.05 1.03 16992 16621 (16776)

Margaretha Preusser et al. 169

advantages of simulation (complex models,
nonlinearities) and the advantages of optimization
(exact solution) into one method. Within this
framework it is possible to test the optimal
deterministic solution of the LP-Model in a stochastic
environment and to analyze whether this solution is
also feasible in the context of a more complex and
more realistic simulation model.

The underlying LP-Model is a very general
representation of a supply chain, which ensures that it
can be applied easily to a large variety of problems.
Due to its structure, it is possible to restrict the
optimization to parts of the supply chain.

In this paper we presented only some small
examples for the combination of simulation and
optimization and there are still some open research
questions. Especially the example in Section IV, where
we did not gain convergence, shows that a special
effort has to be undertaken to find out the limitations of
this method and maybe to develop further solution
methods. Furthermore it is necessary to investigate in
more detail, if in the case of convergence we really
find the optimal solution. Another possibility might be
to apply metaheuristics using the results of our
approach as initial solution in order to leave a local
optimum and to further improve the solution.

Our further work will improve the interfaces
between simulation and optimization on both sides: (i)
how can we automatically derive a linearized model
out of the discrete-event model and (ii) how can we
interpret the solution of the LP model as general
decision rules in the simulation model? For the second
question it is important to perform analytical
investigations of the LP-Model, i.e. sensitivity analysis
and multi-objective optimization. The multi-objective
optimization can be used as a special extension of the
sensitivity analysis regarding the changes of the
weights. This information should be used to derive
decision rules for the discrete-event model.

In the literature of production/distribution planning
there are several examples of complex LP/MIP-
Models, and sophisticated methods (e.g. Langrangian
relaxation, decomposition) for simplifying and solving
such problems available (e.g. [17]). So another
possibility for further research is to increase the
complexity of the underlying LP-Model. But this
would imply a possible loss of generality and more
complications for the interface to the simulation model.

APPENDIX
Notation used for the LP-Model:

J set of locations
J= cos JJJ ∪∪

sJj ∈ raw-material supplier (starting nodes)

cJj ∈ customer (end nodes)
0Jj∈ nodes between supplier and customer

P set of products
V set of transportation modes
T number of periods

)(tx p
ij

v flow of product p from location i to location j

with transportation mode v (sent away in
period t)

)(tm p
i amount of product p (product p is the end

product of the production process at
location i), that starts to be produced at
location i in period t

)(tu p
i amount of product p, that starts to be

transacted in location i in period time t)

)(tf p
j

in amount of product p, arriving at location j in

period t

)(tf p
j

out amount of product p, sent away at location j

in period t

)(tl p
i

in inbound inventory level of product p at
location i in period t

)(tl p
i

out outbound inventory level of product p at
location i in period t

)(tS p
j supply of product p at location j in period t

p
i

inh inbound inventory costs (per unit) for product
p at location i

p
i

outh outbound inventory costs (per unit) for

product p at location i

)(tLi
in maximum capacity of inbound inventory at

location i

)(tLi
out maximum capacity of outbound inventory at

location i
)(tCap i

pinvin maximum amount of product p that can be
held in the inbound inventory of
intermediate i in period t

)(tCap i
pinvout maximum amount of product p that can be

held in the outbound inventory of
intermediate i in period t

p
ij

v c transportation costs (per unit) of product p

transported from location i to location j with
transportation mode v

)(tCij
v maximum transportation capacity of

transportation mode v on the way from
location i to location j

)(tCi
prod maximum production capacity at location i in

period t

)(tC p
i

ta maximum transaction capacity at location i in
period t

)(tCap ij
pv amount of product p that transportation mode

170 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

v can transport from location i to location j
)(tCap i

pprod amount of product p that can be produced at
location i in period t

)(tCap i
pta amount of product p that can be transacted at

location i in period t
p

iδ amount of periods required to produce
product p at location i

p
iσ amount of periods required to transact

product p at location i

)(pp
i ′α amount of product p´ required to produce one

unit of product p at location i
p
iw production costs of product p at location i
p
iz transaction costs of product p at location i
p
ia factor, indicating the amount of capacity units

required to produce one unit of product p at
location i

)(tb p
i amount of product p, which is already in

production process in period 0, and will be
finished in period t (or external increase of
inventory)

p
id factor, indicating the amount of capacity units

required to transact one unit of product p at
location i

pv g factor, indicating the amount of capacity units
required to transport one unit of product p
with transportation mode v

p
iq factor, indicating the amount of capacity units

required to hold one unit of product p at the
inventory of location i

ij
vτ amount of periods required by transportation

mode v requires to go from location i to
location j

p
iρ penalty costs (per unit) at location i

)(tD p
i demand for product p at location i in period t

)(tr p
i amount of product p, which is already

transported at period 0, and will arrive at
location i in period t (or external increase of
inventory)

ACKNOWLEDGMENT
We gratefully acknowledge the support of ARC

Seibersdorf research and of Dash Optimization.

REFERENCES
[1] Arbib C, Marinelli F (2005), Integrating process optimization

and inventory planning in cutting stock with skiving option: An
optimization model and its application. European Journal of
Operational Research 163: 617-630.

[2] Dogan K, Goetschalckx M (1999), A primal decomposition
method for the integrated design of multi-period production-
distribution systems. IIE Transactions 31: 1027-1036.

[3] Ehrgott, M (2000), Mutlicriteria Optimization, Lecture Notes in
Economics and Mathematical Systems 491, Springer-Verlag.

[4] Erengüc SS, Simpson NC, Vakharia AJ (1999), Integrated
production/distribution planning in supply chains: an invited
review. European Journal of Operational Research 115: 219-
236.

[5] Fleischmann, B. (1993), Designing distribution systems with
transport economies of scale. European Journal of Operational
Research 70, 31-42.

[6] Fu MC (2002), Optimization for Simulation: theory vs practice.
INFORMS Journal on Computing 14: 192-215.

[7] Kelton WD, Sadowski RP, Sadowski DA (2002), Simulation
with Arena, 2nd edn. McGraw-Hill.

[8] Kleijnen, J. P. C., (2005), Supply chain simulation tools and
techniques: a survey, International Journal of Simulation &
Process Modelling 1 (1-2) pp. 82—89.

[9] Kuhn A, Rabe M (1998), Simulation in Produktion und
Logistik (Fallbeispielsammlung),Springer.

[10] Lee, Y.H., Kim, S.H. (2000), Optimal production-distribution
planning in supply chain management using hybrid simulation-
analytic approach. Proceedings of the 2000 Winter Simulation
Conference (Joines, J.A., Barton, R.R., Kang, K., Fishwick,
P.A., eds.), 1252-1259.

[11] Meyr, H. (2002), Simultaneous lotsizing and scheduling on
parallel machines. European Journal of Operational Research
139, 277-292.

[12] Owen SH, Daskin MS (1998), Strategic Facility Location: A
Review. European Journal of Operational Research 111: 423-
447.

[13] Pankaj C, Fisher ML (1994), Coordination of production and
distribution planning. European Journal of Operational
Research 72: 503-517.

[14] Paraschis, I.N. (1989), Optimale Gestaltung von
Mehrproduktsystemen. Physica-Schriften zur
Betriebswirtschaft 26, Physica-Verlag Heidelberg.

[15] Preusser, M., Almeder, C., Hartl, R.F., Klug, M. (2005), LP
Modelling and simulation of supply chain networks. In:
Günther, H.O., Mattfeld, D.C., Suhl, L., Supply Chain
Managament und Logistik: Optimierung Simulation, Decision
Support. Physica-Verlag, 95-114.

[16] Schneeweiss C, (2003), Distributed Decision Making, 2nd edn.
Springer.

[17] Shapiro JF (1993), Mathematical Programming Models and
Methods for Production Planning and Scheduling, In: Graves
SC, Rinnooy Kan AHG, Zipkin PH (eds) Handbooks in
Operations Research and Management Science: Logistics of
Production and Inventory. North-Holland.

[18] Stadtler H (2005), Supply chain management and advanced
planning – basics, overview and challenges. European Journal
of Operational Research 163: 575-588.

[19] Swisher, J.R., Jacobson, S.H., Hyden, P.D., Schruben, L.W.
(2000), A survey of simulation and optimization techniques and
procedures. Proceedings of the 2000 Winter Simulation
Conference, Joines, J.A., Barton, R.R., Kang, K., and Fishwick,
P.A., (eds.), pp.119-128.

[20] Tauböck SM (2001), C14 supply chain management definition.
SNE Simulation News Europe 32/33: 28-29.

[21] Truong TH, Azadivar F (2003), Simulation based optimization
for supply chain configuration design. Proceedings of the 2003
Winter Simulation Conference (S. Chick, P. J. Sánchez, D.
Ferrin, and D. J. Morrice, eds.) pp. 1268-1275.

[22] Tsiakis P, Shah N, Pantelides CC (2001), Design of multi-
echelon supply chains under demand uncertainty. Ind. Eng.
Chem. Res. 40, 3585-3604.

[23] Vidal CJ, Goetschalckx M (2001), A global supply chain model
with transfer pricing and transportation cost allocation.
European Journal of Operational Research 129: 134-158.

[24] Yaged, B. (1971), Minimum cost routing for static network
models. Networks 1, 139-172.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 171

Tolerance-based Branch and Bound Algorithms
Marcel Turkensteen∗, Diptesh Ghosh†, Boris Goldengorin‡ and Gerard Sierksma§

∗University of Groningen, Fac. of Economics
Landleven 5, PO Box 800, 9700 AV Groningen, Netherlands

Email: m.turkensteen@eco.rug.nl
†Indian Institute of Management, P&QM Area

Ahemdabad 380015, Ahmedabad, India
Email: diptesh@iimahd.ernet.in

‡University of Groningen, Fac. of Economics
Landleven 5, PO Box 800, 9700 AV Groningen, Netherlands

Email: b.goldengorin@eco.rug.nl
§University of Groningen, Fac. of Economics

Landleven 5, PO Box 800, 9700 AV Groningen, Netherlands
Email: g.sierksma@eco.rug.nl

Abstract— The selection of entries to be
included/excluded in Branch and Bound algorithms
is usually done on the base of cost values. In this paper,
we propose to use upper tolerances to guide the search for
optimal solutions. In spite of the fact that it needs time
to calculate tolerances, our computational experiments
for Asymmetric Traveling Salesman Problem show that
in most situations tolerance-based algorithms outperform
cost-based algorithms. The solution time reductions are
mainly caused by the fact that the branching process
becomes much more effective, so that optimal solutions
are found in an earlier stage of the branching process.
The use of tolerances also reveals why the widely used
choice for branching on a smallest cycle in assignment
solutions is on average the most effective one.

Keywords— Tolerances, NP-hard problems, Branch and
Bound.

I. I NTRODUCTION

T HE Traveling Salesman Problem (TSP) is the prob-
lem of finding a shortest tour through a given num-

ber of locations such that every location is visited exactly
once. The cost of traveling from locationi to locationj
is denoted byc(i, j). These costs are calledsymmetric
if c(i, j) = c(j, i) for each pair of citiesi and j, and
asymmetricotherwise. The fact that the TSP is a typical
NP-hard optimization problem means, roughly spoken,
that solving instances with a large number of cities is
very difficult if not impossible. Recent developments
in polyhedral theory and heuristics have significantly
increased the size of instances which can be solved to
optimality. The best known exact algorithms are based

on either the Branch and Bound (BnB) method for the
Asymmetric TSP (ATSP) [5] or the Branch and Cut
method for the Symmetric TSP (STSP) using the double
index formulation of the problem (see [18]). A state-of-
the-art account on heuristics for the STSP and the ATSP
is presented in [11] and [12], respectively.

Currently, most algorithms for the TSP delete high
cost arcs or edges and save the low cost ones. A
drawback of this strategy is that costs of arcs and edges
are no accurate indicators whether those arcs or edges
are saved in an optimal TSP solution. In this paper, it is
shown thattolerancesare better indicators. A tolerance
value of an edge/arc is the cost of excluding or including
that edge/arc from the solution at hand; see Section II.
Although the concept of tolerances has been applied for
decades (in sensitivity analysis; see for example [16]),
only Helsgaun’s version of the Lin-Kernighan heuristic
for the STSP applies tolerances; see [8].

We apply upper tolerances in BnB algorithms for the
ATSP. A BnB algorithm initially solves arelaxation of
the original hard problem. In case of the ATSP, the
Assignment Problem (AP) is a common choice. The AP
is the problem of assigningn people ton jobs against
minimum cost; an optimal solution of the AP is called
a minimum cycle cover. If the minimum cycle cover
at hand is a complete tour, then the ATSP instance is
solved; otherwise, the problem is partitioned into new
subproblems by including and excluding arcs. In the
course of the process, asearch treeis generated in
which all solved subproblems are listed. BnB algorithms
comprise two major steps:branchingandbounding.

The objective ofbranchingis to find a good, or even

172 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

optimal, ATSP solution in an effective way. If the current
AP solution is infeasible, then there may exist a subset
of elements of this solution, the so-calledsurvival set,
which also appears in an optimal TSP solution eventu-
ally obtained by the BnB algorithm. An effective BnB
algorithm cherishes arcs in survival sets and disposes of
the other ones, theextinction arcs. Obviously, survival
sets are not known beforehand. Predictions of what
arcs belong to the survival set are usually based on
the arc costs. We claim that the predictions are much
more accurate if upper tolerance values of arcs are used
instead; see Section III.

The objective ofboundingis to fathom as many nodes
in the search tree as possible. A subproblem is fathomed
if its lower bound exceeds the value of the best solution
found so far in the process. An AP solution is infeasible
for the ATSP, if it consists of two or more subcycles; we
call such subcyclesoffenders. To obtain a complete tour,
at least one offender must be “broken”, meaning that its
arcs are successively prohibited in the next stage of the
process. Since the cost of removing an arc is its upper
tolerance value, upper tolerance values provide us with
the cost of breaking an offender, and hence, they can be
used to tighten the lower bounds. The higher the lower
bound, the larger set of subproblems that are fathomed;
see Section IV.

Compared to their cost-based counterparts, tolerance-
based BnB algorithms have one big drawback: whereas
cost values need to be looked up, tolerance values must
be calculated. So the question is whether the reduction
in the size of the search tree is on average sufficiently
large to compensate for the additional tolerance compu-
tation times. Computational experiments, performed in
Section VI, show that it is so for random, sparse, and
various ATSPLIB instances. The conclusions and future
research directions appear in Section VII.

II. TOLERANCES FORCOMBINATORIAL

OPTIMIZATION PROBLEMS

In this section we introduce the notion of upper and
lower tolerances in case of a general Combinatorial Opti-
mization Problem (COP). ACombinatorial Optimization
ProblemCOP(E , C,D, fC) is the problem of finding a
solution

S∗ ∈ arg opt{fC(S) | S ∈ D},

where C : E → ℜ is the given instance of the
problem withground setE satisfying|E| = m (m ≥ 1),
D ⊆ 2E is the set of feasible solutions, and fC :
2E → ℜ is theobjective functionof the problem.D∗ =
arg opt{fC(S) | S ∈ D} is the set of optimal solutions.

It is assumed thatD∗ 6= ∅. In the remaining part of this
paper we takeopt = min.

Let g ∈ E , andα ≥ 0. By Cα,g : E → ℜ we denote
the instance defined asCα,g(e) = C(e) for eache ∈
E \ {g}, andCα,g(g) = C(g) + α. Take anyS∗ ∈ D∗,
ande ∈ E . The upper toleranceof e with respect toS∗

is denoted and defined as

uS∗(e) = max{α ≥ 0 : S∗ ∈ arg min{fCα,e
(S) : S ∈ D}},

and thelower toleranceof e with respect toS∗ as

lS∗(e) = max{α ≥ 0 : S∗ ∈ arg min{fC−α,e
(S) : S ∈ D}}.

I.e. uS∗(e) is the maximal increase ofC(e) under which
S∗ stays optimal, andlS∗(e) the maximal decrease of
C(e) under whichS∗ stays optimal.

We assume thatfC is monotone, meaning that for each
S ∈ 2E and eachα ≥ 0, it holds that

fCα,e
(S) ≥ fC0,e

(S).

Sum functionswith fC(S) =
∑

e∈S C(e), bottleneck
functions with fC(S) = maxe∈S C(e), and product
functionswith fC(S) =

∏

e∈S C(e) and C(e) ≥ 1 for
eache ∈ E are all monotone functions.

We call the setD of feasible solutionsnon-embedded
if for eachS1, S2 ∈ D with S1 6= S2, it holds that neither
S1 ⊂ S2 nor S2 ⊂ S1.

The following theorem, of which the proof is left to
the reader, can be seen as a straightforward generaliza-
tion of Libura’s theorem on tolerances (see [15]) for
the TSP. We will use the following extra notations. Let
e ∈ E . ThenD+(e) = {S ∈ D : e ∈ S}, andD−(e) =
{S ∈ D : e /∈ S}. Clearly, D = D−(e) ∪ D+(e) and
D−(e) ∩ D+(e) = ∅. D∗

+(e) and D∗

−
(e) are the sets

of optimal solutions containinge and not containinge,
respectively.

Theorem 1:Consider COP (E , C,D, fC) with
monotonefC . For eachS∗ ∈ D∗, the following holds:

1. e ∈ ∩D∗ iff
uS∗(e) = fC(S) − fC(S∗) > 0

for eachS ∈ D∗

−
(e),

lS∗(e) = ∞;
2. e ∈ E \ ∪D∗ iff

uS∗(e) = ∞, lS∗(e) = fC(S) − fC(S∗) > 0
for eachS ∈ D∗

+(e);
3. e ∈ S∗ \ ∩D∗ iff

uS∗(e) = 0, lS∗(e) = ∞;
4. e ∈ ∪D∗ \ S∗ iff

uS∗(e) = ∞, lS∗(e) = 0.
If |D∗| = 1, then this theorem boils down to Libura’s

theorem on tolerances. IfD−(e) = ∅ for somee ∈ E ,
then uS∗(e) = min{fC(T) : T ∈ D−(e)} − fC(S∗) =

Marcel Turkensteen et al. 173

min{∅} = ∞ (by definition). Similarly, forD+(e) = ∅
we takelS∗(e) = ∞.

The following statement can be derived from Theo-
rem 1. If one excludes an elemente from S∗, then the
objective value of the new problem will befC(S∗) +
uS∗(e). The same holds for the lower tolerance if the
elemente ∈ E \ S∗ is included. So a tolerance-based
BnB algorithm knows the cost of including or excluding
elements before it selects the element to branch on.

In the remainder of the article we
concentrate on AP (E , C,A, fC) and ATSP
(E , C,H, fC). Note that H ⊆ A. We denote the
sets of optimal solutions byA∗ andH∗, respectively.

III. SURVIVAL SETS

This section explores thebranching step of BnB
algorithms. The goal of branching is to find a good or
even optimal solution in the fastest possible way. BnB
methods generate sequences of steps in which parts of
the solution at hand are included and excluded, until
an optimal solution of the original problem is found.
If a BnB algorithm predicts correctly which element to
delete or to insert, then its search tree will be small. So
it is important to predict survival sets accurately. Most
algorithms base the predictions on cost values, but the
question is: do predictions improve if they are based on
upper tolerance values, and: how many survival arcs are
there on average?

In our experiments we consider instances with varying
degree of symmetry and degree of sparsity. Thedegree
of symmetryis defined as the fraction of off-diagonal
entries of the cost matrix{cij} that satisfycij = cji;
the degree of sparsityis the percentage of arcs that is
missing in an instance.

Table I shows that the average percentage of common
arcs in corresponding AP and ATSP solutions varies
between 40 and 80%. Similar investigations show that
the Minimum 1-Trees and optimal STSP tours have
between 70% and 80% of the edges in common [8].

Assume that we start with a fixed AP solutionA∗ ∈
A∗, and thatH∗ ∈ H∗ is a fixed shortest complete
tour of the same instance. We explore whether there
are relationships between the cost values and the upper
tolerance values of arcs and their appearance inH∗.
These relationships are measured with theadjusted Rand
index, which measures the relationship between two
partitions; see [10], and withlogistic regression[6]. The
costs and the upper tolerances are continuous variables,
and are both compared with the partition ofA∗ into
survival and extinction arcs.

In the adjusted Rand index analysis [10], we create
partitions based on upper tolerances and costs. First, the

TABLE I

FRACTION OF SURVIVAL ARCS IN OPTIMAL AP AND ATSP

SOLUTIONS

Instance type Fraction of survival arcs

ATSPLIB 53.52%

Degree of symmetry 0.33 69.29%

Degree of symmetry 0.66 51.10%

Full symmetry 43.44%

Asymmetric random 80.49%

Degree of sparsity 50% 86.27%

Degree of sparsity 75% 84.23%

Degree of sparsity 90% 83.46%

arcs in a fixed optimal AP solutionA∗ are partitioned
into two subsets:IN1 contains the survival arcs, and
the subsetIN0 contains the extinction arcs. Call this
partition IN = {IN0, IN1}. We try to replicateIN
with partitionsC andU based on the costs and tolerance
values of the arcs, respectively. DefineC := {C0, C1},
whereC0 = {e ∈ A∗ : c(e) ≥ c∗}, C1 := {e ∈ A∗ :
c(e) < c∗}, and determinec∗ in such a way that|C0| =
|IN0|. Arcs are partitioned into a set of low cost arcs
C1 and a class of high cost arcsC0. If it is true that all
high cost arcs are not in the given shortest tour, then the
setsIN0 andC0 and the setsIN1 andC1 coincide and
cost values lead to a perfect prediction. Similarly, define
U = {U0, U1}, whereU0 := {e ∈ A∗ : uA∗(e) < u∗},
U1 := {e ∈ A∗ : uA∗(e) ≥ u∗}, and determineu∗ in
such a way that|U0| = |IN0|.

The adjusted Rand indexmeasures how similar the
each of both partitionsU and C are in comparison
with the ideal partition into survival and extinction arcs
IN . The more similar two partitions are, the higher
the adjusted Rand index between both partitions is.
An adjusted Rand index of 1 indicates that for each
nonempty classAi of partitionA, there exists a classBj

of partitionB such thatAi = Bj . The expected adjusted
Rand index is 0, if both partitions assign objects to
classes randomly having the original number of objects
in each class [10].

The adjusted Rand indices betweenIN and C and
betweenIN and U are shown in Table II. They are
larger for the tolerance-based partitionsU than for the
cost-based partitionsC, which shows that predictions are
better if they are based on upper tolerance values.

The adjusted Rand index analysis makes splits in the
data based on the cost and the upper tolerance values.
It does not include the distances in cost or tolerance
value of an arc from the split value. The following

174 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE II

QUALITY OF THE PREDICTIONS USING UPPER TOLERANCES AND

COSTS

Adjusted Rand indices R2 of logit model

Instance type Tolerance Cost Tolerance Cost

ATSPLIB 0.113 -0.003 0.112 0.035

Degree of symmetry 0.33 0.152 0.007 0.169 0.017

Degree of symmetry 0.66 0.188 0.028 0.132 0.015

Full symmetry 0.158 0.013 0.007 0.011

Asymmetric random 0.287 0.039 0.299 0.023

Sparsity 50% 0.361 0.017 0.407 0.015

Sparsity 75% 0.252 0.033 0.382 0.013

Sparsity 90% 0.219 0.032 0.342 0.017

problem arises. Suppose that an arc with a very high
upper tolerance value is not in any shortest ATSP tour.
Such an arc is very likely to be excluded already in an
early stage of a tolerance-based branching process. If this
event occurs, the predictions of upper tolerances should
get a bad rating for this instance. The same holds for
arcs with low cost values which are not in a shortest
ATSP tour. We define the binary variableIN , ranging
over all arcse ∈ A∗, as follows:IN(e) = 1 if e ∈ H∗

andIN(e) = 0 otherwise.
An appropriate method for estimating the relationship

between a dependent binary variable and independent
continuous variables islogistic regression[7]. Logistic
regression is usually applied to explain or predict choices
in choice modeling, for example the choice between
buying and not buying a product [9]. Based on the
values of the independent variables, probabilitiesπ(e)
are estimated of the event that the independent variable
attains the value 1 for the observatione. The fit of a
model is good if these probabilitiesπ(e) are close to the
actual observed values of the dependent variable.

A general measure to determine the fit of a logistic
regression model, also calledlogit model, is theR2 for
a logit modelR2

logit [6], which compares the predictive
power of a logit model to the predictive power of a
model without independent variables. IfR2

logit = 1,
then all the variance in the independent variable is
explained and predictions are perfect. On the other hand,
if R2

logit = 0, the independent variables in the model
offer no information about the dependent variable.R2

logit

is similar toR2 in linear regression.
In order to analyze survival sets, we construct for

each instance two separate logit models. In the cost-
based model the dependent variableIN is explained by
the cost values of the arcs in an assignment solution;
the independent variable in the tolerance-based model

is formed by the upper tolerance values. The values of
R2

logit of both models are presented in Table II.
The values ofR2

logit are higher for the tolerance-based
models, except for fully symmetric instances. These
results confirm that predictions based on upper tolerance
values are clearly better than predictions based on costs.

IV. N EW LOWER BOUNDS FOR THEATSP

In this section, we use the upper tolerances of an op-
timal AP solutionA∗ to construct tight lower bounds for
the corresponding ATSP. Recall that, if the lower bound
of a subproblem is increased, then this subproblem is
more likely to be fathomed during the execution of the
BnB algorithm.

In BnB algorithms, lower bounds can be obtained
by removing sources of infeasibility with respect to the
original problem from the current solution. We called
such sources of infeasibilityoffenders. In case of the
ATSP and its AP relaxation, offenders are subcycles.
Let A∗ consist ofk(> 1) cycles, say,A∗ = ∪k

i=1Ki.
We defineC(A∗) as the set of all cycles inA∗, so
C(A∗) = {K1, . . . , Kk}.

In order to “break” a subcycleK (meaning that this
cycle does not appear in subsequent AP solutions), at
least one arc must be removed. Recall that the cost of
removing an arc is equal to its upper tolerance value.
Hence, the minimum cost of breaking a subcycle is equal
to the lowest upper tolerance value in that cycle. We
denote and define for eachK ∈ C(A∗) this value by
uK

A∗ := min{uA∗(e) : e ∈ K}. Theorem 2 shows
that the cost of breaking a cycle by deleting a minimum
tolerance arc can be used to increase the lower bound.

Theorem 2:Let A∗ and H∗ be optimal solutions to
AP and ATSP instances, respectively, with the same cost
matrixC. Assume thatA∗ consists of at least two cycles.
Then for eachK ∈ C(A∗), the following inequalities
hold:

fC(A∗) ≤ fC(A∗) + uK
A∗ ≤ fC(H∗).

Proof: The first inequality is obvious, since
uA∗(e) ≥ 0 for every e ∈ A∗. Now we show that
fC(A∗) + uK

A∗ ≤ fC(H∗). Take anyK ∈ C(A∗), and
take anye ∈ K \ H∗. Let A−(e) be the set of all
AP solutions withoute, so {A ∈ A : e /∈ A}.
Moreover, letA∗

−
(e) ∈ arg min{fC(A) : A ∈ A−(e)}.

From Theorem 1(1) and 1(3), we have thatuA∗(e) =
fC [A∗

−
(e)] − fC(A∗), and that fC(A∗) + uA∗(e) =

fC [A∗

−
(e)] ≤ fC(H∗), since H∗ ∈ A−(e). Hence

fC(A∗) + uK
A∗ ≤ fC(A∗) + uA∗(e) = fC [A∗

−
(e)] ≤

fC(H∗).

Marcel Turkensteen et al. 175

Based on Theorem 2, we may ask the question which
subcycle inA∗ should be “broken”. The most effec-
tive choice is the cycleK in which uK

A∗ is maximal,
since it causes the largest increase in the lower bound
fC(A∗) + uK

A∗ . However, all tolerance values in all
cycles must be computed to guarantee that we obtain
an arc with maximal value ofuK

A∗ . This is usually a
time-consuming matter. Hence, it may be worthwhile to
restrict the tolerance calculations to a ‘not too large’
subset ofC(A∗). Let O ⊆ C(A∗). Denote and define
the bottleneck tolerancewith respect toO ⊆ C(A∗) by
buA∗(O) := max{uK

A∗ : K ∈ O}, and the corresponding
bottleneck boundby lbA∗(O) = fC(A∗) + buA∗(O).
The choice for the set of offendersO determines the
values of the bottleneck tolerances and bounds. For
example, ifC(A∗) = {K1, K2}, uK1 = 1, and uK2 =
5, then buA∗(C(A∗)) = buA∗({K1}) = 5, whereas
buA∗({K2}) = 1 andbuA∗(∅) = 0.

We consider special sets of offenders inC(A∗):

The Entire Cycle Set (ECS). Define OE :=
C(A∗). So the bottleneck tolerance value in the
entire set of subcycles ofA∗ is taken. Note that
buA∗(OE) ≥ buA∗(O) for every O ⊆ C(A∗)
and for everyA∗.
The Smallest Cycle Set (SCS). Define OS :=
{K∗}, where K∗ is a cycle of A∗ with the
smallest cardinality, i.e.,K∗ ∈ arg min{|K| :
K ∈ C(A∗)}.

The concept of bottleneck tolerances uses the structure
of an assignment solution to increase the lower bound.
For instance, suppose that an assignment solution of
a randomly generated instance consists of many small
cycles. We may expect a high bottleneck tolerance value,
since the maximum is taken from a large set of numbers.
Note also that if an assignment consists of a large number
of cycles, then, on average, the gap between the AP
and the ATSP solution values is wide. So there is a
relationship between the size of the gap and the value of
the bottleneck tolerance.

The ECS choice leads to the tightest upper tolerance-
based lower bounds. The SCS choice is taken into ac-
count, because it gives a good approximation for the ECS
bound in a short time. We claim that, in many situations,
the value ofbuA∗(OE) is attained on a smallest cycle,
and hence,buA∗(OS) is a good approximation of it.
The intuition behind this claim is the following. Suppose
upper tolerance values are randomly dispersed over the
arcs of a minimum cycle cover. The minimum tolerance
value of a small cardinality cycle is then relatively large;
therefore, it is likely thatbuA∗(OE) is attained on a
smallest cycle ofA∗. Table III shows that the fraction

of subproblems in a BnB search tree for which this
event occurs, is about 45%. The high percentages for
symmetric instances are distorting, since initial minimum
cycle covers usually consist of many cycles of cardinality
2.

TABLE III

PERCENTAGEbuA∗(OE) IN SMALLEST CYCLES AND REDUCTIONS

BY ECSAND SCSLOWER BOUNDS

Instance buA∗(OE) in
smallest cycles

r(OE) r(OS)

ATSPLIB 46.38% 19.97% 6.39%

Degree of symmetry 0.33 60.98% 34.62% 17.07%

Degree of symmetry 0.66 69.48% 26.66% 12.27%

Full symmetry 88.49% 21.64% 14.61%

Asymmetric random 43.09% 50.47% 43.31%

Degree of sparsity 50% 43.73% 56.50% 48.99%

Degree of sparsity 75% 44.06% 45.78% 40.45%

Degree of sparsity 90% 44.49% 49.86% 35.45%

The next natural question is: what is the difference
in quality betweenlbA∗(OC) andlbA∗(OS)? To measure
the quality of a lower bound, we introduce thereduc-
tions r(O) of the gap betweenfC(A∗) and fC(H∗)
achieved by the lower boundlbA∗(O). Define r(O) =

buA∗ (O)
fC(H∗)−fC(A∗) × 100%. Table III comparesr(OE) and
r(OS). The results show that, for (quasi-)symmetric and
ATSPLIB instances, the ECS choice clearly constructs
better lower bounds than the SCS choice. However,
the SCS choice gives a satisfactory approximation for
asymmetric random and sparse instances, while it is
generally much faster to compute.

In BnB settings, lower bounds can be computed at
every node of the search tree. A high quality bound,
such aslbA∗(OE) allows the BnB algorithm to discard
a large number of nodes, but it requires long computing
times at each node considered. In order to find the
balance between bound quality and computing times,
computational experiments are performed in Section VI.

The approaches are clarified with the following ATSP
example, borrowed from [2, page 381].

Consider the ATSP instance with the following inter-
city matrix.

176 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

City 1 2 3 4 5 6 7 8
1 ∞ 2 11 10 8 7 6 5
2 6 ∞ 1 8 8 4 6 7
3 5 12 ∞ 11 8 12 3 11
4 11 9 10 ∞ 1 9 8 10
5 11 11 9 4 ∞ 2 10 9
6 12 8 5 2 11 ∞ 11 9
7 10 11 12 10 9 12 ∞ 3
8 10 10 10 10 6 3 1 ∞

The unique AP solution A∗ consists
of the three cycles K1 = {(1, 2), (2, 3),
(3, 1)}, K2 = {(4, 5), (5, 6), (6, 4)}, and
K3 = {(7, 8), (8, 7)}. Moreover, fC(A∗) = 17
and fC(H∗) = 26. Figure 1 depictsA∗ and the upper
tolerance values of the arcs.

1

2

3

4

5

6

7 8

4

8

11

11

4

8

12

8

K
1

K

K2

3

Fig. 1. Minimum cycle cover with arc upper tolerances

In this example,uK1 = 4, uK2 = 8, and uK3 = 4.
So buA∗(OE) = 8 is attained on the arcs(2, 3) and
(5, 6) in cycle K2, and buA∗(OS) = 4 on arc(8, 7) in
the smallest cycleK3. Therefore,lbA∗(OS) = 21 and
lbA∗(OE) = 25. SincefC(H∗) = 26, r(OE) = 8

26−17 ×

100% = 88.8%, r(OS) = 4
26−17 × 100% = 44.4%. For

this instance,lbA∗(OE) = 25 is tighter than all other
bounds discussed in [2].

Applying the concept of bottleneck tolerances not
only increases lower bounds, but it also strengthens
the branching. The previous section shows that it is
worthwhile to branch on an arc with a small upper
tolerance value. But which one should we choose?
Figure 2 depicts an enumeration of feasible solutions
of an AP instance in a non-decreasing order of cost
values. A careful branching strategy, which branches on
a smallest upper tolerance arc, obtains all AP solutions
with cost smaller thanfC(H∗). However, if an algorithm
branches on a bottleneck tolerance arc, then it traverses
the enumeration with larger steps, and it is likely to arrive

Fig. 2. Enumeration of AP solutions

at H∗ in less branching steps. That is, of course, if it
does not exclude survival arcs. Table III indicates that the
exclusion of an ECS bottleneck arc from an asymmetric,
randomly generated instance brings the solution value
of the next subproblem on average about 50% closer to
fC(H∗). We propose branching rules based on bottle-
neck tolerances arcs obtained by the ECS and the SCS
choices. We call these theECSandSCS branching rules,
respectively.

V. THE DESCRIPTIONS OF THEALGORITHMS

In this section, we introduce BnB algorithms which
use bottleneck tolerances to direct their branching de-
cisions and to tighten their lower bounds. A cost-
based BnB algorithm serves as a benchmark for the
performance of the tolerance-based algorithms. BnB
algorithms are built up from the following four basic
ingredients; see for example [17].

The branching ruleprescribes how the current
problem should be partitioned into subprob-
lems. We consider three branching rules: the
“normal” branching rule, which branches on a
smallest cycle from the current AP solution in
a non-increasing order of arc costs, the ECS
branching rule, and the SCS branching rule.
The search strategyprescribes which subprob-
lems should be expanded next. The fixed search
strategy of all algorithms discussed here is
depth first search (DFS), which solves the most
recently generated subproblem first.
The upper bounding strategyprescribes how
Hamiltonian tours should be constructed in the
BnB process. All algorithms apply the patching
procedure from [14] at each node of the search
tree.
The lower bounding strategyconstructs a lower
bound of the solution value of each subprob-

Marcel Turkensteen et al. 177

lem. The lower boundslbA∗(∅) = fC(A∗),
lbA∗(OE), and lbA∗(OS) are considered.

The DFS strategy is often used, since it allows to
solve large and difficult instances to optimality; see for
example [3]. In case of DFS, the choice of the branching
in the top node fixates the part of the search tree that the
algorithm searches through for a long period of time.
So the choice of a correct branching variable is vital,
particularly in the top nodes of the search tree. If the
search strategy is Best First Search (BFS), the choice of
the branching variable is far less important.

The normal and the SCS branching rules apply the
subtour elimination scheme from [4], where the branch-
ing takes place on all arcs in one cycle. The ECS
branching rule takes an exceptional position, because it
does not necessarily branch on arcs in a single subcycle.

The BnB algorithms to be tested are listed in Table IV.
All algorithms apply the solver from [13] to solve the
APs and to compute the upper tolerance values, and use
the reduction procedure from [3] to sparsify the matrix
at the top node of the search tree.

The flowchart in Figure 3 provides a schematic view
of a tolerance-based BnB algorithm. Algorithms 1, 2,
4, 5, and 7 in Table IV apply the ECS branching rule
or bound. In each subproblem of these algorithmsn
upper tolerances are computed wheren is the dimension
of the current subproblem. Algorithms 3, 6, and 8 in
Table IV use the SCS branching rule or bound. The upper
tolerances are computed by applying Theorem 1, namely
uA∗(e) = fC [A∗

−
(e)]− fC [A∗]. Although solving an AP

from scratch takesO(n3) time, it is well known (see e.g.,
[2, pages 370-371]) that for finding an optimal solution
A∗

−
(e) based on the given AP solutionA∗, it is enough

to perform only one labeling procedure in the Hungarian
method, which can be done inO(n2) time. Hence, the
complexities areO(n3) andO(|K∗|n2), respectively.

VI. COMPUTATIONAL EXPERIMENTS WITH ATSP
INSTANCES

In this section, computational experiments are con-
ducted on the algorithms listed in Table IV. The cen-
tral questions are: do tolerance-based algorithms have
smaller search trees, and if this is true, are the reduc-
tions sufficient to compensate for the time invested in
tolerance computations?

We have selected instances from the ATSPLIB
(see [19]) that are solvable within reasonable time limits.
The random instances have degree of symmetry 0, 0.33,
0.66, and 1. The sparse random instances have degree
of sparsity of 50%, 75%, and 90%. The sizes of the
randomly generated instances are reported in Table V.

No

Fig. 3. Flowchart of a tolerance-based BnB algorithm

For each problem set and for all instance sizes,10
instances have been generated. The experiments are
conducted on a Pentium 4 computer with 256 MB RAM
memory and 2 GHz speed. In all tabless(i) and t(i)
(i = 0, 1, . . . , 8) are the size of the search trees and the
solution time, respectively.

We compare the BnB search trees with tolerance-
based lower bounds, with tolerances based branching
rules, and with a combination of both. Tables VI and
VII show that BnB algorithms with only new lower
bounds have smaller search trees than the conventional
algorithm, Algorithm 0. The SCS branching rules also
achieves reductions for most instances, but the ECS
branching rule only reduces the search trees for random
instances. The reductions of the joint use of tolerance-
based lower bounds and branching rules are often larger
than the reductions when they are used separately.

For many instances, it holds thats(1) > s(2), i.e.,
branching on an SCS arc is more effective than branching
on an ECS arc. This is counterintuitive, but the discus-
sion in Section III may explain this phenomenon. It was
observed there that small upper tolerance arcs are more
likely to be in an optimal ATSP solution than large upper

178 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE IV

VARIANTS OF BNB ALGORITHMS

Algorithm Lower bound Branching rule Comments

0 lbA∗(∅) Normal basic algorithm

1 lbA∗(∅) ECS efficiency of ECS branching rule

2 lbA∗(∅) SCS efficiency of SCS branching rule

3 lbA∗(OE) Normal efficiency of ECS bound

4 lbA∗(OE) ECS efficiency of ECS BnB

5 lbA∗(OE) SCS not considered

6 lbA∗(OS) Normal efficiency of SCS bound

7 lbA∗(OS) ECS not considered

8 lbA∗(OS) SCS efficiency of SCS BnB

TABLE V

SIZE n OF THE INSTANCES USED IN THE EXPERIMENTS

Tables Sparse Usual random Degree of symmetry Full symmetry

0.33 and 0.66

I,II n = 60, 70, 80 n = 60, 70, 80 n = 60, 70, 80 n = 60, 70

VII n = 60, . . . , 200

III,XI n = 100, 200, 400 n = 60, . . . , 200 n = 60, 70, 80 n = 60, 70, 80

IX n = 60, . . . , 1000

X n = 100, 200, 400 n = 60, 70, 80 n = 60, 70, 80

Fig. 4. Synergy effects for ATSPLIB instances

tolerance arcs. Since the upper tolerance value of an ECS
arc is generally higher than the upper tolerance value of
an SCS arc, the ECS branching rule is more likely to
delete survival arcs than the SCS branching rule.

The search trees of ATSPLIB and random instances
are depicted in Figure 4. The first column shows the
values ofs(0), the second column the valuess(1) and
s(2), the third the valuess(3) and s(6), and the fourth
the values ofs(4) ands(8). If the reductions of tolerance
based lower bounds and branching rules would have
been independent, then the expected size of the search
treess̄(4) and s̄(8) are s̄(4) = s(0) s(1)

s(0)
s(3)
s(0) , and s̄(8) =

Fig. 5. Synergy effects for random instances

s(0) s(2)
s(0)

s(6)
s(0) , i.e., the reduction of the branching rule

times the reduction of the lower bound. These values
are represented in the column “Both without synergy”
in Figures 4 and 5. However, the actual values ofs(4)
ands(8) are lower than those of̄s(4) ands̄(8), indicating
that the joint use of tolerance-based lower bounds and
branching rules leads to additional search tree reductions.
We call this remarkable phenomenon thesynergy effect.
Since Algorithms 4 and 8 benefit from the synergy effect,
we concentrate on these algorithms in the experiments
below.

The question we ask now is whether the search tree re-

Marcel Turkensteen et al. 179

TABLE VI

SEARCH TREE SIZES FORATSPLIB INSTANCES

Entire Cycle Set Smallest Cycle Set

Instance n s(0) s(1) s(3) s(4) s(0)

s(4)
s(2) s(6) s(8) s(0)

s(8)

ft53 53 20111 ∗ 7039 ∗ 89511 17703 20545 0.98

ft70 70 25831 70047 5619 5861 4.41 22843 6717 4993 5.17

ftv33 34 7065 3867 1983 748 9.45 6007 3137 1569 4.50

ftv35 36 6945 18871 2553 3109 2.23 12047 3219 2265 3.07

ftv38 39 6195 9726 1381 1523 4.07 14663 2821 2387 2.60

ftv44 45 619 976 187 165 3.75 937 249 195 3.17

ftv47 48 29025 29121 8017 3302 8.79 48345 9703 8393 3.46

ftv55 56 92447 98433 12413 10100 9.15 114641 26483 26023 3.55

ftv64 65 43441 89752 9449 8319 5.22 162639 11007 17173 2.53

ftv70 71 253873 459532 25939 50024 5.07136296 52289 18937 13.41

∗Memory exhausted

TABLE VII

SEARCH TREE SIZES FOR RANDOM INSTANCES

Entire Cycle Set Smallest Cycle Set

n s(0) s(1) s(3) s(4) s(0)

s(4)
s(2) s(6) s(8) s(0)

s(8)

60 3808 3275 978 323 11.79 1032 2832 221 17.23

70 4528 4085 1138 312 14.51 1286 1781 247 18.33

80 9014 3937 2414 217 41.53 2494 2746 256 35.21

100 9002 3645 1978 174 51.74 2188 5306 135 66.68

200 36390 20497 7114 858 42.41 17612 7612 796 45.72

ductions of Algorithms 4 and 8 are sufficient to compen-
sate for the time invested in the tolerance calculations.
Tables VIII, IX, and X show that Algorithm 8 obtains
the shortest solution times for asymmetric instances,
sparse instances, and instances with degree of symmetry
0.33 and 0.66, but the solution times of Algorithm 0
are slightly better for ATSPLIB and fully symmetric
instances. For sparse instances, the solution times of
Algorithm 8 are also shorter, but the advantage reduces
as sparsity increases. Algorithm 4, which uses the ECS
lower bound and branching rule, generally requires too
much tolerance calculation time to be competitive, in
spite of its small search trees.

We expect that the ECS branching rule is more ef-
fective than SCS if there are many optimal solutions of
the AP relaxation. One optimal solution may be a better
starting point for BnB than the other. If an algorithm

branches on an element with upper tolerance 0, then it
jumps from one optimal assignment to another. As a
consequence, it may become trapped in a solution which
is a bad starting point for further branching. This is
more likely to happen for the SCS branching rule, since
the value of the SCS bottleneck tolerance is always at
most the value of the ECS upper tolerance. So the ECS
branching rule is most likely to escape from this trap; if
there is an offender with strictly positive cost of removal,
then it will select this one. For such cases, it pays off to
select a larger set of offenders than only a single smallest
cycle.

Finally, we analyze the source of the search tree
reductions of Algorithms 4 and 8. A BnB algorithm first
finds an optimal solution and then proves the optimality
of that solution, i.e., all remaining subproblems are
discarded. Table XI shows that the cost-based Algorithm

180 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE VIII

SEARCH TREE SIZES AND SOLUTION TIMES OFATSPLIB INSTANCES

Instance n s(0) t(0) s(4) t(4) s(8) t(8)

ft53 53 20111 2.31 ∗ ∗ 20545 6.34

ft70 70 25831 3.85 5861 28.30 4993 1.87

ftv33 34 7065 0.22 748 0.49 1569 0.11

ftv35 36 6945 0.22 3109 2.03 2265 0.27

ftv38 39 6195 0.22 1523 1.54 2387 0.44

ftv44 45 205 0.06 165 0.22 195 0.05

ftv47 48 29025 1.32 3302 6.15 8393 1.59

ftv55 56 92447 4.51 10100 29.56 26023 10.00

ftv64 65 43441 3.13 8319 34.73 17173 11.43

ftv70 71 253873 23.08 50024 205.11 18937 9.12

∗Memory exhausted

TABLE IX

SEARCH TREE SIZES AND SOLUTION TIMES OF ASYMMETRIC RANDOM INSTANCES

n s(0) t(0) s(4) t(4) s(8) t(8)

60 3808 0.33 323 1.21 221 0.27

70 4528 0.38 312 1.76 247 0.27

80 9014 1.26 217 2.36 256 0.38

100 9002 1.92 174 2.64 135 0.22

200 36390 33. 858 73. 796 11.

300 178498 481. 936 287. 1506 66.

400 284994 1410. 742 541. 1216 120.

500 434576 3687. 1878 2684. 2253 439.

1000 922890 39516. 1421 15569. 3739 5360.

TABLE X

SEARCH TREE SIZES AND SOLUTION TIMES OF SYMMETRIC AND SPARSE INSTANCES

Instance s(0) t(0) s(4) t(4) s(8) t(8)

Degree of sparsity 50% 368736 1341. 2687 1173. 1785 70.

Degree of sparsity 75% 386468 1467. 3259 1247. 2432 117.

Degree of sparsity 90% 423284 1669. 3466 1909. 2521 141.

Degree of symmetry 0.33 58878 8.08 5846 25.66 4173 2.91

Degree of symmetry 0.66 202894 32.42 65777 288.79 32914 18.57

Full symmetry 13390054 1759. 910398 3502. 11382356 3631.

Marcel Turkensteen et al. 181

TABLE XI

PERCENTAGE OF SUBPROBLEMS SOLVED BEFORE AN OPTIMAL

SOLUTION IS FOUND

Instance Algorithm 0 Algorithm 4 Algorithm 8

ATSPLIB 30.48% 64.48% 39.63%

Degree of symmetry 0.33 92.60% 62.59% 70.42%

Degree of symmetry 0.66 85.12% 49.14% 61.65%

Full symmetry 35.70% 31.71% 32.08%

Asymmetric random 90.02% 77.27% 75.76%

Degree of sparsity 50% 95.15% 82.49% 76.88%

Degree of sparsity 75% 96.56% 80.77% 77.65%

Degree of sparsity 90% 95.83% 72.30% 82.35%

0 spends a relatively large amount of time on finding an
optimal solution compared to Algorithms 4 and 8, partic-
ularly for non-symmetric random instances. This result
indicates that the improved branching of tolerance-based
algorithms is the predominant source of the search tree
reductions. Table XI also indicates that fast algorithms
often spend the smallest fraction of time on finding an
optimal solution. The value of an optimal solution is
the tightest possible upper bound and can be used to
fathom a large number of subproblems. We conclude
that accurate branching is the key to good performance
of depth first search BnB algorithms. Moreover, since
tolerance-based algorithms find optimal solutions faster,
the results in case of premature termination are likely to
be better than for cost-based algorithms. This property
may be very useful in case of solving large problems
within limited times; see [20].

There seems to exist the following paradox. The use
of tolerance-basedlower boundscause the largest search
tree reductions according to Tables VI and VII, and
hence, one may expect that these algorithms need less
time to prove the optimality of the solution at hand.
However, Table XI points out that tolerance-based BnB
algorithms need relatively less time to find an optimal
solution. An explanation is that the new lower bounds
cut off a large number of subproblemsbeforean optimal
solution is found.

VII. SUMMARY AND FUTURE RESEARCH

DIRECTIONS

We presented an experimental analysis of tolerance-
based BnB type algorithms for the ATSP, and compared
it with cost-based BnB algorithms. Tolerance-based al-
gorithms reduce the search tree sizes substantially. For
random instances, including both instances with degree
of symmetry 0.33 and 0.66, and sparse instances, the
computation times are substantially better.

The better performance of tolerance-based BnB algo-
rithms is mainly caused by improvedbranching: a better
choice of entries to be included and excluded. Upper
tolerances provide better predictions of which arcs in a
relaxation solution should be preserved, thesurvival set,
and which arcs should be deleted, theextinction set.

We apply the concept ofoffenders: sources of infeasi-
bility which must be removed from a relaxation solution
in order to obtain a feasible solution for the original hard
problem. The minimal cost of removing such an offender
can be determined using tolerance values. This idea is
used to construct new lower bounds, but it also enables
the BnB algorithm to make branching steps with large
increases in solution value without “jumping” across an
optimal ATSP solution. The largest increase in lower
bound is obtained if we consider all offenders, theEntire
Cycle Set, which has of course the drawback of very
long tolerance calculation times. It is shown that a good
approximation is theSmallest Cycle Set, which only uses
a smallest cycle in the set of offenders, so that only
a few tolerances need to be calculated. Branching on
the smallest cycle is a good choice, not only because
a small number of new subproblems is generated, but
also because it is very likely that a large branching step
towards an optimal ATSP solution is made.

Tolerance-based BnB algorithms have one major
drawback: they have to compute tolerances at every node
of the search tree. In spite of this drawback, it turns out
that BnB algorithms with the Smallest Cycle Set bound
and branching rule often require shorter solution times
than cost-based BnB algorithms.

The idea of branching on tolerances can be seen
as similar to the idea ofstrong branchingin Integer
Programming; see [1]. Strong branching first explores
the additional cost of setting a fractional variable at
an integer value, and then decides on which variable
to branch. Similar to tolerance-based branching, it first
computes the additional cost of removing infeasibilities,
the fractional value of a variable, before it takes the
branching step. In [1], it is found that strong branching
should be done only at specific nodes of the search tree.
Similar strategies can be developed for tolerance-based
algorithms.

An interesting direction of research is to develop book-
keeping techniques that accelerate tolerances computa-
tions, and lead to solution time reductions for ATSP
instances. Another direction of research is to construct
tolerance-based algorithms for other COPs. Preliminary
experiments with these algorithms are very promising as
well.

182 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

REFERENCES

[1] T. Achterberg, T. Koch, and A. Martin, “Branching Rules
Revisited,”Operations Research Letters, vol. 33, no. 1, pp. 42–
54, 2004.

[2] E. Balas and P. Toth, “Branch and Bound Methods,” inThe
Traveling Salesman Problem, E. Lawler, J. Lenstra, A. Rin-
nooy Kan, and D. Shmoys, Eds. John Wiley & Sons,
Chichester, 1985, ch. 10, pp. 361–401.

[3] G. Carpaneto, M. Dell’Amico, and P. Toth, “Exact Solution of
Large-scale Asymmetric Traveling Salesman Problems,”ACM
Transactions on Mathematical Software, vol. 21, no. 4, pp. 394–
409, 1995.

[4] G. Carpaneto and P. Toth, “Some New Branching and Bounding
Criteria for the Asymmetric Traveling Salesman Problem,”
Management Science, vol. 21, pp. 736–743, 1980.

[5] M. Fischetti, A. Lodi, and P. Toth, “Exact Methods for the
Asymmetric Traveling Salesman Problem,” inThe Traveling
Salesman Problem and its Variations, G. Gutin and A. Punnen,
Eds. Kluwer, Dordrecht, 2002, ch. 9, pp. 169–194.

[6] G. Gessner, N. Malhotra, W. Kamakura, and M. Zmijevski,
“Estimating Models with Binary Dependent Variables: Some
Theoretical and Empirical Observations,”Journal of Business
Research, vol. 16, no. 1, pp. 49–65, 1988.

[7] J. Hair, R. Anderson, R. Tatham, and W. Black,Multivariate
Data Analysis, 5th ed. Prentice-Hall, 1998.

[8] K. Helsgaun, “An Effective Implementation of the Lin-
Kernighan Traveling Salesman Heuristic,”European Journal of
Operational Research, vol. 12, pp. 106–130, 2000.

[9] D. Hosmer and S. Lemeshow,Applied Logistic Regression,
1st ed. John Wiley & Sons, 1989.

[10] L. Hubert and P. Arabie, “Comparing Partitions,”Journal of
Classification, vol. 2, pp. 193–218, 1985.

[11] D. Johnson, G. Gutin, L. McGeoch, A. Yeo, W. Zhang, and
A. Zverovich, “Experimental Analysis of Heuristics for the
ATSP,” in The Traveling Salesman Problem and its Variations,
G. Gutin and A. Punnen, Eds. Kluwer, Dordrecht, 2002, ch. 10,
pp. 445–489.

[12] D. Johnson and L. McGeoch, “Experimental Analysis of
Heuristics for the STSP,” inThe Traveling Salesman Problem
and its Variations, G. Gutin and A. Punnen, Eds. Kluwer,
Dordrecht, 2002, ch. 9, pp. 369–444.

[13] R. Jonker and A. Volgenant, “Improving the Hungarian As-
signment Algorithm,”Operations Research Letters, vol. 5, pp.
171–175, 1986.

[14] R. Karp and J. Steele, “Probabilistic Analysis of Heuristics,”
in The Traveling Salesman Problem. Wiley, New York, 1990,
ch. 5, pp. 181–205.

[15] M. Libura, “Sensitivity Analysis for Minimum Hamiltonian
Path and Traveling Salesman Problems,”Discrete Applied
Mathematics, vol. 30, pp. 197–211, 1991.

[16] M. Libura, E. Van der Poort, G. Sierksma, and J. Van der Veen,
“Stability Aspects of the Traveling Salesman Problem Based on
k-best Solutions,”Discrete Applied Mathematics, vol. 87, pp.
159–185, 1998.

[17] D. Miller and J. Pekny, “Exact Solution of Large Asymmetric
Traveling Salesman Problems,”Science, vol. 251, pp. 754–761,
1991.

[18] D. Naddef, “Polyhedral Theory and Branch-and-Cut Algorithms
for the Symmetric TSP,” inThe Traveling Salesman Problem
and its Variations, G. Gutin and A. Punnen, Eds. Kluwer,
Dordrecht, 2002, ch. 2, pp. 29–116.

[19] G. Reinelt, “TSPLIB - a Traveling Salesman Problem Library,”
ORSA Journal on Computing, vol. 3, pp. 376–384, 1991.

[20] W. Zhang, “Truncated Branch-and-Bound: A Case Study on
the Asymmetric TSP,” inAAAI-93 Spring Symposium on AI
and NP-Hard Problems. Stanford, 1993, pp. 160–166.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 183

Abstract—In this paper, we propose a Dichotomic
Classification method for ordinal classification of a set of
objects estimated by verbal values on criteria. The
method is implemented in the framework of decision
support system and applied for the diagnostics of
Attention Deficit Hyperactivity Disorder. The proposed
method is based on the principles of verbal decision
analysis. To perform classification, however, it adopts the
bisection approach. We illustrate the method with a
simple example.

Keywords— Multiple criteria analysis, Decision
support systems, Verbal Decision Analysis, Dichotomic
Classification, Attention Deficit Hyperactivity Disorder.

I. INTRODUCTION
n this work, we propose a Dichotomic
Classification method implemented in a

Decision Support System (DSS) and applied for
diagnostics of Attention Deficit Hyperactivity
Disorder (ADHD).

In neuropsychology there are a number of
disorders that are difficult to identify and for
which diagnostic criteria are not completely
defined. ADHD is one of the most common and
the most extensively studied child psychiatric
syndromes [16]. This disorder is characterized by
symptoms of inattention, hyperactivity and
impulsivity [1]. Major research of ADHD is based
on the studies of the children of the school-age
between 6 and 12 years. Even though some
symptoms may appear at younger age it is
difficult to estimate whether a child’s behavior
differs from the normal one. At the school age the
child needs to exercise concentration and
vigilance; he or she should also demonstrate the
abilities of motor control and working memory

[4]. Although most of the research is done on
young ADHD children, several investigations on
adults indicate [14] developmental problems
during the lifespan of persons affected by ADHD.
Thus, ADHD can cause various negative
consequences including poor achievement at
school, more visits to the emergency rooms and
more automobile accidents [14].

Currently, diagnostics of ADHD is performed
with the standard questionnaire Structured
Interview for Diagnostic Assessment of Children
(SIDAC) for Diagnostic and Statistical Manual for
Mental Disorders (DSM). However, this standard
is constantly modified and has already undergone
several revisions (DSM-I – DSM-IV) [1], [3].
Thus, the ADHD diagnostics is not yet even
properly defined and cannot be objectively
measured [2].

Another feature of the ADHD diagnostics is the
descriptive character of the symptoms that allow
estimating the behavior of a person (in this work,
we assume the person under study to be a child).
The usual way of diagnostics is based on the
evaluation of the child’s behavior by parents and
teachers as well as on the child’s own reports.
These data should be enough for the clinician to
be able to detect the existence of one of ADHD
subtypes or the absence of ADHD.

The diagnostic problems, including ADHD
detection, are typical classification tasks where it
is necessary to assign the set of objects estimated
on a set of criteria into predefined set of classes.
When diagnosing ADHD, the clinician should
evaluate the children according to the set of
common ways of behavior or symptoms typically
associated with ADHD sufferers. They should

Decision support system for Attention Deficit
Hyperactivity Disorder diagnostics

I

Iryna Yevseyeva*, Kaisa Miettinen† and Pekka Räsänen‡

*University of Jyvaskyla/Dept. of Mathematical Information Technology
P. O. Box 35 (Agora) FI-40014 University of Jyväskylä, Finland

Email: iyevsev@cc.jyu.fi
† Helsinki School of Economics

P.O. Box 1210 FI-00101 Helsinki, Finland
Email: kaisa.miettinen@hkkk.fi

‡ Niilo Mäki Institute, University of Jyvaskyla
P. O. Box 35 FI-40014 Jyvaskyla, Finland

Email: pekka.rasanen@nmi.jyu.fi

184 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

then either be assigned to the set of ADHD
subtypes or the absence of ADHD should be
concluded.

One possible way of solving classification
problems is the multiple criteria analysis [5],
according to which each object to be classified
contains a value for each criterion. Thus, each
criterion has scale of ordered values, while the
criteria itself can be ordered or unordered.

We may face two types of classification
problems: ordinal where the classes are ordered,
and nominal where there is no possibility to
establish the order between classes. In this work,
we assume ordered classes. In such a case, the
classes can be defined with boundary objects. A
boundary object is an object that lies on the border
between two classes, and changing values on at
least one criterion will move this object to a
neighboring class. By dominance relation between
any object and lower and upper boundaries of the
class we may get to know whether the object
belongs to the class or not. The object should be
assigned to the class if it dominates any lower
boundary of the class and is dominated by any
upper boundary of the same class.

In the ordinal classification problem the number
of classes is predefined, but the boundary objects
are usually unknown and should be defined in the
framework of preference elicitation procedure.

In the multiple criteria analysis the person that
is responsible for the obtained decision is called
decision maker (DM). In the ADHD diagnostics
the DM is a clinician.

The above mentioned features of the ADHD
diagnostic problems, among them poorly or
subjectively measured nature of symptoms as well
as the descriptive or verbal manner of criteria
estimations, narrow down the set of possible
methods that can be applied to resolve such
classification tasks.

In the framework of Verbal Decision Analysis
(VDA) several methods that take into account
described features have been developed by
Larichev and his colleagues [6-13]. Two methods
have been developed recently for the ordinal
classification: ORdinal CLASSification
(ORCLASS) [8], [10] and Subset Alternative
Classification (SAC) [6], [11], [12]. The methods
aim at reducing the number of objects classified
by the DM directly when compared to the
complete set of given objects. The main feature of
the VDA methods is the ability to operate with

qualitative information without directly
transforming it into a quantitative form. Usually,
multicriteria methods are not adapted to work with
verbal information in their pure form: instead, the
DM is asked to express his or her preferences in a
numerical analogue. However, in the cases such as
ADHD diagnostics, it is difficult to give precise
numerical estimations when describing behavior.

While developing the VDA methods,
researchers were exploring ways to avoid
transformation, by the DM, of verbal criteria
values into numerical analogues. They used the
fact that values on the scales of criteria are
ordered according to their importance to the DM
in such a way that the maximal rank has the most
desirable value. Thus, to each value on the scale
of a criterion a rank corresponds. Operating with
ranks allow saving transparency of verbal values
for the DM.

Classification with VDA is interactive. The
preference elicitation procedure is built in the
methods and is realized through a dialog with the
DM: at each iteration the DM assigns an object
selected by the VDA method to some class. Based
on the answer of the DM some objects are
automatically classified. The procedure is
repeated until each object is assigned. The
consistency of information received from the DM
is checked with the information obtained
previously. This is necessary due to the human
nature: people may make errors and may be
inconsistent with their preferences. In case of
contradiction, it is proposed for the DM to rethink
the answers. At the end of classification the DM
can get explanation about the appearance of each
object in the class.

We developed the new Dichotomic
Classification (DC) method according to the
principles of VDA, but with improved
effectiveness when compared to the previously
created methods.

The rest of the paper is organized in the
following way. Section 2 presents the DC method
and Section 3 illustrates the method with a simple
example. In Section 4, we describe the problem
area of the ADHD diagnostics where DC has been
applied. In Section 5, the DSS, in the framework
of which the DC and SAC methods have been
tested is presented. In the same section we
consider the multiple criteria analysis model of
ADHD. Finally, we conclude the presented here
study.

Iryna Yevseyeva et al. 185

II. DICHOTOMIC CLASSIFICATION METHOD
The proposed Dichotomic Classification method

realizes classification of a set of given objects
(that may have verbal values on the criteria scales)
into ordered classes. We consider two cases: a
case where the set of criteria is ordered according
to the importance for the DM and a case where
there is no order available.

The proposed method is based on the principles
of VDA [10] and the bisection method [17] or
modification of the more popular dichotomous
search [15]. The method improves the efficiency
of the classification procedure when compared to
the other VDA methods where the object that the
DM is supposed to classify is found after
extensive calculations. This task become
computationally complex and time-consuming
when problem gets bigger. In other words, VDA
methods try to identify the most informative
object to be shown to the DM, but if this task is
too complex, the classification suffers. For this
reason, we here suggest procedure with simple
rule for the object selection to be classified by the
DM at each iteration of the preference elicitation
procedure.

The initial information for the DC method is the
same as for SAC: the number of classes and their
order, the set of criteria with the scale of possible
values for each of them and the set of given
objects must be available.

In this paper, we consider the set of given
objects to be equal to the set of objects obtained as
the Cartesian product of scales of criteria as in
ORCLASS. However, the method also works with
the set of objects given by the DM.

The initial data are specified: the set of criteria
{ }ngggG ,...,, 21= and the set of classes

},...,,{ 21 slllL = . Furthermore, the set of objects
is defined as the Cartesian product of all scales of
criteria)()()(21 ngSgSgSA ×⋅⋅⋅××= . For

each criterion jg from the set G the scale of

values },...,,{)(21 jtjjj ggggS = with the

following ranks for them },...,2,1{ jj tr = (where

jt is the number of possible values on the scale of

criterion jg) are defined. The values on the
criteria scales are ordered as well as classes. The
most desirable criterion value and the most
desirable class have the biggest ranks. We
consider two cases: when criteria can be ordered

according to the importance for the DM (see
relation (4)) and when the information about the
order between criteria is absent. We are solving a
maximization problem, where higher values are
preferred.

At the beginning, for each object ia from the
set A the set of possible classes is the set of all
classes and iL = L . However, with the
classification (direct or indirect) of some objects
the number of possible classes is reduced (see
Step 6 of the DC algorithm below) until for each
object it becomes equal to one iL =1.When this is
the case for all objects, the classification is
finished.

In ORCLASS [8], [10] and SAC [6], [11], [12],
the object, which is proposed to the DM for the
classification, is selected based on its
informativeness. This property of object shows
how many objects can be classified indirectly (see
Step 6 of the DC algorithm below) after the
classification of this object. The informativeness
can be calculated according to the relation of
preference between objects and with regards to the
relation of order between classes [10]. Thus, at
each iteration the object with the maximal
informativeness is selected and proposed to the
DM. The recalculation of the informativeness for
each object is done at each iteration. This task
becomes computationally complex and time-
consuming for large object sets. We propose to
select the object to be shown to the DM for the
classification according to the bisection of the set
of given objects at each iteration. In bisection the
set of objects is simply divided into two sets and
the DM is asked to classify the object in the
middle. At the next iterations the middle objects
are searched in both sides of the divided searching
space.

In the same way as in the other VDA methods,
the qualitative values on the criteria, are compared
not directly, but with ranks of objects on the
scales of criteria (or ranks of objects in the case of
ordered criteria). For comparison of verbal values
we should assign the ranks to the values on the
scales of criteria according to their order. Rank
operations are valid only with the condition that
difference between two neighboring values on the
scale of criteria is the same for all pairs of
neighboring values.

The DC method utilizes two basic relations of
the ORCLASS and SAC methods:

186 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

1. The dominance (or outranking) relation
between two objects, according to which the
object ia is preferred to the object fa if it is
preferred on at least one criterion j so that

)()(fjij aPgag and indifferent on the rest

of criteria)()(fziz aIgag ,

nz ,...,1= ; zj ≠ . But here instead of real
values of objects on the scales of criteria their
ranks are compared. For instance,)(ij ar

and)(fj ar are ranks of objects ia and fa

on the scale of criterion jg . Consequently,

for dominance of the object ia when
compared to the object fa the following

relations are estimated)(ij ar Pr)(fj a and

)()(fjij aIrar . Then the dominance relation
between the two objects is defined as
follows:

fi Saa (ia dominates fa),

 (1)

if)()(fjij arar ≥ ,

j=1,...,n; i , f=1,...,m; i≠ f

and)()(fjij arar > on at least one j .

However, this relation is not always enough
when considering all the situations that may
appear in the decision aiding process. That is
why the next relation is also used.

2. The ordering relation between objects from
different classes. For instance, objects from
the second class may be preferred to objects
from the first one and so on. If the object ia
belongs to the class pl and the object fa to

the class kl , where k and p are class ranks,
and we know that the object ia dominates
the object fa , then the class pl should have

a bigger rank when compared to the class kl :
p>k (as we are considering a maximization
problem, and the bigger rank of the class is
preferred to the smaller one). The following
binary relation on the set of objects A and the
set of classes L is established:

fiOaa (ia belongs to the class
 (2)

with bigger rank than the rank of
the class, to which fa belongs),

if fiSaa and ,pi la ∈

then ,kf la ∈ where kp > .

For the non-contradictory classification the

following relation should be fulfilled:

if fi Saa is true, then if Oaa is not true.
(3)

This means that objects from the class with a
smaller rank cannot dominate the objects from the
class with a bigger rank.

In this work we have also been considering the
case where it is possible to order criteria
according to their importance to the DM. Here an
additional condition of preference between criteria
is used (if such information is available):

zj Pgg (criterion jg is more
 (4)

important than zg for the DM),

if zj > and j, z=1,...,n; j≠ z.

Let us see how these relations are utilized in the
DC method.

The algorithm of the DC method consists of the
following steps:

Step 1 At the first stage the data are initialized:
the “best” besta (the object that has the most
desirable value on each criterion) and the “worst”

worsta (the object that has the least desirable value
on each criterion) objects from the set of objects A
(defined as the Cartesian product of criteria
scales) are classified into the classes with the
highest and the lowest ranks, respectively. At this
stage, for each object ia from the set A the set of

possible classes },...,,{ 21 si lllL = is assigned.
Initially this set contains all classes

LLL i
old
i == , where old

iL is the set of possible
classes at the previous iteration.

Iryna Yevseyeva et al. 187

Step 2 If all objects has been classified, the
procedure stops. Due to this, each object ri Aa ∈

is classified exactly to one class iL =1. This
condition is checked at the beginning of each
iteration: if the size of the not yet classified
objects set is bigger than two then classification
continues followed by Step 3, else if the size of
the not yet classified objects set is less than two
the DM is asked to classify the rest of objects one
by one at Step 4.

Step 3 The “middle” object middlea is calculated
as an object that has middle values on criteria with
regards to the ranks of the values of the “best”

besta and the “worst” worsta objects according to
the searching set.

2
)()(

)(worstjbestj
middlej

arar
ar

+
= ,

where nj ,...,1= .

At the first iteration this set contains all the

objects between the best and the worst ones.
However, on the second iteration there will be two
searching sets: the first set between the best and
middle objects and the second set between the
middle and worst objects. Thus, the number of
searching sets and, thus, the number of middle
objects grows at each iteration. Then the middle
objects from the set are proposed to the DM one
by one.

Step 4 The DM is asked to classify the middle
object. Let us assume, for instance, that the DM
assigns the object middlea to the class kl :

kmiddle la ∈ .
Step 5 At this point, the absence of

inconsistencies between the current and
previously made classifications is verified. The
contradictions are checked with the following
expressions:

 if kmiddle la ∈ and imiddle Saa , (5)

then pi la ∉ , where kp > ,

if kmiddle la ∈ and middlei Saa ,

then pi la ∉ , where kp < .

Due to these conditions the object cannot belong
to the more desirable class if it is dominated by
the object that belongs to the less desirable class.

Step 6 With regards to the classification made
by the DM at Step 3, the set of possible classes is
recalculated for each not yet classified object
according to the following conditions:

 if kmiddle la ∈ and imiddle Saa ,

 (6)

then =iL { }∩ 121 ,...,, −k
old
i lllL ,

if kmiddle la ∈ and middlei Saa ,

then =iL { }∩ skk

old
i lllL ,...,, 1+ .

In such a way the maximal possible class for

any object ia that is dominated by the most
recently classified object kmiddle la ∈ will be
changed to the class 1−kl , and for any object ia
that dominate the most recently classified object

kmiddle la ∈ the minimal possible class will be
changed to the class kl . At this stage some of the
objects may happened to have only one possible
class iL =1, which means that these objects are
classified indirectly. Go to Step 2.

In the case of ordered criteria the relation of the

dominance between objects is substituted with the
preference relation that excludes situations where
the objects can be of equal importance (indifferent
to each other) for the DM or they may be
incomparable. Then it is possible to order all the
objects before the classification starts and each
object will have its rank, for instance, ir would
be the rank of objects ia . The procedure of
classification is simplified and Steps 3, 5 and 6 are
modified in the following way.

At Step 3 the middle object is searched with
regards to the ranks of the searching set
boundaries:

2

worstbest
middle rrr +

= .

188 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

This value is rounded if necessary (when the

obtained rank is not an integer) to the smaller
integer.

At Step 5 the existence of inconsistencies is
checked with regards to the conditions:

 if kmiddle la ∈ and imiddle rr > ,

 (7)

then pi la ∉ , where kp > ,

if kmiddle la ∈ and middlei rr > ,

then pi la ∉ , where kp < .

The recalculation of the set of classes for each
object at Step 6 is done in the following way:

if kmiddle la ∈ and imiddle rr > ,

 (8)

then =iL { }∩ 121 ,...,, −k
old
i lllL ,

if kmiddle la ∈ and middlei rr > ,

then =iL { }∩ skk

old
i lllL ,...,, 1+ .

Here ir , middler are the ranks of objects ia ,

middlea , respectively.

The idea of finding the middle object has been
used in CYCLE [13], which is another
classification method; however, the rule for the
object selection at each iteration of the preference
elicitation procedure is different.

Let us now illustrate the DC method with a
simple example.

III. ILLUSTRATIVE EXAMPLE OF DICHOTOMIC
CLASSIFICATION METHOD PERFORMANCE

In order to demonstrate the DC method we
consider, as an example, the problem with two
criteria },{ 21 ggG = with equal importance for
the DM, three values on each criterion

}3,2,1{=jg , 2,1=j and two classes

},{ 21 llL = that are ordered in increasing order.

As we are solving a maximization problem, the
best criteria values and the best class for the DM
have maximal ranks. The size of the Cartesian
product of the scales of criteria is equal to

93|| 2 ==A . The set of objects contains the
following objects =A);1,1{();2,1(

);1,2();3,1()}3,3();2,3();1,3();3,2();2,2(. Here,
the criterion values in the object are numbers for
simplicity, but they could be verbal as well
because, actually, we are operating with ranks.
Thus, it is necessary to classify the nine objects
into two classes. The DC method performs the
following operations.

Step 1 For each object assign the set of possible
classes },{ 21 llLLL i

old
i === . Allocate the

object with all the best values i.e.)3,3(9 =a into
the best class 29 la ∈ and object with all the
worst values i.e.)1,1(1 =a into the worst class

11 la ∈ .
Iteration 1
Step 2 At this point it is checked whether there

are not yet classified objects for which 1|| ≠iL .
There are seven not yet classified objects

},...,{ 82 aa .
Step 3 The set of not yet classified objects is

bigger than two, thus, we search the middle object
with regards to the best 1a and worst 9a objects
in the following way. We obtain the rank of the
middle object on each criterion by averaging the
ranks of the best and worst objects.

2
2

31
2

)()(
)(9111

1 =
+

=
+

=
arar

ar middle ;

2
2

31
2

)()(
)(9212

2 =
+

=
+

=
arar

ar middle .

Thus, we should take as the middle object the

object with the rank two at the first criterion scale
and with the rank two at the second criterion
scale. We obtain the first middle object

)2,2(5 =a .
Step 4 The middle object is proposed to the DM

for classification. Let us assume that the DM
assigns the object)2,2(5 =a to the class 2l .

Step 5 Now we should check the selection of the
DM for inconsistencies with the previous
classifications. At the initial step two objects were

Iryna Yevseyeva et al. 189

classified 1a and 9a . According to the condition
(5) the object 5a should dominate the object 1a
and should be dominated by the object 9a . Both
of these conditions are satisfied because the ranks
of the object 1a on both criteria values are less
than the ones of the object 5a and the ranks of the
object 9a on both criteria values are bigger than
the ones of the object 5a :)()(51 arar jj < and

)()(59 arar jj > , 2,1=j .
Step 6 At this step the set of possible classes for

the not yet classified objects is recalculated
according to the classification of the object at the
previous step. With regards to the relation (6) we
check whether there are objects that dominate or
are dominated by the object classified by the DM
at the Step 4. We find that the objects)2,1(2 =a
and)1,2(4 =a are dominated by the object

)2,2(5 =a because)()(5 ijj arar ≥ , 2,1=j ;

4,2=i ; as well as the objects)3,2(6 =a and
)2,3(8 =a dominate the object)2,2(5 =a

because)()(5 ijj arar ≤ , 2,1=j ; 8,6=i .
According to the relation (6) the set of possible
classes for the objects 8642 ,,, aaaa should be
recalculated. For instance, we have 25Saa , and,

thus, =2L { }∩ 122 −lLold ∩ }{},{ 121 lll= = 1l .
In such a way these objects are classified

indirectly: 12 la ∈ , 14 la ∈ , 26 la ∈ , 28 la ∈ .
After this step the process is repeated.

Iteration 2
Step 2 We should check whether there are not

yet classified objects. At this moment the set of
not yet classified objects is },{ 73 aa .

Step 3 In the general case, if the set of not yet
classified objects is bigger than two we again
continue the search of the middle object on each
of the two searching sets: the first set is defined
with regards to the best 1a and the middle 5a
objects obtained at the previous iteration, and the
second set between the middle 5a and the worst

9a objects in the same way as in the previous
iteration. However, in our situation we have only
two objects to be classified; so, we select the first
of them: the object)3,1(3 =a .

Step 4 The selected object is proposed to the
DM for classification. Let us assume that the DM
assigns object)3,1(3 =a to the class 2l : 23 la ∈ .

Step 5 The contradictions with the previous
classifications are checked at this step.
Accordingly, we should estimate the dominance
relation between the objects 5a and 3a . With
regards to the condition (5) there are no
inconsistencies between the classification of these
two objects, because they belong to the same
class.

Step 6 Unfortunately, classification of the object
3a does not say anything about the classification

of the last not yet classified object)1,3(8 =a
because the relation of the dominance does not
work for these two objects. Consequently, the size
of the possible classes for this object cannot be
reduced.

Now we should go to the Iteration 3, where at
Step 4 the DM will classify the object 8a , for
instance, into the class 1l : 18 la ∈ ; and the
classification is finished, because there are no
more not yet classified objects.

In such a way the set of nine objects has been
classified, with three iterations (three questions to
the DM), into two classes. The boundary objects
between the two classes have been defined:

)3,1(3 =a ,)2,2(5 =a , and)1,3(8 =a . They
allow the unambiguous classification of any
object from the set A.

For instance, for someone interested in knowing
to which class the object)1,2(4 =a belongs, the
comparison with the object 8a shows it belonging
to the class 1l .

For the case where criteria are ordered
according to the importance for the DM, for
instance, in the increasing order },{ 21 ggG = ,
the classification procedure is simplified. The
objects can be ordered from the very beginning of
the classification procedure and there is always
only one boundary object between classes
(because the situations of incomparability and
indifference between objects are excluded).

Thus, for our illustrative example the objects in
the set },...,{ 91 aaA = are ordered from the very
beginning in increasing order and the set of
corresponding ranks is available

}9,...,1{},...,{ 91 == rrR .

190 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

The middle object is selected with regards to the
ranks of searching set boundaries. In our
illustrative example at Step 3 of Iteration 1 the
rank of first middle object is obtained as follows:

5
2

91
2

91

=
+

=
+

=
rrr middle .

Thus, as a middle object we should take the

object with the rank five. Then the first middle
object would be the object)2,2(5 =a .

Step 5 and Step 6 are modified in such a way
that the relation of the dominance between objects
is substituted with the relation of preference
between the object ranks.

In our example at Step 5 of Iteration 1
inconsistencies are checked according to the
condition (7). Then at Step 6 of Iteration 1 the
recalculation of the set of possible classes for each
object is done with regards to the relation (8).
According to this condition the objects

87642 ,,,, aaaaa are classified indirectly:

12 la ∈ , 14 la ∈ , 26 la ∈ , 27 la ∈ , 28 la ∈ . After
this step the object 3a is the only not yet
classified object and it should be proposed to the
DM for classification.

In the following section we consider the
problem area of our application: ADHD
diagnostics.

IV. ADHD DIAGNOSTICS PROCEDURE
Here we present a brief overview of ADHD.
The structured interview assumes that all

participating persons answer the diagnostic
questions about the behavior of the child. Usually,
the following individuals are involved in the
questioning procedure: the parents (usually, the
mother), the teacher, and the child itself; the last
modifications to DSM-IV include the clinician’s
opinion about the behavior of the child when the
diagnosis is made. There are different opinions
about the importance of the answers of different
persons. Some researchers point out that the
teacher’s opinion is the most important, the others
do not place similar importance on this aspect [2].
We assumes that the opinions of the mother and
the teacher are the most important; however, the
child self-reporting is also taken into account, and
we include the clinician on the stage of decision
making. In this we follow the current practice in
the ADHD diagnostics.

The SIDAC for DSM has undergone several
changes in the course of time. The last version of
SIDAC for DSM-IV diagnoses for children ages
6-12 can be found in [1], [3]. The structured
interview for ADHD from SIDAC for DSM-IV
[1] is presented in the Appendix. The ADHD
consists of three groups of symptoms: inattention,
impulsivity and hyperactivity. The decision about
the presence of one of the three following
subtypes of ADHD: 1) Attention - deficit /
Hyperactivity Disorder with Predominantly
Inattentive Type (ADHD with PIT), 2) Attention -
deficit / Hyperactivity Disorder with
Predominantly Hyperactive - Impulsive Type
(ADHD with PHIT), 3) Attention - deficit /
Hyperactivity Disorder: Combined Type (ADHD:
CT) or the absence of any of these disorders (no
ADHD) is made based on the reports of the three
persons involved in the decision making. The
whole questionnaire contains eighteen questions.
The first nine questions allow making conclusions
about the presence or absence of the inattention
deficit. The second part of interview consists of
other nine questions that show whether there is the
hyperactivity / impulsivity disorder. The
conclusion about ADHD with PIT is made when
the child has shown six of the inattention
symptoms and less than six of the hyperactivity /
impulsivity symptoms. The ADHD with PHIT is
detected when the child’s behavior accords with
six symptoms from the hyperactivity / impulsivity
group and with less than six of the inattention
group. For the ADHD: CT, six symptoms from
the first and six ones from the second group
should be satisfied. Otherwise the conclusion
about the absence of the ADHD is made. These
three rules are used in order to imitate the
behavior of the clinician when making a decision
about the presence of the disorder discussed here.

Next we have a look at the DSS realization of
the proposed DC method and results of its
application to ADHD diagnostics.

V. ADHD DIAGNOSTICS WITH DECISION
SUPPORT SYSTEM FOR CLASSIFICATION

A. Decision Support System for classification
Let us briefly discuss the DSS in the framework

of which we implement the DC classification
method. The DSS is developed in the Java
environment, which is platform independent (e.g.
Windows, Linux, Unix). Figure 1 demonstrates
the initial information input in the form of criteria
with name, description and the scale that can have
verbal or numerical values and classes with name

Iryna Yevseyeva et al. 191

and description. The system creates the objects set
as a Cartesian product of criteria scales and allows
to deselect the objects that are not presented at the
moment in the problem. We are also planning to
add the possibility of a more natural, but time-
consuming (especially for the large data sets) way
for the objects representation: the input of each
given object by the DM.

After the initial information input the
classification method should be selected. At the
moment there are possibilities in the DSS to
assign objects into classes when the criteria are
ordered and when not by means of SAC or DC
methods. When the method is selected, the DM is
asked to classify objects one by one into one of
the possible classes. Figure 2 shows one of the
iterations of such questioning procedure. If no
classification tool is used, each object should be
assigned to a class individually. By using DSS for
classification the number of questions to the DM
is significantly reduced when compared to the set
of given objects.

When the method has run its course the results
of classification can be browsed; an example of
such screening is presented in Figure 3. Except for
standard functions for the creation and
modification of the problem by adding, removing
and editing the criteria and classes sets, there are
options for saving and opening the separate files
with a problem model or with the DM interview
or with the classification results.

B. ADHD model for classification with multiple
criteria decision analysis

In order to see how the Dichotomic
Classification method works for the ADHD
diagnostics let us present the problem in multiple
criteria analysis terms. We consider diagnostics of
ADHD with PIT and ADHD with PHIT separately
because the symptoms for these two diagnoses are
different and they do not interact with each other
(see the Appendix). The conclusion about
ADHD:CT or the absence of ADHD is made
based on the combination of the results from the
ADHD with PIT and the ADHD with PHIT
diagnostics.

Thus, we will have three stages in our decision
aiding classification: 1) diagnostics of ADHD
with PIT with two possible classes: either the
child met the diagnostic criteria or not; 2)
diagnostics of ADHD with PHIT with two
possible classes: either the child met these
diagnostic criteria or not; and 3) ADHD:CT with
two possible classes: the child met the diagnostic
criteria for both previous stages or none of them.

The criteria for the first and second stages of the
decision aiding classification consists of questions
about the behavior of the child for detecting
ADHD with PIT and ADHD with PHIT. The
values on each criterion are the same and they
reflect the answers of the mother, teacher and
child itself. Even though we assume the answers
of mother and teacher to be more important than
the child self-reporting, the clinician assists in the
identification overall estimation of child’s
behavior. Thus, for each of nine symptoms
(criteria) we compare the answers obtained from
the three persons about behavior of the child
(criteria scale): if the majority of the interviewers
(2 or 3 from 3) agree, we assume that the
symptom exists, else if only minority (0 or 1 from
3) agree we assume that the symptom does not
exist. Then Cartesian product of the scales of
criteria allows us to obtain the following objects
set 5122|| 9 ==A .

Thus, ADHD diagnostics according to the
SIDAC for DSM-IV diagnoses of children ages 6-
12 (see the Appendix) is done in three stages. At
the first stage the set of nine questions with four
possible answers on each of them allows the
creation of the set of all possible combinations
(Cartesian product) of answers – objects set A.
This set is classified into two classes: ADHD with
PIT either exists or not with 242 questions to the
clinician by the DC method (when compared to
336 questions asked by the SAC method). The
objects have been assigned in the following way:
from whole set of 512 possible combinations of
the symptoms, 382 do not indicate ADHD with
PIT and 130 define this disorder. The resulting
table is partially (due to the space limitation)
presented in Figure 3. The second stage is done by
analogy with the first one with the only difference
that another set of nine questions are combined for
evaluation of whether the child meets with the
ADHD with PHIT conditions or not. Due to the
similarity of the classification rule the number of
questions to the DM is the same 242 when the DC
method is applied and 336 when the SAC method
is used. At the third stage of the decision aiding
classification we aggregate the results of the two
previous stages and obtain the evaluation for the
ADHD:CT: 33 children from 512 meet both
subtypes of criteria (ADHD with PIT and ADHD
with PHIT) and 285 children do not have any of
the ADHD subtypes.

192 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

VI. CONCLUSION
In this study we presented the interactive DC

method for ordinal classification of the set of
objects that can have verbal or numerical
evaluations on the criteria. We have also proposed
the use of the ordered criteria set. When there is
possibility of establishing such a relation, the
classification procedure is simplified significantly.
The developed method was demonstrated with a
simple illustrative example.

The proposed DC method has been
implemented in the Decision Support System and

compared with the previously developed SAC
VDA method.

We have applied the DC method to the problem
of ADHD diagnostics. These tests are done in
cooperation with the Niilo Maki Institute, where
there is considerable experience in solving such
problems; however, the need for computerized
DSS exists. The system can assist an expert as
well as a new specialist in neuropsychological
diagnostics.

Fig. 1. Screen of the initial information input

Fig. 2. Screen of the questioning procedure iteration

Iryna Yevseyeva et al. 193

Fig. 3. Screen of the classification results

APPENDIX
From Structured Interview for Diagnostic Assessment of
Children (SIDAC) for Diagnostic and Statistical Manual
for Mental Disorders (DSM-IV) diagnoses of children
ages 6-12

Diagnostics of Attention-Deficit Hyperactivity Disorder

The following persons are asked to answer questions:
mother (M), teacher (T), and child (C).

Has_________ had any of the following problems for at
least the last six months?

Inattention:

1. Often fails to give close attention to details or makes
careless mistakes in schoolwork, chores, or other
activities? M T C

2. Often has difficulty sustaining attention in tasks or
play activities? M T C

3. Often does not seem to listen to what is being said to
him or her? M T C

4. Often does not follow through on instructions and
fails to finish schoolwork, chores, or duties in the
home (not due to oppositional behavior or failure to
understand directions)?
 M T C

5. Often has difficulties organizing tasks/activities?
 M T C

6. Often avoids or strongly dislikes tasks (such as
schoolwork or homework) that require sustained
mental effort? M T C

7. Often loses things necessary for tasks or activities
(e.g., school assignments, pencils, books, tools, or
toys)? M T C

8. Is often easily distracted by extraneous stimuli?
 M T C

9. Often forgetful in daily activities?
 M T C

Hyperactivity:

1. Often fidgets with hands or feet or squirms in seat?
 M T C

2. Leaves seat in classroom or in other situation in
which remaining seated is expected?
 M T C

3. Often runs about or climbs excessively in situation
where it is inappropriate (in adults or adolescents
may be limited to subjective feelings or
restlessness)? M T C

4. Often has difficulty playing or engaging in leisure
activities quietly? M T C

5. Is often “on the go” or often acts as if “driven by a
motor”? M T C

6. Often talks excessively? M T C

Impulsivity:

7. Often blurts out answers to questions before the
questions have been completed?
 M T C

8. Often has difficulty waiting in lines or awaiting turn
in games or group situations?
 M T C

9. Often interrupts or intrudes on others (e.g., butts into
conversations or games)?
 M T C

314.00 Attention-Deficit / Hyperactivity Disorder:
Predominantly Inattentive Type:

At least 6 of the inattention items and less than 6 of the
hyperactivity / impulsivity items endorsed; meets
exclusionary criteria above.

 ________Yes ________No

314.01 Attention-Deficit / Hyperactivity Disorder:

194 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Predominantly Hyperactive-Impulsive Type:

At least 6 of the hyperactivity / impulsivity items and less
than 6 of the inattention items endorsed; meets
exclusionary criteria above.

 ________Yes ________No

314.02 Attention-Deficit / Hyperactivity Disorder:
Combined Type:

At least 6 of the inattention items and at least 6 of the
hyperactivity / impulsivity items endorsed; meets
exclusionary criteria above.

 ________Yes ________No

ACKNOWLEDGEMENTS
The authors would like to thank the researchers of

the Scientific Computing laboratory and
Optimization Group at the University of Jyväskylä
for their remarks that helped to improve the paper
significantly.

The research was supported by grants from the
University of Jyväskylä and COMAS Graduate
School at the University of Jyväskylä.

REFERENCES
[1] American Psychiatric Association, Diagnostic and

statistical manual of mental disorders (4th ed.).
Washington: DC, 1994.

[2] D. S. Crystal, R. Ostrander, R. S. Chen, and G. J.
August, Multimethod assessment of psychopathology
among DSM-IV subtypes of children with Attention-
Deficit / Hyperactivity Disorder: self-, parent, and
teacher reports, Journal of Abnormal Child Psychology,
vol. 29, no. 3, pp. 189-205, 2000.

[3] C. Gillberg, Clinical Child Neuropsychiatry,
Cambridge, England: Cambridge University Press,
1995.

[4] A. C. Kalff, J. G. M. Hendriksen, M. Kroes, J. S. H.
Vles, J. Steyaert, F. J. M. Feron, T. M. C. B. van Zeben,
and J. Jolles, Neurocognitive performance of 5- and 6-
year-old children who met criteria for Attention Deficit
/ Hyperactivity Disorder at 18 months follow-up: results
from a prospective population study. Journal of
Abnormal Child Psychology, vol. 30, no. 6, pp. 589-
598, 2002.

[5] R. L. Keeney and H. Raiffa, Decisions with multiple
objectives - Preferences and value tradeoffs. New York,
NY: John Wiley and Sons, 1976.

[6] D. Yu. Kochin, “Decision support system for
classification of a finite set of alternatives,” Master’s
Thesis., Moscow Institute for Physics and Technology
(Technical University). Moscow, Russia, 2002, (in
Russian).

[7] O. I. Larichev, A. I. Mechitov, V. K. Morgoev, H. M.
Moshkovich, E. M. Furems, Exact duplicates of human
judgments, in K. Borcherding, O. Larichev, D. Messick
(Eds.), Contemporary Issues in Decision Making, Eds.
Amsterdam, The Netherlands: Elsevier Science, 1990.

[8] O. I. Larichev, H. M. Moshkovich, Decision Support
System ORCLASS. in Proc. of the Tenth International
Conference on Multiple Criteria Decision Making,
Taiwan, vol. 1, pp. 341-350, 1994.

[9] O. I. Larichev, A study on the internal organization of
expert knowledge, Pattern Recognition and Image
Analysis, vol. 5, no. 1, pp. 57– 63, 1995.

[10] O. I. Larichev and H. Moshkovich, Verbal Decision
Analysis for Unstructured Problems. Boston: Kluwer,
1997.

[11] O. I. Larichev, D. Yu. Kochin and L. L. Ustinovisius,
Method SNOD for Investment Project Analysis of
Building Reconstruction, in Proc. 56th EURO WG
MCDA Meeting, Coimbra, Portugal, Oct. 2002, pp. 293-
313.

[12] O. I. Larichev, A. V. Kortnev, and D. Yu Kochin,
Decision support system for classification of finite set
of multicriteria alternatives, Decision Support System,
vol. 33, pp. 13-21, 2002.

[13] O. I. Larichev, A. Asanov, and Y. Naryzhny,
Effectiveness evaluation of expert classification
methods, European Journal of Operational Research,
vol. 138, pp. 260-273, 2002.

[14] R. Robera, J. K. Penberthy, T. Loboschefski, D. Cox,
and B. Kovatchev, Combined psychophysiological
assessment of ADHD: a pilot study of Bayesian
probability approach illustrated by appraisal of ADHD
in female collage students, Applied Psychophysiology
and Biofeedback, vol. 29, no. 1, pp.1-18, 2004.

[15] H. A. Taha, Operational Research: An Introduction. 6th
ed., NJ: Prentice-Hall, 1997.

[16] R. Tannock, Attention Deficit Hyperactivity Disorder:
Advances in cognitive, neurobiological, and genetic
research. Journal of the Child Psychology and
Psychiatry, vol. 39, pp. 65-99. 1998.

[17] E. W. Weisstrain, (1999) “Bisection,” MathWorld – A
Wolfram Web Resources. [Online]. Available:
http://mathworld.wolfram.com/Bisection.html

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 195

Abstract—Spanning trees problems defined in a
preference-based environment are addressed. In this
approach, optimality conditions for the well-known
minimum-weight spanning tree problem are generalized
to be used with more general preference orders. Then,
necessary and/or sufficient properties of the preference
relations are studied, in order to assure that the set of
‘most preferred’ trees is the set of spanning trees
verifying the optimality conditions. Finally, an algorithm
for the construction of the set of spanning trees fulfilling
the optimality conditions is designed.

Keywords—Preference-based modelling;
Multiobjective spanning tree problems.

I. INTRODUCTION
PTIMIZATION problems involving trees have
been intensively studied in the literature. The

minimum-weight spanning tree problem, (MST),
is a classic reference and usually appears as a
subproblem in other more complex studies. Its
resolution using greedy approaches given mainly
by Kruskal [6] or Prim [8] is well-known. For the
validation of these methods, two optimality
conditions are defined in the following sense: any
spanning tree is minimum-weight if and only if
verifies any of them. In fact, the classic algorithms
mentioned above build one tree verifying any of
the optimal conditions for the MST. See [1] and
[2] for a complete development.
In this paper, we follow this approach to
generalize the MST problem to a preference-based
environment. That is, the goal is to find the
maximal or most preferred trees among all
spanning trees in a connected undirected graph.
The preference order is given by a binary relation
between pairs of subsets of edges on the graph.
Multicriteria spanning tree problems can be
described using different preference orders
defined on vector costs. For example, the search
of efficient multiobjective spanning trees in the

Pareto sense (see [4], [9], [10] and [5]) or the
construction of all minimum lexicographic
spanning trees.
Recently, [7] developed algorithms and proved
conditions to be verified for a preference system
in order to assure that, these methods really build
the set of optimal solutions. This paper studies not
only the spanning trees problems mentioned, but
also the most-preferred paths problem on
digraphs. Unfortunately, the algorithms described
are inefficient because they have to check that an
optimal tree is not built more than once.
Moreover, the way in which the correction of the
algorithm is proved along with the conditions
required for the preference order is rather
complex.
In the next section, some basic definitions and
properties are stated. Section III generalizes the
optimality conditions for the MST problem to a
preference-based framework. Sections IV and V
deal with the necessary and sufficient conditions
for the most-preferred trees to verify the
optimality conditions. Section VI describe an
algorithm to build the set of spanning trees that
verify the optimality conditions, and finally, the
work ends with some conclusions.

II. NOTATION, DEFINITIONS AND BASIC RESULTS
Let G=(V, E) be an undirected and connected
graph. We denote by V(G) the set of n nodes of G
and by E(G) the set of edges in G. A spanning tree
of G is a subgraph that spans its n nodes with no
cycles. We denote by ()Gσ the set of spanning
trees in G. Then, every ()T Gσ∈ is a subgraph of
G that spans the set of nodes V G() using certain
subsets of edges E G() , that is,
T V G E T((), ())= . Therefore, any ()T Gσ∈ is

Optimality conditions in
preference-based spanning tree problems

O

Miguel Ángel Domínguez-Ríos, Sergio Alonso, Marcos Colebrook and Antonio Sedeño-Noda
University of La Laguna/Departamento de Estadística e Investigación Operativa

Avda. Astrofísico Francisco Sánchez, s/n,
Edificio de la Facultad de Matemáticas, 4ª planta

 38205 La Laguna, Santa Cruz de Tenerife, España
Email: madoming@ull.es

196 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

completely defined through its n-1 edges.
Definition 1. Given a pair of nodes , ()i j V G∈ ,
and ()T Gσ∈ , we define by , (,)path T i j the
set of edges in T which connects the nodes i and j.
Note that the path connecting a pair of nodes in a
spanning tree is unique.
Definition 2. Given ()T Gσ∈ , we say that an
edge f E G()∈ belongs to the set cut T e, if
connects the two connected components of

{ }T e− . That is,
{ }, () / ()cut T e f E G T e f Gσ= ∈ − + ∈ .

Now, we must point out a basic but important first
result easy to prove.
Proposition 1. Given ()T Gσ∈ , for any e T∈
and any ()f E G∈ , ,f cut T e∈ iff

,e path T f∈ .

A. A preference-based environment
Let us first state some definitions about
preference relations in optimization problems.
We will work with a binary relation defined
on a certain set X, verifying, at least, to be
asymmetric and transitive (and then irreflexive).
With these properties, is a basic preference
order (see [3]). Then, we call indifference ∼ as

the absence of strict preference , that is,
,x y X∀ ∈ , x y∼ iff (not x y and not y x).

We will work with the union of these binary
relations, that is,

,x y X∀ ∈ , x y iff (x y or x y∼).
Given a non empty subset 0X X⊆ , we define
and denote the maximal elements in 0X as the
following,
max 0X ={ }0 0x X / y X ,if y x then y x∈ ∀ ∈ ∼

.
Therefore, given a connected and undirected
graph G=(V, E), with a basic preference relation

 defined on the set of subsets of edges E(G),
the maximal or most-preferred spanning tree
problem is solved with the construction of the
set max ()Gσ .
The MST problem can be stated as a
preference-based spanning tree problem. Given
the weight function w for the problem defined
for each edge in E(G), if we extend this
definition to any subset of edges, 0 ()E E G⊆ ,
as

0

0() ()
e E

w E w e
∈

= ∑ ,

the preference order we need is,
0 1, ()E E E G⊆ , 0 1E E iff 0 1() ()w E w E< .

Therefore any T ∈max ()Gσ is a minimum
weight spanning tree.
Moreover, if the weight function for each edge
is defined in k , the set max ()Gσ can be the
set of lexicographical-minimum spanning trees
if we use the lexicographic order or the set of
efficient spanning trees if we use the Pareto
order.

B. Optimality conditions
The optimality conditions for the MST problem
are the following:

OptCUT condition. Given a ()T Gσ∈ , we say
that T verifies the optimality cut condition iff

,e T∀ ∈ () ()w e w f≤ , ,f cut T e∀ ∈ . We
denote by OptCUT(G) the set of these spanning
trees.

OptPATH condition. Given a ()T Gσ∈ , we say
that T verifies the optimality path condition iff

(),f E G∀ ∈ () ()w e w f≤ , ,e path T f∀ ∈ .
We denote by OptPATH(G) the set of these
spanning trees.

For the MST problem, it is well known that,

max ()Gσ =OptCUT(G)=OptPATH(G), (1)

and algorithms as Kruskal or Prim, really build
one tree in OptCUT(G) or OptPATH(G),
respectively.
We need an appropriate generalization of these
optimality conditions in a preference system
framework, to study the conditions under which
equality (1) is still valid.

III. OPTIMALITY CONDITIONS GENERALIZED.
Given an undirected and connected graph G=(V,
E), with a preference basic order defined on the
subsets of E(G), a correct generalization of
OptCUT and OptPATH properties must maintain
the relation with the optimality conditions of the
MST problem. We can consider the following as a
valid generalization:

OptCUT condition. Given a ()T Gσ∈ , we say
that T verifies the generalized optimality cut

Miguel Ángel Domínguez-Ríos et al. 197

condition iff ,e T∀ ∈ ,f cut T e∀ ∈ , if f e *

then f e∼ . We denote by OptCUT(G) the set of
these spanning trees.

OptPATH condition. Given a ()T Gσ∈ , we say
that T verifies the generalized optimality path
condition iff (),f E G∀ ∈ ,e path T f∀ ∈ , if f e

then f e∼ . We denote by OptPATH(G) the set of
these spanning trees.

Note that the definitions given for the MST
problem are now particular cases of them, so we
keep the same names of the conditions.
Finally, we state that, based in proposition 1, the
next and obvious result holds.

Proposition 2. Given an undirected and connected
graph G=(V, E), OptCUT(G)=OptPATH(G).

IV. NECESSARY CONDITIONS.
In this section, we are going to study the
conditions required for the basic preference order
to assure that any spanning tree T ∈max ()Gσ ,
verifies OptCUT (or OptPATH).

Proposition 3. Given 0 ()E E G⊆ and

0, ()e f E G E∈ − , if a preference basic order in
()Gσ satisfies both of the following:

(i) if e f then { } { }0 0E e E f∪ ∪ ,
(additivity), and,

(ii) if { } { }0 0E e E f∪ ∪∼ then e f∼ ,
(simplification).

then () () ()max G OptCUT G OptPATH Gσ ⊆ = .

Proof. Let max ()T Gσ∈ , e T∈ and
,f cut T e∈ . Thus if { }0T T e= ∪ , then

{ }0' ()T T f Gσ= ∪ ∈ . Suppose that f e , then

{ } { }0 0T f T e∪ ∪ applying additivity; that is,
'T T , and as ()T max Gσ∈ , 'T T∼ ; thus,

{ } { }0 0T f T e∪ ∪ , and then, applying
simplification, we have f e∼ , and the result
follows .
Both properties, additivity and simplification, hold

* We relax the correct notation { } { }f e by f e , when the
subsets of edges are unitary

for several multicriteria preference orders. The
lexicographical order and the preference order in
the Pareto sense are examples. In these cases, the
weight of any subset of edges is obtained by the
sum in k of the vector costs of their edges, that
is, the vectorial sum. In summary, both preference
orders are based in the next common definition.
Given 0 0, ()E F E G⊆ ,

0 0E F iff
0 0

0 0() () () ()
e E e F

w E w e w F w e
∈ ∈

= =∑ ∑ .

Moreover, both verify,
() ()w e w f iff 0 0() () () ()w e w E w f w E+ + ,

and then,
() ()w e w f∼ iff 0 0() () () ()w e w E w f w E+ +∼ ,

for any 0 ()E E G⊆ and 0, ()e f E G E∈ − .
These necessary conditions are, however, not
sufficient to assure that any tree verifying
OptCUT (or OptPATH) is maximal.

edge weight
(1,2) [0,1]
(1,3) [0,1]
(1,4) [1,0]
(2,4) [2,0]
(3,4) [1,0]

1
2

3 4
G=(V, E)

1
2

3 4
T1

1
2

3 4
T2

Figure 1. A counterexample.

Given G=(V, E) illustrated in figure 1, the table
with a biojective cost for each edge in E(G) is
shown on the right. We study the set max ()Gσ
using the preference relation based on the Pareto
order. Table 1 lists, for each edge e in T1, the
edges in the cuts and, respectively, its weights.
Note that 1 ()T OptCUT G∈ . However

1 ()T max Gσ∉ , being 1() (3,1)w T = dominated by

2() (2,1)w T = .

198 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

 e in T1 1,cut T e weights
(1,3) {(1,3),(3,4)} {[0,1],[1,0]}
(1,4) {(1,2),(1,4),(3,4)} {[0,1],[1,0],[1,0]}
(2,4) {(1,2),(2,4)} {[0,1],[2,0]}

Table 1. Cuts and weights in the counterexample.

V. SUFFICIENT CONDITIONS.
Necessary conditions have to be enriched to
assure that any spanning tree in OptCUT(G)
belongs to max ()Gσ .

Definition 2. A preference basic order is said to
verify the strong additivity property when given

0 ()E E G⊆ and 0, ()e f E G E∈ − ,
e f iff { } { }0 0E e E f∪ ∪ .

Note that strong additivity implies additivity and
simplification.

Suppose now a preference basic order holding the
strong additivity property. Let ()T OptCUT G∈

and ' ()T Gσ∈ such that both spanning trees differ
in only an edge. If 'T T , we can denote

{ }0T T e= ∪ and { }0'T T f= ∪ , and then,

{ } { }0 0T f T e∪ ∪ . Thus, using the strong
additivity property we can deduce that f e ,
because:

if { } { }0 0T f T e∪ ∪ then directly f e , and

if { } { }0 0T f T e∪ ∪∼ , then either e f or
f e cannot be possible, so f e∼ .

As ()T OptCUT G∈ and ,f cut T e∈ , from
f e we can deduce e f∼ and then 'T T∼ .

However, we already know that strong additivity
property is not enough to generalize this result to
spanning trees which differ in more than one
edge. The preference order in the Pareto sense
verifies this property and 1 ()T OptCUT G∈ and

2 max (G)T σ∈ differs in two edges.

Suppose now that, using the same previous conditions, ()T OptCUT G∈ and ' ()T Gσ∈ differ in more than one
edge, and 'T T . Then, we can separate the common edges from the others and so, 0' fT T T= ∪ and

0 eT T T= ∪ . Given 0 ee T∈ , there is an edge 0 ff T∈ such that 0 0,f cut T e∈ (see [1]). As ()T OptCUT G∈ ,

0 0e f and then { } { } { } { }0 0 0 0 0 0() ()f fT T f e T T f f∪ − + ∪ − + , that is,

{ } { }0 0 0 0 0()f f eT T f e T T T T∪ − + ∪ ∪ . We can choose another edge { }1 0ee T e∈ − , and the corresponding

{ }1 0ff T f∈ − such that 1 1,f cut T e∈ . Then as ()T OptCUT G∈ , 1 1e f , and

{ } { } { } { } { } { }0 0 1 0 1 0 0 1 0 1(,) (,)f fT T f f e e T T f f e f∪ − + + ∪ − + + , that is,

{ } { } { } { }0 0 1 0 1 0 0 0 0 0, ,f f f eT T f f e e T T f e T T T T∪ − + ∪ − + ∪ ∪ if we complete the preference chain. Hence,

we can continue replacing any edge k ff T∈ by the corresponding edge in k ee T∈ such that ,k kf cut e T∈ , until
we obtain the closed preference chain,

{ } { } { } { }0 0 0 1 0 1 0 0 0 0 0... , ,e f f f eT T T T f f e e T T f e T T T T∪ ∪ − + ∪ − + ∪ ∪ (2)

Proposition 4. Let G=(V, E) be a connected and
undirected graph with a preference basic order
defined on the subsets in E(G) verifying the strong
additivity property. If is negative transitive then

 () () ()max G OptCUT G OptPATH Gσ = = .
Proof. We only have to prove that

() ()OptCUT G max Gσ⊆ . If is negative
transitive, then ∼ and are transitive, and, in the
conditions of (2), we have,

0 0 0e f eT T T T T T∪ ∪ ∪ , and thus, 'T T∼ .

Both lexicographic and Pareto orders verify the
strong additivity property, but only the indifference
of the lexicographic one is transitive.
As a final remark we want to mention that the strong
additivity property plays here an analogous role to
the denominated Independence Axiom in [7]. It can
be written in the following form, , , ()A B C E G∀ ⊆ ,
such that, ()C A B∩ ∪ =∅ , if A B then
A C B C∪ ∪ .

Miguel Ángel Domínguez-Ríos et al. 199

VI. AN ALGORITHM FOR OPTCUT(G).
In this final section, we design an algorithm that
compute the set ()OptCUT G (and then,

()OptPATH G) when the preference order verifies
certain requirements.
For the construction of spanning trees in an
undirected and connected graph G=(V, E), there are
two main approaches. Kruskal’s approach selects an
edge as a valid candidate if it keeps acyclic the
subset of edges. A general scheme is:

T=∅ ;
while |T|<n-1 do

select an edge e such that T∪ {e} is
acyclic;
T=T∪ {e};

Nevertheless, Prim’s approach expands the
connectivity from an arbitrary node i until the rest of
nodes are reached. A general scheme is:

T=∅ ;
M={i};
while |T|<n-1 do
select an edge e with an extreme in M
and the other, j, in V(G)-M;
T=T∪ {e};
M=M∪ {j};

The success of these approaches relies on the fact
that an efficient implementation of both selection
processes is available. Moreover, if the edge to be
added is also, the one with minimum weight, then
we have Kruskal and Prim algorithm for the MST
problem. The adaptation of these strategies to a
more general preference-based order must be carried
out carefully. Note that, these algorithms for the
MST problem build only one minimum-weight
spanning tree, even if more than one is possible. In a
preference-based framework, every tree in the
optimal set ()max Gσ has to be computed in an
efficient way. In [7], the algorithms have to check if
a partial/total solution is obtained several times
since they add edges one by one. That is, if edges in
{ }1 2,e e belong to a tree, the sequence of addition

{ } { }1 2e e+ leads to the same set even if the order is

{ } { }2 1e e+ . A more efficient algorithm should allow
adding more than one edge in every step.

The following result needs no proof.
Proposition 5. Given a basic preference order in

()Gσ , for any subset X E G()⊆ , if is transitive,
then all edges in max X are indifferent among
them, that is, e e max X, '∀ ∈ , e e '∼ . Moreover,
if there are edges f E G()∈ and e max X0 ∈ , such

that f e0 or e f0 then, respectively, f e or
e f for any e max X∈ .
We will use the graph in figure 2 to illustrate the
performance of the algorithm described in the next
section.

Figure 2. A grid graph as example

In Table 2, the transitive preference order among
edges is defined. Edges in the same row are
indifferent, while edges in a higher row are
preferred to those in a lower one.

(3,4)
(1,3)(1,4)(1,5)(1,6)

(5,6)(1,2)

Table 2. Preference order in the example.

In Kruskal’s approach, the selection of edges must
keep the subset T with no cycles. Then, an edge can
be selected if and only if its extremes merge
different connected components in T. Note that
several edges can join the same pair of connected
components in T, and therefore, they all belong to
the same cut in the spanning trees containing T.
Therefore, more than one edge can be selected, but
only if they join different pairs of connected
components and we do not exceed 1n − edges.
Thus, given a basic preference order in ()Gσ , if

 is transitive, a correct method to build the set
OptCUT(G) is the following.

procedure optimalcutset(T, k)
Let E0=max{e∈E(G)/T∪ {e} is acyclic};
Let k0 the number of connected
components in T∪ E0;
For each subset T0 of cardinal k-k0 in
E0 being T∪ T0 acyclic do
 if k0=1 then
 T∪ T0∈OptCut(G)
 else optimalcutset(T∪ T0,k0).

The main call of the algorithm is
optimalcutset(∅ ,n).

The algorithm is now used to obtain the OptCUT set
for the graph described in Figure 2 and Table 2.

200 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Initial phase: no edges added and each node is a unitary
connected component, so k=n=6.

The set E0 only contains the edge (3,4); then k0=5 and
T0={(3,4)}.

The set E0={(1,3),(1,4),(1,5),(1,6)} and k0=2; there are
two suitable subsets T0, {(1,3),(1,5),(1,6)} and
{(1,4),(1,5),(1,6)}

Finally the edge (1,2) is added.

We remark that, if the preference order in ()Gσ
also satisfies the strong additivity property, we have

() ()OptCUT G max Gσ= . The optimalcutset
algorithm is a generalization of AllMST algorithm
for the MST problem in [9].

VII. CONCLUSIONS.
This paper generalizes the two optimality conditions
used for solving the MST problem as an algorithmic
tool to solve preference-based spanning tree
problems. Both optimality conditions generalized
are proved to be equivalent and the subsets of
spanning trees which satisfy them are the same.
Then, the main interest is to study necessary and
sufficient conditions that preference orders have to
verified to assured that the ‘most preferred’ trees are
those that fulfil the optimality conditions. We proof
that the preference order is required to be ‘negative
transitive’ and to verify the denominated ‘strong
additivity property’ to achieve this result.
Finally, we also design an algorithm for building
efficiently the subset of spanning trees which satisfy
the generalized optimality cut condition. Therefore,
this algorithm can be used, for example, to build the
set of lexicographical-minimum spanning trees of a
connected graph.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous
referees all their valuable comments that have

improved the paper.

REFERENCES
[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network

Flows. Theory, Algorithms and Applications. Prentice
Hall, 1993.

[2] T. H. Cormen, C. E. Leiserson and R. L. Rivest,
Introduction to Algorithms. The MIT Press, 1990.

[3] P. C. Fishburn, Utility Theory for Decision Making,
Publications in Operations Research, no. 18. Wiley &
Sons, 1970.

[4] H. W. Hamacher and G. Ruhe, “On spanning tree
problems with multiples objectives”, in Annals of
Operations Research, 52, pages 209-230, 1994.

[5] J. D. Knowles and D. W. Corne, “Enumeration of Pareto
optimal multi-criteria spanning trees – a proof of the
incorrectness of Zhou and Gen’s proposed algorithm”, in
European Journal of Operational Research, 143(3), pages
543-547, 2002.

[6] J. B. Kruskal, “On the shortest spanning subtree of a
graph and the traveling salesman problem”, in Proceeding
of the American Mathematical Society, 7, pages 48-50,
1956.

[7] P. Perny and O. Spanjaard, “A preference-based approach
to spanning trees and shortest path problems”, in
European Journal of Operational Research, vol. 162,
issue 3, pages 584-601, May 2005.

[8] R. C. Prim, “Shortest connection networks and some
generalization” in Bell System Technical Journal, 36,
pages 1389-1401, 1957.

[9] R. M. Ramos, S. Alonso, J. Sicilia and C. González, “The
problem of the optimal biobjective spanning tree” in
European Journal of Operational Research, vol. 111(3),
pages 617-628, 1998.

[10] G. Zhou and M. Gen, “Genetic algorithm approach on
multi-criteria minimum spanning tree problem’, in
European Journal of Operational Research, 114(1), pages
141-152, 1999.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 201

Robust 1-median location problem on a tree
Rim KALA Ï∗, Mohamed Ali ALOULOU∗, Philippe VALLIN∗ and Daniel VANDERPOOTEN∗

∗Paris-Dauphine University/LAMSADE
Place du Maŕechal de Lattre de Tassigny, 75775 Paris Cedex 16

Email: kalai,aloulou,vallin,vdp@lamsade.dauphine.fr

Abstract— In combinatorial optimization, and partic-
ularly in location problems, the most used robustness
criteria rely either on maximal cost or on maximal regret.
However, it is well known that these criteria are too
conservative. In this paper, we present a new robustness
approach, called lexicographic α-robustness, which com-
pensates for the drawbacks of the criteria based on the
worst case. We apply this notion to the 1-median location
problem under uncertainty and we give a polynomial
algorithm to determine robust solutions in the case of a
tree graph.

Keywords— Robustness, 1-median location problem,
minmax cost/regret, scenario-based uncertainty.

I. I NTRODUCTION

ROBUSTNESS analysis looks for solutions in a con-
text where the imprecise, uncertain and generally

badly known parameters of a problem make inappro-
priate the search of optimal solutions [19] [23]. Unlike
deterministic or stochastic approaches which are aimed
at determining the best solution for a certain instance
of values (or scenario), robust approaches try to find
a solution or a set of solutions that is acceptable for
any considered scenario. In combinatorial optimization
and particularly in location problems, the most used
robustness criteria rely either on the maximal cost or
on the maximal regret [14]: a robust solution is one
that minimizes the maximal cost or regret among all
scenarios. Nevertheless, grasping the notion of robust-
ness through only one measure (the maximal cost or
regret) is questionable, since this often leads to favor
only the worst case scenario. Furthermore, no tolerance
is considered in this measure.

These two drawbacks of the criteria founded on the
worst case suggest considering alternative robustness
criteria. In the case of deterministic public location
problems, Ogryczak departs from considering only the
worst case by introducing the notion oflexicographic
minimax[16]. In this paper, we use and extend this idea
in order to define a new robustness approach when the
set of scenarios is finite and propose a polynomial time

algorithm to compute the corresponding robust solutions
for the 1-median problem on a tree.

Our paper is organized as follows. In section 2, we
define the1-median problemand review the main works
on robustness for this problem. In section 3, we introduce
a relation calledα-leximax, and use it to define a set of
robust solutions. We also present a general algorithm
which computes this robust set when the set of solutions
is finite and apply it to thevertex 1-median problem.
In section 4, we apply our robustness approach to the1-
median problemon a tree for which we present a specific
algorithm that finds the robust points of the tree. In a final
section, we summarize the important points of this work
and suggest some perspectives.

II. L ITTERATURE REVIEW

Network location problems are aimed at locating new
facilities in order to meet the demand of a certain number
of customers [8]. Demand and travel between demand
sites and facilities are assumed to occur only on a graph
G = (V, E) composed of a setV = {vi, i = 1, . . . , n} of
n nodes (or vertices) and a setE of m edges. The length
of each edge(vi, vj), i.e. the distance between sitevi and
site vj , is denotedcij . We assume that demands occur
only at the nodes of the network and that they can be
characterized by a weight vectorW = (w1, w2, . . . , wn)
wherewi is the weight associated with nodevi for i =
1, . . . , n.

The absolute 1-median problemis to locate theabso-
lute medianof a graphG, that is the point ofG which
minimizes the total weighted distance to all nodes of the
graph. Apoint of the graph corresponds either to a node
or to any point on an edge. Let us denoted(a, b) the
minimum distance between two pointsa and b of G.
The 1-median problem is formulated as follows :

min
x∈G

C(x) =
n

∑

i=1

wid(x, vi) (1)

The Hakimi property stipulates that an absolute median
of a graph is always at a vertex of the graph [12].

202 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

The absolute 1-median problem is then equivalent to the
vertex 1-median problemwhich can be written as :

min
v∈V

C(v) =
n

∑

i=1

wid(v, vi) (2)

Consequently, given all distancesd(vi, vj), the problem
can be solved in linear time by enumerating and evalu-
ating then possible solutions.

Deterministic approaches assume that the problem
parameters (node weights and edge lengths) are fixed
and well known. In practice, however, it often appears
difficult to determine in a reliable and irrevocable way
all the data of a given problem. The decision-maker is
often confronted with uncertainty that makes the deter-
ministic reasoning inappropriate. Uncertainty situations
are divided into two classes: if it exists a perfectly known
probability distribution on the set of the nature states,
we are in arisk situation. Otherwise, it is impossible
to allocate probabilities to the possible outcomes of a
decision and we say that we are in anuncertainty(or
true uncertainty) situation. The latter case arises, for
example, when the outcome of a decision may depend on
a simultaneous or subsequent decision of a competitor
whose objectives conflict with one’s own, or on future
external events of non-repeatable variety, for which the
estimation of probabilities is a dubious exercise [18].
Robustness analysis concerns uncertainty situations.

Let us assume that the node weights and the edge
lengths can take many different values and that there is
a (finite or infinite) setS of possible scenarios (possible
values of the parameters). For a given scenarios and
a point x of G, the cost function under scenarios is
defined as follows:

Cs(x) =

n
∑

i=1

ws
i d

s(x, vi) (3)

where ws
i and ds(a, b) denote respectively the weight

of nodevi and the minimum distance between pointsa
and b under scenarios. The regret of solutionx (also
calledopportunity lossor absolute deviation[14]) is the
difference between the cost ofx under scenarios and
the cost of the best solution under the same scenario:

Rs(x) = Cs(x) − Cs(x∗s) (4)

where x∗s is the optimal solution of the 1-median
problem under scenarios.

To determine the robust solutions for the 1-median
problem, authors often attempted to optimize the worst
case performance of the system by minimizing the
maximal cost or the maximal regret (see [2], [4], [5],

[7], [14] and [22]). Theminmax 1-median problemis
defined as follows:

min
x∈G

max
s∈S

Cs(x) (5)

and theminmax regret 1-median problemhas the follow-
ing expression :

min
x∈G

max
s∈S

Rs(x) = min
x∈G

max
s∈S

(Cs(x) − Cs(x∗s)) (6)

In the literature on minmax (regret) 1-median prob-
lem, the authors distinguish many models according to
the graph structure (tree, network), the location sites
(on nodes or on edges) as well as the nature of the
scenario set. Indeed, uncertainty on a parameter may
be modelled either as a discrete set of scenarios, or as
an interval data. Figure 1 summarizes the main results
with regard to the minmax regret 1-median problem
on a tree, the uncertainty being on weights (assumed
to be positive). When weights can be negative and are
represented by uncertainty intervals, Burkard and Dollani
give an algorithm inO(n2) for the problem on a tree
[6]. As for the minmax regret 1-median problem on a
general network (with uncertainty on weights), Averbakh
and Berman present in [4] two approaches inO(nm4)
time andO(mn2 log n) time for the absolute problem
(location anywhere on the graph), the vertex problem
having an order of complexity ofO(n3). When edge
lengths are uncertain, Chen and Lin [7] show that, in
the case of a tree graph and interval data, the problem
can be reduced to the deterministic problem under the
scenario with maximal lengths. On the other hand, on
a general network, the problem with uncertain lengths
becomes NP-hard [2].

It is generally admitted that minmax cost and min-
max regret criteria are too conservative since they are
based only on the worst case. Besides, the worst case
performance is often reached for a scenario with a small
likelihood of occurrence, especially when uncertainty is
represented by intervals. To remedy the conservatism of
the minmax regret model for thep-medianproblem (p
is the number of facilities to locate), Daskin et al [9]
introduce a new variant of this problem calledα-reliable
p-minimax regretproblem. In this model, the decision-
maker associates a probability with each scenario. The
model then selects a subset of scenarios whose collective
probability of occurrence is at least some user-specified
value α (0 ≤ α ≤ 1) which is calledreliability level.
The model identifies the solution that minimizes the
maximum regret with respect to the chosen subset of
scenarios. An appropriate choice ofα guarantees that
the solution is not based on a scenario with a very small
likelihood of occurrence.

Rim KALA Ï et al. 203

Fig. 1. Minmax regret 1-median problem on a tree with uncertainty on nodeweights

In a recent work, Snyder and Daskin [21] present the
stochastic p-robust P-median problem (p-SPMP)(P is
the number of facilities to locate). They use a measure
called p-robustnesswhich was first introduced by Kou-
velis et al in [13]. This measure imposes a constraint
dictating that the cost under each scenario must be within
(100 + p)% of the optimal cost for that scenario, where
p ≥ 0 is an external parameter (completely independent
of P the number of facilities). Moreover, the authors
assign a probability to each scenario. Thus, they build a
new robustness measure consisting in determining the
p-robust solutions which minimize the expected-cost.
Snyder and Daskin prove thatp-SPMP is NP-hard and
discuss a mechanism for detecting infeasibility since
p-robust solutions may not exist (especially for small
values ofp).

The main drawback of these last two approaches
is that they require to express a probability for each
scenario.

According to this review, we can distinguish two
families of approaches to find robust solutions for a
given problem. The first family looks for solutions
which optimize a certain objective function (e.g. minmax
approaches) whereas the second one imposes conditions
that solutions must satisfy in order to be considered as

robust (e.g.p-robustness). In the following, we define a
new robustness approach which belongs to the second
family of approaches.

III. D EFINITION OF A NEW ROBUSTNESS APPROACH

Let us suppose that, for a given problem, one (or
several) of the parameters cannot be determined in a
certain and definite way and that there is a finite setS of
scenarios. LetX denote the set of feasible solutions and
q the number of scenarios. Since the reasoning and the
results are valid for costs as for regrets, we use in what
follows the term “cost” and the notationC indifferently
for cost and regret. A robust solution according to the
maximal cost criterion is a solution that verifies:

min
x∈X

max
s∈S

Cs(x) (7)

In the next subsections, we introduce a new preference
relation that we callα-leximaxand use it to define a set
of robust solutions.

A. Theα-leximax relation

Let x be a solution ofX. We associate tox a cost
vector denoted byC(x) = (Cs1

(x), . . . , Csq

(x)) where
Csj

(x) is the cost of solutionx under scenariosj ,

204 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

1 ≤ j ≤ q. By ordering the coordinates ofC(x) in a non-
increasing order, we get a vector̂C(x) called disutiliy
vector [15]. We haveĈ1(x) ≥ Ĉ2(x) ≥ . . . ≥ Ĉq(x).
Thus,Ĉj(x) is the jth largest cost ofx.

Definition 1: Let x andy be two solutions ofX, Ĉ(x)
and Ĉ(y) the associated disutility vectors. Theleximax
relation, denoted by%lex, is defined as follows [11]:

x ≻lex y ⇔ ∃k ∈ {1, . . . , q} : Ĉk(x) < Ĉk(y)

and ∀j ≤ k − 1, Ĉj(x) = Ĉj(y)

x is said to be (strictly) preferred toy in the sense of
the leximaxrelation.

x ∼lex y ⇔ ∀k ∈ {1, . . . , q}, Ĉk(x) = Ĉk(y)

x and y are said to be equivalent in the sense of the
leximaxrelation.

In other words, comparing two cost vectors in the
sense of theleximaxrelation is equivalent to comparing
the first distinct coordinates of the disutility vectors.
Remark that reordering cost vector implies that we
implicitly assume that the vector obtained by the per-
mutation of the cost vector coordinates is equivalent to
the original cost vector (theleximax relation is said to
be anonymous[16]). This is justified by the fact that,
in a situation of true uncertainty, none of the scenarios
can be distinguished. Theleximax relation is complete,
reflexive and transitive. Therefore, it is aweak order.

The previous definition of theleximax relation
requires a perfect equality between the disutility vector
coordinates of two solutions in order to consider them
equivalent. Nevertheless, in practice, it may exist a
tolerance threshold under which the decision-maker
either cannot perceive the difference between two
elements, or refuse to give his opinion on the preference
for one of them [20]. Taking an indifference threshold
α into account leads to the following definition:

Definition 2: Let x and y be two solutions ofX,
Ĉ(x) andĈ(y) the associated disutility vectors, andα a
positive real value. Theα-leximax relation, denoted by
%

α
lex, is defined as follows :

x ≻α
lex y ⇔ ∃k ∈ {1, . . . , q} : Ĉk(x) < Ĉk(y) − α

and ∀j ≤ k − 1, |Ĉj(y) − Ĉj(x)| ≤ α

x is said to be (strictly) preferred toy in the sense of
the α-leximaxrelation.

x ∼α
lex y ⇔ ∀k ∈ {1, . . . , q}, |Ĉk(y) − Ĉk(x)| ≤ α

x and y are said to be indifferent in the sense of the
α-leximaxrelation.

The α-leximaxrelation is a lexicographic aggregation
of semiorders. It is known that, forα 6= 0, such an
aggregation is not a semiorder [17] (forα = 0, the
relation resulted from the aggregation is none other
than the weak orderleximax). Actually, neither its
asymmetric part≻α

lex nor its symmetric part∼α
lex are

transitive, which may lead to preference cycles.

Example 1:Ĉ(x) = (3, 3, 2), Ĉ(y) = (5, 0, 0), Ĉ(z) =
(4, 3, 0) and α = 1.
We havex ≻α

lex y and y ≻α
lex z but z ≻α

lex x.

Despite its failure to comply with some properties,
the α-leximax preference relation remains suitable for
the determination of robust solutions since it takes into
account several measures (costs under different scenar-
ios), offers some tolerance (indifference threshold) and
takes into account, at least initially, the solutions given
by the minmax criteria (cost/regret).

B. Lexicographicα-robust solutions

We want to determine the set of robust solutions by
relying on the α-leximax relation. As noticed at the
end of section II, there are two families of robustness
approaches: the first family looks for solutions given
by optimizing a chosen criterion and the second one
imposes some robustness properties that solutions must
satisfy. Let x∗ be an ideal solution (most of the time
fictitious) such that:

Ĉ(x∗) = (Ĉ1(x∗

1), Ĉ
2(x∗

2), . . . , Ĉ
q(x∗

q)) (8)

whereĈ = (Ĉ1, Ĉ2, . . . , Ĉq) is the disutility vector and
x∗

k = arg minx∈X Ĉk(x) for all k ∈ {1, . . . , q}. Let us
consider the following set:

A(α) = {x ∈ X : not(x∗ ≻α
lex x)}

= {x ∈ X : x ∼α
lex x∗} (9)

where the second equality results from the fact that%
α
lex

is complete and that we cannot havex ≻α
lex x∗ by

definition of x∗.
Using the definition ofα-leximax relation, the set

A(α) can also be written as follows:

A(α) = {x ∈ X : ∀k ≤ q, Ĉk(x)−Ĉk(x∗

k) ≤ α} (10)

Any solution of A(α) performs well with regard to
the disutility vector sinceA(α) is the set of solutions
whose thekth largest cost is close to the minimum for all
k ≤ q. If we consider this last condition as a robustness

Rim KALA Ï et al. 205

property, then we can considerA(α) as a set of robust
solutions that we will call set oflexicographicα-robust
solutions.

It is obvious that for small values ofα, this set can
be empty. The minimum value ofα that guarantees the
existence of lexicographicα-robust solutions is:

αmin = min
x∈X

max
1≤k≤q

(Ĉk(x) − Ĉk(x∗

k)) (11)

Moreover, the set of lexicographicα-robust solutions is
stable with regard to parameterα, that is if α′ ≤ α then
A(α′) ⊆ A(α).

We present, in appendix I, a simple algorithm named
α-LEXROB, for the determination of lexicographicα-
robust solutions in the case of a finite set of solutions.
Algorithm α-LEXROBis based on an iterative procedure
which determines, in each iterationk ∈ {1, . . . , q}, the
subset:

Ak(α) = {x ∈ Ak−1(α) : Ĉk(x) − Ĉk(x∗

k) ≤ α} (12)

The algorithm requiresO(|X|q) elementary opera-
tions where|X| is the number of elements ofX and
q the number of scenarios.

C. Example

Let us consider the vertex 1-median problem. We
have X = V and |X| = n where V is the set of all
nodes of the graph andn the number of nodes. For this
problem, algorithmα-LEXROB is polynomial (O(nq)).
We consider the complete graph of figure 2.

Fig. 2. A complete graph with four vertices

All edges are 1 unit long whereas node weights can
take two possible values depending on the scenario (see
table I). The cost of each vertex is computed according
to equation (3). We look for lexicographicα-robust
solutions among verticesa, b, c andd.

According to the maximal cost criterion, the robust
solution isb since it has the minimum cost in the worst
case. It is clear that this solution is not so robust since
it does not perform well under all scenarios. Indeed, its
cost under scenariosS1 andS2 is rather high.

We give hereafter the lexicographicα-robust solutions
for different values ofα.

TABLE I

Weights and costs of nodes under scenariosS1 and S2

weights costs dis. vect.

vertex S1 S2 S1 S2 Ĉ1 Ĉ2

a 14 3 14 30 30 14

b 3 8 25 25 25 25

c 1 17 27 16 27 16

d 10 5 18 28 28 18

• α = 1 ⇒ A(1) = ∅.
• α = 2 ⇒ A(2) = {c}.
• α = 3 ⇒ A(3) = {c}.

IV. L EXICOGRAPHICα-ROBUST1-MEDIAN PROBLEM

ON A TREE

We consider the 1-median problem on a tree in the
case of uncertainty on node weights. Kouvelis and Yu
[14] consider the minmax cost and the minmax regret
versions of this problem using scenario-based weights.
They present anO(nq) algorithm to determine the min-
max (regret) 1-median of the tree, wheren is the number
of nodes andq the number of scenarios.

Instead of finding a unique robust 1-median on the
tree, we want to determine the lexicographicα-robust
set A(α), if it is not empty, in order to definerobust
segmentsof the tree. Since the feasible solution set is
infinite, algorithmα-LEXROBcannot be applied. After
reminding the principle of Kouvelis and Yu’s algorithm,
we present a specific polynomial algorithm for thelex-
icographic α-robust 1-medianproblem on a tree. We
recall that the notationC and the word “cost” refer
indifferently to cost or to regret.

A. Principle of Kouvelis and Yu’s algorithm

Let T be a tree. The removal of any edge(vi, vj)
of T partitions the tree into two connected components
made up of node subsetsVi andVj . For each pointx on
edge (vi, vj) of length cij , we denote byy the distance
between nodevi and x (0 ≤ y ≤ cij). The minimum
maximal cost is defined as :

min
0≤y≤cij

(vi,vj)∈T

max
s∈S

Cs
ij(y) (13)

whereCs
ij(y) is the cost under scenarios of the point of

(vi, vj) at a distancey from nodevi. For the 1-median
problem on a tree, the costCs

ij(y) can be written as:

Cs
ij(y) = λs

ij + µs
ijy (14)

206 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

with :
µs

ij =
∑

vk∈Vi
ws

k −
∑

vk∈Vj
ws

k,
λs

ij =
∑

vk∈Vi
ws

kd(vi, vk) +
∑

vk∈Vj
ws

k(d(vj , vk) + cij)
if C represents the cost and
λs

ij =
∑

vk∈Vi
ws

kd(vi, vk)+
∑

vk∈Vj
ws

k(d(vj , vk)+cij)−
Cs(x∗s) if C represents the regret,Cs(x∗s) being the
minimum cost under scenarios.

In their approach, Kouvelis and Yu determine, for a
given edge(vi, vj), the solutiony∗ij which minimizes the
maximal cost on the edge. They describe a procedure that
computesy∗ij by solving:

Cij(y
∗

ij) = min
0≤y≤cij

max
s∈S

Cs
ij(y) (15)

After applying this procedure to all edges of the tree,
they use a linear time algorithm to find the minmax
(regret) 1-median by determining, among all pointsy∗ij
found, one with a minimum maximal cost (regret).

B. Determination of the robust segments of the tree

1) Principle and notations:

We want to find the robust segments of a treeT ,
that is the set of lexicographicα-robust solutions when
X = T . We present here an algorithm which determines
acceptable intervals that are reduced at each iteration and
finally gives robust intervals.

For a given edge(vi, vj) of length cij and a point
x ∈ (vi, vj) , Ĉk

ij(x) represents thekth largest cost ofx
on interval[0, cij], 1 ≤ k ≤ q. It is obvious that, unlike
Cs

ij(.), costsĈk
ij(.) are not linear functions on[0, cij].

We define the following subsets fork ∈ {1, . . . , q}
and (vi, vj) ∈ E:

Ik
ij(α) = {y ∈ [0, cij] : Ĉk

ij(y) − Ĉk(x∗

k) ≤ α} (16)

where x∗

k = arg minx∈X Ĉk(x). SubsetsIk
ij(α) are

calledacceptable intervals of orderk.
Let Ak

ij(α) be the acceptable subsets defined as follows:

A1
ij(α) = I1

ij(α) and

Ak
ij(α) = Ak−1

ij (α) ∩ Ik
ij(α) for k ≥ 2 (17)

Then, the acceptable subsetAk(α), k ≥ 1, defined in
equation (12) can be written as :

Ak(α) =
⋃

(vi,vj)∈E

Ak
ij(α) (18)

Therefore, in order to determine the set of
lexicographicα-robust solutions, we use the following
algorithm.

Algorithm α-LEXROB(1MT)

Begin
A0(α) ← X;
A0

ij(α) ← [0, cij] for all (vi, vj) ∈ E;
k ← 1;
while (k ≤ q andAk−1(α) 6= ∅) do

Computex∗

k;
for all (vi, vj) ∈ E do

DetermineIk
ij(α);

DetermineAk
ij(α) ← Ak−1

ij (α) ∩ Ik
ij(α);

DetermineAk(α) ←
⋃

(vi,vj)∈E

Ak
ij(α);

k ← k + 1;
End.

If for a given k ≤ q, Ak(α) = ∅, then it is obvious
that A(α) = ∅.

In the following, we detail the procedures required
by the algorithm.

2) Determination ofx∗

k:

We begin by determining, for each edge(vi, vj), the
point y

∗(k)
ij which minimizes the cost̂Ck

ij on (vi, vj).

The point x∗

k corresponds to the pointy∗(k)
ij with the

minimum cost Ĉk. For k > 1, functions Ĉk
ij(.) are

piecewise linear but not convex unlike functionsĈ1
ij(.).

As a result, it is not possible to use the Kouvelis and Yu’s
procedure since it is based on the convexity ofĈ1

ij(.).
We propose another approach consisting in determining,
for each interval[0, cij], all points corresponding to a
breakpoint of functionĈk

ij(.). Indeed, if it is different

from 0 and cij , y
∗(k)
ij is bound to be one of the points

where the function slope changes (see figure 3). We call
these pointszh(k)

ij , 1 ≤ h ≤ hk
ij , wherehk

ij is the number

of breakpoints of function̂Ck
ij on [0, cij]. Pointsz1(k)

ij and

z
hk

ij(k)

ij correspond respectively to0 andcij .

We present, in appendix II, a procedure (Find(y∗(k)
ij))

giving for an edge(vi, vj) all pointsz
h(k)
ij , 1 ≤ h ≤ hk

ij ,

as well as the pointy∗(k)
ij whose costĈk

ij is minimum.

The main idea of procedureFind(y∗(k)
ij) is to

determine the scenariossh(k)
ij , h ∈ {1, . . . , hk

ij}, which
give the kth largest cost functionĈk

ij on the interval
[0, cij]. At each iteration, the procedure determines,
at the current breakpointzh(k)

ij , the line that must be
chosen from those (two or more) available (see figure
3) as well as the adjacent breakpoint.

Rim KALA Ï et al. 207

Fig. 3. Illustration of procedureFind(y∗(k)

ij
) whenk = 2 andq = 4

Lemma 1:The complexity of procedureFind(y∗(k)
ij) is

O(q7/3 log q)

Proof: see appendix III.

Lemma 2:Finding x∗

k requires O(nq7/3 log q) ele-
mentary operations.

Proof: Lemma 2 follows directly from lemma 1 and
from the following relation:

x∗

k = arg min
x∈X

Ĉk(x) = arg min
(vi,vj)∈E

Ĉk
ij(y

∗(k)
ij) (19)

We remind that a tree hasn − 1 edges. ¤

3) Determination of acceptable intervalsIk
ij(α):

Unlike acceptable intervals of order 1, subsets
Ik
ij(α), 2 ≤ k ≤ q, are not necessarily connected because

of the non convexity of functionŝCk
ij(.). Nevertheless,

for the sake of convenience, we will continue to call
themacceptable intervals. Let us notice that the nature of
these intervals depends on parameterα. A subsetIk

ij(α)
can be represented by a unique interval for a given value
of α, and change into the union of several intervals for
a different value of this parameter.

If it is not empty, the acceptable intervalIk
ij(α) can

be represented by the union ofpk
ij elementary intervals

as follows:

Ik
ij(α) = [y

1(k)
ij , y

2(k)
ij] ∪ . . . ∪ [y

2pk
ij−1(k)

ij , y
2pk

ij(k)

ij] (20)

with 0 ≤ y
1(k)
ij ≤ . . . ≤ y

2pk
ij(k)

ij ≤ cij andpk
ij ∈ IN∗.

Let us denote byEk
ij the set of points corresponding to

the bounds ofIk
ij(α):

Ek
ij = {y

1(k)
ij , y

2(k)
ij , . . . , y

2pk
ij−1(k)

ij , y
2pk

ij(k)

ij } (21)

Remark that fork = 1, E1
ij = {y1

ij , y
2
ij} andp1

ij = 1.

Remind thatzh(k)
ij , 1 ≤ h ≤ hk

ij , are the breakpoints

of Ĉk
ij on [0, cij] determined by procedureFind(y∗(k)

ij).
It is obvious that for a givenh ∈ {1, . . . , hk

ij − 1},

if we have z
h(k)
ij 6∈ Ik

ij(α) and z
h+1(k)
ij 6∈ Ik

ij(α) (that

is Ĉk
ij(z

h(k)
ij) > Ĉk

ij(x
∗

k) + α and Ĉk
ij(z

h+1(k)
ij) >

Ĉk
ij(x

∗

k) + α), then [z
h(k)
ij , z

h+1(k)
ij] ∩ Ik

ij(α) = ∅.

Similarly, if z
h(k)
ij ∈ Ik

ij(α) and z
h+1(k)
ij ∈ Ik

ij(α), then

[z
h(k)
ij , z

h+1(k)
ij] ⊂ Ik

ij(α) (see figure 4). On the other
hand, if one of them belongs toIk

ij(α) and not the

other, then only a part of the interval[z
h(k)
ij , z

h+1(k)
ij] is

included inIk
ij(α). Therefore, we just have to enumerate

the pointszh(k)
ij in a non-decreasing order forh varying

from 1 tohk
ij in order to determine the parts of intervals

[z
h(k)
ij , z

h+1(k)
ij] which belong toIk

ij(α) and afterwards
deduce the setEk

ij .

Fig. 4. Illustration of procedureFind(Ik

ij) whenk = 2

A detailed procedure, Find(Ik
ij), is presented

in appendix II. Since we go over all points
z

h(k)
ij , 1 ≤ h ≤ hk

ij , the complexity of procedure
Find(Ik

ij) is O(hk
ij), so O(q4/3) (see proof of lemma 1

in appendix III).

Lemma 3:Given x∗

k, finding the setIk(α) which is
the union ofIk

ij(α) overE requiresO(nq4/3) elementary
operations.

4) Determination of the acceptable subsetsAk
ij(α):

We haveA1
ij(α) = I1

ij(α). For k ≥ 2,

Ak
ij(α) = Ak−1

ij (α) ∩ Ik
ij(α) (22)

Ak
ij(α) is then the union ofrk

ij subintervals of[0, cij]:

Ak
ij(α) = [a

1(k)
ij , a

2(k)
ij] ∪ . . . ∪ [a

2rk
ij−1(k)

ij , a
2rk

ij(k)

ij] (23)

208 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

with 0 ≤ a
1(k)
ij ≤ . . . ≤ a

2rk
ij(k)

ij ≤ cij andrk
ij ∈ IN∗.

Let us denote byBk
ij the set of points corresponding to

the bounds ofAk
ij(α):

Bk
ij = {a

1(k)
ij , a

2(k)
ij , . . . , a

2rk
ij−1(k)

ij , a
2rk

ij(k)

ij } (24)

For k = 1, B1
ij = {a1

ij , a
2
ij} = {y1

ij , y
2
ij} andr1

ij = 1.
GivenBk−1

ij (bounds ofAk−1
ij (α)) andEk

ij (bounds of
Ik
ij(α)), thenBk

ij ⊂ (Bk−1
ij ∪Ek

ij). Consequently, to find
the bounds ofAk

ij(α), we have to look for them among
those ofAk−1

ij (α) and Ik
ij(α). The figure 5 shows how

to find the setBk
ij (see appendix II for the detailed

procedure).

Fig. 5. Illustration of procedureFind(Ak

ij) whenk = 2

Lemma 4:The complexity of procedureFind(Ak
ij) is

O(q3).

Proof: see appendix III.

5) Complexity of lexicographicα-robust segments of
the tree:

Theorem 1:Lexicographic α-robust 1-median on a
tree can be solved inO(nq4) time.

Proof: Theorem 1 follows immediately from lemmas
2, 3 and 4. Indeed, the largest number of elementary
operations needed is due to the determination of sets
Ak(α) for all k ≤ q. ¤

C. Example

Consider the treeT of figure 6 where values on
edges represent lengths. Uncertainty on node weights is
modelled by four scenarios as shown in table II (v∗s is
the median under scenarios, s ∈ {S1, S2, S3, S4}).

The minmax medianx∗ of the tree is the point of
(v1, v4) at a distance 2.5 from nodev1 and the minmax

Fig. 6. Example

TABLE II

Weight scenarios

weights S1 S2 S3 S4

v1 1 1 1 1

v2 1 10 1 1

v3 1 1 10 1

v4 1 1 1 1

v5 1 1 1 10

v6 1 1 1 1

v7 1 1 1 1

v∗

s
v1 v2 v3 v5

cost is 197. We present in figure 7 the cost functions on
edge (v1, v4) (Cj

14 denotes the cost function on interval
[0, 7] under scenarioj). The points which minimize costs
Ĉk, k = 1, . . . , 4, are x∗

1 = x∗, x∗

2 the point of edge
(v1, v3) at a distance 2.5 from nodev1, x∗

3 = v3 and
x∗

4 = v1. If we choose a thresholdα = 45, the first
iteration of algorithmα-LEXROB(1MT)gives the set:

A1(45) = {x ∈ T : Ĉ1(x) − 197 ≤ 45} (25)

represented by bold segments in figure 8.
After four iterations, we get the setA(45) of lexico-

graphic α-robust solutions of the tree.A(45) is repre-
sented by the union of three segments (v1, v

′

2), (v1, v
′

3)
and (v1, v

′

4) wherev′2 is the point of edge (v1, v2) at a
distance 1.78 from nodev1, v′3 the point of edge (v1, v3)
at a distance 1 from nodev1 and v′4 the point of edge
(v1, v4) at a distance 0.83 from nodev1 (see figure 9).
Remark thatx∗, the minmax robust solution, is outside
the lexicographicα-robust set. Indeed, it performs well
for the maximal cost function, but not well enough for
Ĉ2, Ĉ3 and Ĉ4, compared with nodev1 for example.

The minimum value of parameterα which guaran-
tees the existence of lexicographicα-robust solutions

Rim KALA Ï et al. 209

Fig. 7. Cost functions on edge (v1, v4)

Fig. 8. SetA1(45)

is αmin = 35, that is α < 35 ⇒ A(α) = ∅ and
α ≥ 35 ⇒ A(α) 6= ∅.

Fig. 9. Minmax robust solution (x∗) and lexicographicα-robust
solutions of the tree forα = 45

V. CONCLUSION AND PERSPECTIVES

In this paper, we introduced a new robustness ap-
proach, calledlexicographicα-robustness, suitable for
the scenario-based uncertainty. Compared with minmax
criteria, this approach has three main advantages. First, it
takes into account several measures, that is to say costs.
Second, it offers some tolerance since it includes an
indifference thresholdα. Finally, it keeps the importance
of the largest cost. We presented a simple algorithm

for the determination of lexicographicα-robust solutions
when the set of solutions is finite. We also studied a
special problem in the case of an infinite set of solutions,
the 1-median location problem on a tree graph and we
presented a polynomial algorithm for this problem.

It is obvious that lexicographicα-robustness adds
some more complexity to minmax versions of a problem,
that is why it is reasonable to apply this approach only
to problems which remain polynomially solvable under
minmax criteria. In facility location context, theminmax
1-centerproblem on a tree ([3], [6]) and theminmax
1-median problem on a general network ([4]) are
shown to remain polynomially solvable in the case
of interval uncertainty on weights. We recall that the
1-centerproblem is to locate a facility on a graph such
that it minimizes the maximal distance between the
facility and different nodes. We consider the application
of lexicographicα-robustness to these problems to be
an avenue for future research.

ACKNOWLEDGEMENTS

This research was partially funded by the cooperation
agreement CNRS/CGRI-FNRS no 18 227.

APPENDIX I

Algorithm α-LEXROB
Input: Ĉ(x) for all x ∈ X andα.
Output: A(α).
Begin

A0 ← X;
k ← 1;

while (k ≤ q andAk−1 6= ∅) do
x∗

k ← arg min
x∈X

Ĉk(x);

Ak ← ∅;
for all x ∈ Ak−1 do

if Ĉk(x)− Ĉk(x∗

k) ≤ α then Ak ← Ak ∪{x};
k ← k + 1;

A(α) ← Ak−1;
End.

The condition Ak−1 6= ∅ is used for stopping the
algorithm if Ak−1(α) is empty, since ifAk−1(α) = ∅

then for all l ≥ k, Al(α) = ∅.

210 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

APPENDIX II

Procedure Find(y∗(k)
ij)

Input: λs
ij andµs

ij for all s ∈ S,

Output: y
∗(k)
ij , Ĉk

ij(y
∗(k)
ij), hk

ij , z
h(k)
ij and s

h(k)
ij for h ∈

{1, . . . , hk
ij}.

Begin
z
1(k)
ij ← 0;

h ← 1;
repeat

1) Compute costŝC1
ij(z

h(k)
ij) to Ĉk

ij(z
h(k)
ij);

2) Find set of scenariosSk(z
h(k)
ij) such that:

Sk(z
h(k)
ij) = {s ∈ S; λs

ij + µs
ijz

h(k)
ij = Ĉk

ij(z
h(k)
ij)};

3) Let d be the first index such that:
Ĉk−d

ij (z
h(k)
ij) 6= Ĉk

ij(z
h(k)
ij);

4) Let s
h(k)
ij be the scenario ofSk(z

h(k)
ij) with the

dth largest slope (slope =µs
ij);

5) Compute the intersection points of segment

{λ
s

h(k)

ij

ij + µ
s

h(k)

ij

ij z, z ∈]z
h(k)
ij , cij]} with all lines

corresponding to other scenarios;

6) The pointzh+1(k)
ij is the nearest intersection

point from z
h(k)
ij :

z
h+1(k)
ij ← min{cij ;

min
s∈S\{s

h(k)

ij }

{zs =
λ

s
h(k)

ij

ij −λs
ij

µs
ij−µ

s
h(k)

ij

ij

; zs ∈]z
h(k)
ij , cij]}};

7) h ← h + 1;

until z
h(k)
ij = cij ;

hk
ij ← h;

y
∗(k)
ij ← z

t(k)
ij wheret ← arg min

1≤h≤hk
ij

{Ĉk
ij(z

h(k)
ij)};

End.

Step 1 computes thek largest costs of the current
breakpoint z

h(k)
ij . Steps 2, 3 and 4 are used for

determining the line that must be chosen from those
(two or more) available in order to determine the
scenario which giveŝCk (see figure 3). Steps 5 and 6
are used to determine the adjacent breakpointz

h+1(k)
ij .

Procedure Find(Ik
ij)

Input: Ĉk(x∗

k), α, Ĉk(y
∗(k)
ij), hk

ij , z
h(k)
ij , s

h(k)
ij and

Ĉk
ij(z

h(k)
ij) for h ∈ {1, . . . , hk

ij}.
Output: Ek

ij , pk
ij .

Begin
if Ĉk

ij(y
∗(k)
ij) > Ĉk(x∗

k) + α then Ek
ij ← ∅;

else
Ek

ij ← ∅;
p ← 0;
if Ĉk

ij(z
1(k)
ij) ≤ Ĉk(x∗

k) + α then

Ek
ij ← Ek

ij ∪ {z
1(k)
ij };

p ← p + 1;
if Ĉk

ij(z
hk

ij(k)

ij) ≤ Ĉk(x∗

k) + α then

Ek
ij ← Ek

ij ∪ {z
hk

ij(k)

ij };
p ← p + 1;

for h = 1 to hk
ij − 1 do

if Ĉk
ij(z

h(k)
ij) > Ĉk(x∗

k) + α then

if Ĉk
ij(z

h+1(k)
ij) ≤ Ĉk(x∗

k) + α then

y ←
Ĉk(x∗

k)+α−B
s

h(k)

ij

ij

A
s

h(k)

ij

ij

;

Ek
ij ← Ek

ij ∪ {y};
p ← p + 1;

else
if Ĉk

ij(z
h+1(k)
ij) > Ĉk(x∗

k) + α then

y ←
Ĉk(x∗

k)+α−B
s

h(k)

ij

ij

A
s

h(k)

ij

ij

;

Ek
ij ← Ek

ij ∪ {y};
p ← p + 1;

pk
ij ← p/2;

End.

Rim KALA Ï et al. 211

Procedure Find(Ak
ij)

Input: rk−1
ij , pk

ij , a
t(k−1)
ij for t ∈ {1, . . . , 2rk−1

ij } and

y
l(k)
ij for l ∈ {1, . . . , 2pk

ij}.
Output: Bk

ij , rk
ij .

Begin
Bk

ij ← ∅;
r ← 0;
for t = 1 to rk−1

ij do
for l = 1 to pk

ij do

if y
2l−1(k)
ij ≥ a

2t−1(k−1)
ij then

if y
2l−1(k)
ij ≤ a

2t(k−1)
ij then

Bk
ij ← Bk

ij ∪ {y
2l−1(k)
ij };

r ← r + 1;
if y

2l(k)
ij ≤ a

2t(k−1)
ij then

Bk
ij ← Bk

ij ∪ {y
2l(k)
ij };

r ← r + 1;
else

Bk
ij ← Bk

ij ∪ {a
2t(k−1)
ij };

r ← r + 1;
else

if y
2l(k)
ij ≥ a

2t−1(k−1)
ij then

Bk
ij ← Bk

ij ∪ {a
2t−1(k)
ij };

r ← r + 1;
if y

2l(k)
ij ≤ a

2t(k−1)
ij then

Bk
ij ← Bk

ij ∪ {y
2l(k)
ij };

r ← r + 1;
else

Bk
ij ← Bk

ij ∪ {a
2t(k−1)
ij };

r ← r + 1;
rk
ij ← r/2;

End.

APPENDIX III

Proof of lemma 1: For a given edge(vi, vj), a
given orderk (k ∈ {1, . . . , q}) and a given iterationh
(h ∈ {1, . . . , hk

ij}), step 1 requires a sorting in a set ofq

elements (Cs
ij(z

h(k)
ij), s ∈ S), therefore it can be solved

in O(q log q) time. Steps 2, 5 and 6 can be solved in
O(q) time, whereas steps 3 and 4 have a complexity
of O(k). Consequently, for a given edge(vi, vj) and a
given orderk, procedureFind(y∗(k)

ij) can be computed in
O((hk

ij − 1)q log q) sincek ≤ q andh ≤ hk
ij .

Moreover, based on Dey’s theorem ([1], [10]), the
number of segments of̂Ck

ij is O(q(q−k)1/3). So we can
write O(hk

ij) = O(q(q−k)1/3) = O(q4/3) for all k ≤ q.

The point y
∗(k)
ij is the one of edge(vi, vj) with the

lowest costĈk
ij among allzh(k)

ij found by the procedure

Find(y∗(k)
ij). Thus, it can be found inO(q7/3 log q) time.

¤

Proof of lemma 4:Given an edge(vi, vj) and an order
k, solving procedureFind(Ak

ij) requires O(rk−1
ij .pk

ij)

elementary operations.pk
ij is the number of subintervals

of [0, cij] given by the intersection of a straight line
(D = Ĉk(x∗

k) + α) with at mostq lines and possibly
the linesyij = 0 andyij = cij . Therefore,pk

ij ≤
q+2
2 .

On the other hand,Bk
ij ⊂ (Ek

ij ∪ Bk−1
ij) implies that:

rk
ij ≤ pk

ij+rk−1
ij ≤

q + 2

2
+rk−1

ij ≤ . . . ≤ (k−1)(
q + 2

2
)+r1

ij

As r1
ij = 1 andk ≤ q, we getrk

ij ≤ q(q+2
2) + 1, for all

k ∈ {1, . . . , q}.
Consequently,rk−1

ij .pk
ij ≤ (q(q+2

2) + 1). q+2
2 , so

O(rk−1
ij .pk

ij) = O(q3). ¤

REFERENCES

[1] AGARWAL P.K. and SHARIR M., “Arrangements and their
applications,” inHandbook of Computational Geometry, SACK

J.-R. and URRUTIA J., Eds. Elsevier Sciences, 2000, pp. 49–
120.

[2] AVERBAKH I., “Complexity of robust single facility location
problems on networks with uncertain edge length,”Discrete
Applied Mathematics, vol. 127, pp. 505–522, 2003.

[3] AVERBAKH I. and BERMAN O., “Algorithms for the robust 1-
center problem on a tree,”European Journal of Operational
Research, vol. 123, pp. 292–302, 2000.

[4] ——, “Minmax regret median location on a network under
uncertainty,”INFORMS Journal on Computing, vol. 12, no. 2,
pp. 104–110, 2000.

[5] ——, “An improved algorithm for the minmax regret median
problem on a tree,”Networks, vol. 41, no. 2, pp. 97–103, 2003.

[6] BURKARD R.E. and DOLLANI H., “Robust location problems
with pos/neg weights on a tree,”Networks, vol. 38, pp. 102–
113, 2001.

[7] CHEN B. and LIN C.S., “Min-max regret robust 1-median
location on a tree,”Networks, vol. 31, pp. 93–103, 1998.

[8] DASKIN M.S., Network and Discrete Location: Models, Algo-
rithms and Applications. Wiley, 1995.

[9] DASKIN M.S., HESSE S.M., and REVELLE C.S., “α-reliable
p-minimax regret: a new model for strategic facility location
modeling,”Location Science, vol. 5, no. 4, pp. 227–246, 1997.

[10] DEY T.K., “Improved bounds on planar k-sets and related
problems,”Discrete Computational Geometry, vol. 19, no. 3,
pp. 373–382, 1998.

[11] GRABISCH M. and PERNY P., “Agrégation multicrit̀ere,” in
Logique Floue, principes, aidèa la décision, BOUCHON-
MEUNIER B. and MARSALA C., Eds. Hermes-Lavoisier, 2003,
pp. 81–120.

[12] HAKIMI S.L., “Optimum locations of switching centers and the
absolute centers and medians of a graph,”Operations Research,
vol. 12, pp. 450–459, 1964.

212 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

[13] KOUVELIS P., KURAWARWALA A.A., and GUTIRREZ G.J., “Al-
gorithms for robust single and multiple period layout planning
for manufacturing systems,”European Journal of Operational
Research, vol. 63, no. 2, pp. 287–303, 1992.

[14] KOUVELIS P. and YU G., Robust Discrete Optimization and its
Applications, ser. Non Convex Optimization and Its Applica-
tions. Kluwer Academic Publishers, 1997.

[15] MOULIN H., “Social welfare orderings,” inAxioms of cooper-
ative decision making. Cambridge University Press, 1988, pp.
30–60.

[16] OGRYCZAK W., “On the lexicographic minimax approach to
location problems,”European Journal of Operational Research,
vol. 100, pp. 566–585, 1997.

[17] PIRLOT M. and VINCKE P., Semiorders: Properties, Represen-
tations, Applications. Kluwer Academic Publishers, 1997.

[18] ROSENHEAD J., ELTON M., and GUPTA S.K., “Robustness
and optimality criteria for strategic decisions,”Operational
Research Quaterly, vol. 23, no. 4, pp. 413–423, 1972.

[19] ROY B., “A missing link in OR-DA : robustness analysis,”
Foundations of computing and decision sciences, vol. 23, no. 3,
pp. 141–160, 1998.

[20] ROY B. and VINCKE Ph., “Relational systems of preference
with one or more pseudo-criteria: some new concepts and
results,”Management Science, vol. 30, no. 11, pp. 1323–1335,
1984.

[21] SNYDER L.V. and DASKIN M.S., “Stochastic p-robust location
problems,” Lehigh University, Dept. of ISE, Technical report
04T-014, July 2004.

[22] VAIRAKTARAKIS G.L. and KOUVELIS P., “Incorporation dy-
namic aspects and uncertainty in 1-median location problems,”
Naval Research Logistics, vol. 46, pp. 147–168, 1999.

[23] V INCKE P., “Robust solutions and methods in decision-aid,”
Journal of Multi-criteria Decision Analysis, vol. 8, pp. 181–
187, 1999.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 213

Models and Software for Improving the Profitability
of Pharmaceutical Research

Jiun-Yu Yu∗ and John Gittins†
Department of Statistics, University of Oxford

1 South Parks Road, Oxford, UK
Email: ∗yu@stats.ox.ac.uk ,†gittins@stats.ox.ac.uk

Abstract— The pharmaceutical industry is highly com-
petitive, and the discovery and development of new drugs
is extremely expensive and time consuming. This paper is
a contribution to the task of improving the effectiveness
of pre-clinical research. Our model investigates for any
given project the number of lead series which should if
necessary be optimised in the search for a development
compound which is sufficiently promising to proceed to
clinical trials. The numbers of scientists which should
be allocated to each research stage are also investigated.
Two widely-applied profitability criteria are considered.
Computer software designed to implement the optimisation
calculations is developed and shown to produce reasonable
results.

Keywords— optimisation, pharmaceutical research, re-
source allocation.

I. I NTRODUCTION

PHARMACEUTICAL companies require great
patience and enormous capital. It typically takes

12 to 15 years to successfully complete the research
and development (R&D) process of a new drug,
with probability of success less than20%, while the
combined cost of R&D and market introduction for a
significant product today exceeds£ 700 million. (Chen,
[7]) As a result, bringing research projects to an early
successful conclusion gives an important competitive
advantage.

There is a substantial literature, some of it specific
to the pharmaceutical industry, on criteria for project
selection and resource allocation in R&D. These
range from simple check-lists to sophisticated
pharmacoeconomic analysis. The journalsR&D
ManagementandPharmacoeconomicsare good general
sources, see for example the review papers by Miller
[18] and Poh et al. [20]. The earlier literature is
reviewed by Bergman and Gittins [1].

The model discussed in this paper is a stochastic

economic model. There are three important themes with
a bearing on models of this type, as follows.

• The methodology of decision analysis. This has
been around since the 1960s. Key ingredients are
personal probabilities, utility functions, sequential
decisions expressed as a decision tree, and solution
by a dynamic programming algorithm. McNamee
and Celona have written a useful handbook [16],
and Lindley [14] gives a good introduction to the
main ideas.

• Real options. Black and Scholes [2] provided a
methodology for valuing financial options. Others,
notably Dixit and Pindyck [9], have pointed out that
a similar analysis is possible for options to invest
in specific projects.

• Pharmacoeconomics. This is the science of relating
the costs and benefits, both to individuals and to
society, of therapeutic regimes, including drugs.
Analysis along these lines is becoming routine in
the planning of clinical trials. The journalPharma-
coeconomicsstarted in 1983.

The insight from financial options theory that the
ability to postpone, and possibly eventually not take
up, an investment opportunity can strongly influence its
value has been important, see for example Burman and
Senn [6], Chen [7], and Perlitzet al. [19]. However,
the match between financial and real options is far
from exact, and current economic approaches to
pharmaceutical project planning tend to owe more to
decision analysis than to real options theory. The papers
by Stonebraker [22], Ding and Eliashberg [8], and Loch
and Bode-Greuel [15] are good examples.

All these papers focus at least as much on
development as on pre-clinical research, and so
far as the authors are aware we have modelled the
pre-clinical stages of research, in discussion with people
working in the industry, in a much more detailed
fashion than is to be found elsewhere. This is borne

214 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

out by the comment in [18] that there is currently very
little pharmacoeconomic planning in the early stages
of research. Isleiet al. [13] have written an important
paper describing a planning system for those early
stages. However it does not include an economic model.
Further refinements of our model are in preparation.

II. A IMS

Until the mid 1990s most pharmaceutical research
projects proceeded in the following sequence.
Bioscientists work out an hypothesis for the way in
which a chemical intervention in the body’s processes
might achieve the desired result. Then bioscientists and
chemists devise tests using animal tissue or live animals
in order to screen compounds for relevant activity.
Afterwards, chemists synthesise compounds designed
in the hope of finding relevant activity. These are then
subject to one or more screening tests. Compounds
which were not synthesised for this specific purpose
may also be screened. In recent years the initial screen
has almost always been a high throughput robotic screen
on tens of thousands of library compounds.

When a compound with a sufficiently high level of
activity has been found, other compounds with similar
chemical structures are synthesised and tested. The orig-
inal active compound is termed a ”lead compound”. The
subsequent testing of similar compounds is known as
”optimising the lead”. From those results which achieve
promising results on the screening tests, which include
tests for toxicity, a small number are selected, usually
one at a time, for tests in man. The clinical trials are
often referred to as the ”development” phase of a project,
and consequently a compound that goes on to clinical
trials is called a ”development compound”. At most 20%
of development compounds emerge from clinical trials
as marketable drugs, so typically more compounds are
screened while a compound is undergoing clinical trials,
in order that one or more ”backup compounds” may in
turn be selected from them for development. In summary,
the research process, excluding clinical trials, may be
divided into four stages:

1) Before screening
2) Finding the first lead series
3) Optimising the first lead series to find the first

development compound
4) Looking for a backup compound
Further information on this general setting is given by

Bergman and Gittins [1], Boschi [3], Chen [7], Gittins
[10], [12], and Spilker [21].

The probability of successful completion of each
stage in a research project is denoted aspi (1−pi = qi),
where i = 1, 2, 3, 4. Based on these probabilities, the
chances of successful completion of stages 1, 2, and
3, arep1, p1p2, and p1p2p3, respectively. In the fourth
stage, we look for a number of backup development
compounds once the first development compound
has been discovered. We assume that each backup
compound can be found with no possibility of failing.
Thus,p4 is set at1.0 in the model.

Gittins [11], [12] sets up a stochastic model based
on these typical phases to investigate the relationships
between the profitability and the number of scientists
allocated to the different stages of a research project.
An important general conclusion is that larger project
teams than typical current team-sizes would be more
profitable in some cases.

Note that the aforementioned research stages are not
guaranteed to succeed; each stage has a probability of
failure. To maximise the profitability and increase the
probability of success of a research project, usually
insurance or buffer lead series are identified, in case
the first attempt at stage 3 fails. However, so far there
has been no attempt to model this feature. One of the
objectives of this paper is to study the relationships
between profitability, the number of lead series to be
identified, and the numbers of scientists allocated to
each stage of a research project.

In this model, we have to decide the value ofm,
the maximum number of lead series from which we
will try to find the first development compound. In
cases where two or more lead series are required, if
the first lead series is found at the end of stage 2,
two tasks will proceed simultaneously: some scientists
repeat stage 2 while others work on stage 3. This
dual-task implementation will be repeated until the first
development compound is found orm lead series are
identified. The expected reward and the expected cost
of a research project both increase asm increases. The
value of m should be chosen so as to maximise the
profitability of the research project.

In practice, to increase the profitability and the
probability of success of a research project, usually
two (or more) development compounds are found from
different lead series. If we aim to find two development
compounds from different lead series, we have to decide
the maximum number of attempts we are prepared
to make to find a development compound from a

Jiun-Yu Yu and John Gittins 215

second lead series. This maximum number of attempts
is denoted asl, and the determination of its value is
discussed in this paper.

Profitability Index and Internal Rate of Return are the
two decision criteria which we shall employ to evaluate
research projects. These are standard criteria for the
evaluation of capital expenditure, see for example
Brealey and Myers [5]. Computer software has been
developed to find the optimal solutions, including the
optimal numbers of scientists allocated to each stage,
the optimal number of backup compounds found in
stage 4, and the optimal values ofm and l.

III. M ODELLING A RESEARCHPROJECT

A. Measure of Effectiveness

The time needed to complete a particular stage of a
research project is not necessarily inversely proportional
to the number of scientists involved in this stage. As the
team-size gets larger, the difficulties of communication
and coordination will eventually decrease the efficiency
of the team. We define
• e(u) : the effectiveness of a team ofu scientists.
• e(u)/u : relative efficiency of a team ofu scientists.

Note thate(u)/u ≤ 1.

The effectiveness is taken to be of the form

e(u) =
bu2

1 + aur
,

wherea > 0, b > 0, and1 < r < 2. Next we define the
most efficient team size
• uopt : most efficient team size. This is the value of

u wheree(u)/u is maximised, i.e.,

e(uopt)
uopt

= 1.

According to the definition of Gittins [10], the project
team is of the most efficient size when the rate of
progress per scientist is greatest. Supposeui scientists
are allocated in stagei, (i = 1, 2, 3, 4), Xi is the effort
needed to complete stagei of the research project, and
is measured inscientist-years. Thus,ti, the time needed
to complete stagei with ui scientists, is given by the
equationti = Xi

e(ui)
.

DBEFF is the relative efficiency of a team in which
the team-size is doubleuopt, i.e.,DBEFF = e(2uopt)

2uopt
. A

numerical algorithm is called to calculate the values of
a, b, andr for given values ofuopt andDBEFF. Figure 1
shows some examples of functions defined in this way.

B. Discount Rate and Obsolescence Effect

Since the value of a sum of future money is lower than
that of the same sum of money available immediately,
the discount factor,γ, will be applied to calculate the
expected present value of future expenditure.

• γ : discount rate in real terms

Thus, the present value of£eγt after t years is£1.

In most cases the cash benefits resulting from the
sales of a drug will themselves become lower if its
launch time is delayed, due to the general tendency for
better drugs to be available from competitors as time
goes by. This effect is defined asobsolescence, which
means that the exponential discount rate for future
rewards of the research project,γ1, is higher thanγ, the
discount rate applied to future costs. Letξ∆t denote
the probability of a competitor sending a development
compound for clinical trials in a short interval of
time ∆t, and f be the expected fraction by which a
competitor’s earlier development compound reduces the
value of a development compound. Gittins defines the
exponential rate for discounting future rewardsγ1 as
the sum of the rate for discounting future costs and the
rate due to obsolescence, namely,γ + fξ.

In addition, when competitors learn of progress in our
research project, there may well be an increase both in
the competitive research, hence an increase inξ, and
in the similarities between the compounds screened by
competitors and those screened in the project, resulting
in an increase inf . To model this effect of additional
self-induced obsolescence, a second discount rate,γ2, is
introduced. LetT be the period from the start of our
screening process to the time when competitors become
aware of our project, provided no compound has been
submitted for clinical trials so far. Future rewards are
discounted at the rateγ1 up to the timeT , or until the
first development compound is sent for clinical trial, if
this is earlier, and from then on at the rateγ2. As a result,

• γ1 : discount rate for the future income of a devel-
opment compound in real terms,excludingany self-
induced obsolescence. Note thatγ1 = γ + fξ > γ.

• γ2 : asγ1, but includesself-induced obsolescence.
From the discussion above,γ2 > γ1.

C. Search for the First Development Compound

In the simplest model, only one lead series is
identified if stage 2 is successfully completed, and
this lead series is optimised directly to find the first

216 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Fig. 1. Team-size effectiveness function for variousDBEFF values.

development compound. If this attempt fails, then the
research project is terminated without any financial
return. In practice, to increase the probability of success
and the future profitability of the project, it is normal
to identify more than one lead series from which to
look for development compounds. Let us first consider
the case in which we are not only interested in finding
one lead series from which we can find development
compounds, but also prepared to look at more than one
series in our search for the first development compound.
This leads to two important questions: how many lead
series should we be prepared to investigate, and how
many scientists should be allocated to find these lead
series?

When more than one lead series are required, scientists
may be divided into two groups; the majority of them
work on stage 3, the optimisation process looking for
a development compound, while the minority repeat
stage 2 to find additional ”insurance” or ”buffer” lead
series. These two tasks proceed simultaneously. We
shall make two assumptions about this repeated stage
2, which we shall call stage2b. First, the effortX2b

needed to find an additional lead series is less than
that required to find the first one, which we shall write

X2a. Second, the probability of success in finding an
additional lead series is1.0. Thus we will definitely
find more ”insurance” or ”buffer” lead series once the
first one has been found, provided that sufficient effort
has been put in. The second assumption is obviously an
oversimplification, but it is a reasonable approximation
to reality.

We introduce a new decision variable,m, defined

• m : maximum number of lead series from which
we will try to find the first development compound.

Figure 2 is an event tree showing the possible
consequences of different values ofm.

Settingm = 1 is the simplest policy, in which only
one lead series would be optimised once it has been
found, and no further investigation would be carried
out to find additional lead series. If our attempt to find
a development compound in this lead series succeeds,
we then invest our time and effort in stage 4, in which
we identify k backup compounds. If this attempt is a
failure, the whole research project is terminated and
there is no financial return.

Whenm = 2, we search for at most two lead series;

Jiun-Yu Yu and John Gittins 217

1

m = 1 1st DC from 1st LS, p3

Failed, q3

Stage 4, k backups

X

X X

O
t2

p2

q1 q2

t1

p1

m = 2

m = 3

1st DC from 1st LS, p3

1st DC from 1st LS, p3

1st attempt failed, q3

1st attempt failed, q3

2nd attempt failed, q3

2nd attempt failed,

q3

3rd attempt failed, q3

Stage 4, k backups

Stage 4, k backups

Stage 4, k backups

Stage 4, k backups

1st DC from 2nd LS,
p3

1st DC from 2nd LS,

p3

1st DC from 3rd LS,

p3

k

X

X

O

O

O

O

Om = 4

DC : Development Compound,LS : Lead Series
O : Project proceeds to clinical trials,X : Project terminates

Fig. 2. Event tree for variousm, the maximum number of attempts to find the first development compound.

consequently we have at most two chances to carry out
stage 3 to find the first development compound. After
the first lead series is obtained, the lead optimisation
process to find a development compound and repetition
of stage 2 occur at the same time. The number of
scientists allocated to the repeated stage 2, which we
call stage2b, is expressed asu2b. If the first lead series
is successfully optimised and thus the first development
compound is found, our investigation on the second
lead series will be suspended. If on the other hand
the first lead series does not produce a development
compound, the second lead series will be the focus
of our second attempt to find the first development
compound. To ensure that the second lead series is
available by the time we recognize the failure of our
first optimisation attempt,u2b is allocated so that
the time needed to finish stage2b, t2b, is no greater
than t3 : X3

e(u3)
= t3 ≥ t2b = X2b

e(u2b)
. For the sake

of simplicity, in the optimisation calculations, we set
t3 = t2b, so thatu2b can be expressed as a function of
u3: u2b = e−1

(
e(u3) · X2b

X3

)
.

Since our maximum number of attempts to find the
first development compound (m) is set at 2, no scientist
is allocated to carry out stage2b when we are looking
for a development compound in the second lead series.
If this second attempt turns out to be unsuccessful, the
project is terminated. Thus, increasingm from 1 to 2
means that we have one more chance for lead series
optimisation, and the probability of success for finding
the first development compound increases fromp3 to
p3 + q3p3.

When m ≥ 3, stage2b will be implemented up to
m − 1 times. As mentioned in the previous discussion,
once the lead optimisation attempt succeeds, we will go
into stage 4 directly and suspend any further effort to
find additional lead series.

Note that we are making the following assumptions.
First, the effort needed for finding an additional lead
series,X2b, is assumed to remain identical for all other
following lead series. In addition, the effort required for
lead series optimisation,X3, is also assumed to remain
unchanged if the process has to be carried out more
than once. Third, the number of backup compounds
to be looked for in stage 4,k, is constrained, for the
sake of simplicity, to be independent of the number of
times stage 3 has been carried out in finding the first
development compound.

D. Search for a Development Compound from a Differ-
ent Lead Series

To increase the profitability and the probability of
success of a research project, usually two (or more) dif-
ferent development compounds are found from different
lead series in practice. When two different development
compounds have been found from two different lead
series, we shall assume that the two series are used
alternately to produce backup compounds. If we are
interested in finding development compounds from two
different lead series, we have to decide the maximum
number of attempts we are prepared to make to find the

218 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

second development compound. The variablel is defined
as follows:

• l : maximum number of attempts we are prepared
to make to find a development compound from a
lead series different from the one that produced the
first development compound.

l, as well asm, takes only integer values. Normally,
the value ofl will not be greater than that ofm, because
usually we are not willing to make more attempts to
find the second development compound than to find the
first one. Settingl = 0 means no attempt will be made to
search for a second development compound, as discussed
in the previous section. Whenm = 1, since we assume
that only one lead series is identified to carry out the
optimisation process and no scientist is allocated to look
for another lead series, the value ofl can only be 0. For
m ≥ 2, we consider only values ofl ≤ 2. This is because
in practice usually no more than two attempts would
be made to optimise other lead series. In the following
discussions,(m, l) will be used to denote the chosen
values ofm and l.

E. (m, l) = (m, 1), m ≥ 2

To illustrate the possible consequences for
(m, l) = (m, 1), m ≥ 2, we first discuss the event tree
for m = 2. If stage 3 is successful for one lead series,
as shown asCase(1.1)in Figure 3, we then have the
first development compound and a second lead series
to be optimised at hand. Sincel > 0, some scientists
will be allocated to optimise the second lead series,
while other scientists will be searching for backup
compounds using the first development compound as
the first seed. The probability of success for the second
lead series optimisation is stillp3, and the number of
scientists allocated to such work is denoted asu3b. If
this optimisation process for the second lead series
succeeds by the time when the first backup compound
is obtained, the second backup compound will be taken
from the second lead series. Further backup compounds
will be taken alternately from these two lead series,
and the total number of backup compounds isk1.
This is Case(1.1a)in Figure 3. On the other hand, if
the second lead series fails to produce a development
compound, all backup compounds will be taken from
the single successfully optimised lead series, with no
further attempt to optimise an additional lead series,
sincel = 1. This isCase(1.1b)in figure 3, and the total
number of backup compounds taken in this case isk2.

If stage 3 is a failure for the first lead series, as
at Node 3 in the left-hand side of Figure 3, we still

have a second lead series, from which we repeat stage
3 to look for the first development compound. Thus,
the tasks to be carried out at Node 3 are the same as
those at Node 1: optimise the lead series at hand and
search for an additional lead series. If this second stage
3 succeeds, as illustrated asCase(1.2)in Figure 3, we
then have the first development compound and a third
lead series to be optimised.Case(1.2a)and Case(1.2b)
in Figure 3 are similar toCase(1.1a)and Case(1.1b),
respectively, except that in the former two cases stage
3 is carried out twice instead of once and thus there
is an additional time lagt3. On the other hand, if the
second attempt at completion of stage 3 unfortunately
fails, then the research project terminates sincem = 2,
as shown asCase(F)in Figure 3.

Observing in the left-hand side of Figure 3 that
branches stemming from Node 3 are the same as those
from Node 1 whenm = 2, we can analogously ex-
tend the event trees for(m, l) = (m, 1), m = 3,
Furthermore,Case(1.ia)and Case(1.ib), i =2, 3,...,m,
are exactly the same asCase(1.1a)and Case(1.2b),
respectively, after the point where the first development
compound is found. BeforeCase(1.ia) or Case(1.ib)
occurs, stage 3 has failedi− 1 times.

F. (m, l) = (m, 2), m ≥ 2
The left-hand side of Figure 4 demonstrates the

event tree for(m, l) = (m, 2), m = 2, from which the
possible consequences form = 3, ... can be analogously
extended. To ensure that two further lead series are
available for stage 3, the allocation of scientists must
be modified from the point at which stage 3 is first
successfully completed, as compared with the case
where l = 1. This point is Node 2 in the figure. With
the convention that only two tasks may be carried out
at the same time, we would not immediately look for
backup compounds from the first lead series from which
the first development compound was just obtained.
Instead, some scientists make the first attempt to find
a development compound on a second lead series,
while the other scientists focus on finding further
lead series to ensure that the second chance for a
second successful completion of stage 3 is available.
If the first attempt at completion of stage 3 with a
second lead series succeeds, the following series of
backup compounds will use the two productive lead
series, as illustrated asCase(2.1a)in Figure 4, and the
total number of backup compounds to be identified isk1.

If the first attempt on a second lead series fails,
then a second attempt will be made immediately with

Jiun-Yu Yu and John Gittins 219

1

k1

k2

Case (1.1)
p3

Case (F)
q3

q3

Case (1.2)

p3

Case (1.1a)
p3

Case (1.1b)
q3

Case (1.2a)

p3

Case (1.2b)
q3

1 2

3 4

(m, l) = (2, 1)

k1

k2

(m, l) = (2, 1)

Case (1.1a) k1 = 1 k1 = 2 k1 = 3 k1 = 4

(m, l) = (2, 1)

Case (1.1b) k2 = 1 k2 = 2 k2 = 3 k2 = 4

(m, l) = (2, 1)

Case (F) Lead Series

Development Compound

Optimisation failed

Lead Series abandoned

Work undertaken

Work suspended

1 2

1 2

1 2

u3a+ u2b u4+ u3b u4 u4 u4

u3a+ u2b u4+ u3b u4 u4 u4

u3a+ u2b u3a+ u2b

Fig. 3. Event trees and corresponding cases for variousm when (m, l) = (m, 1), m ≥ 2.

the next lead series. If a development compound is
successfully obtained from the second attempt, it will
be used as the second seed for backup compound
searching, which will use these two seeds alternately, as
depicted asCase(2.1b)in Figure 4. The total number of
backup compounds taken in this case isk2. However,
if the second attempt for the a second development
compound searching is also a failure, the following
backup compound searching will be solely based on the
first lead series. This isCase(2.1c)in Figure 4, andk3 is
the total number of backup compounds taken in this case.

If stage 3 is a failure for the first lead series, as at
Node 4 in the left-hand side of Figure 4, we still have
a second lead series, from which we repeat stage 3 to
look for the first development compound. The possible
outcomes facing Node 4 are the same as Node 1, and
Case(2.2a), Case(2.2b), and Case(2.2c)in the figure
are similar toCase(2.1a), Case(2.1b), and Case(2.1c),
respectively, except that in the former three cases stage 3
is carried out twice instead of once and thus there is an
additional time lagt3. On the other hand, if the second
attempt at completion of stage 3 unfortunately fails,
then the research project terminates sincem = 2, as
shown asCase(F)in both Figures 3 and 4. As discussed
in the previous section, event trees for(m, l) = (m, 2),
m = 3, ..., and Case(2.ia), Case(2.ib), and Case(2.ic),
i =2, 3,..., m, for the ith attempt at stage 3 can be
analogously extended.

In both Figures 3 and 4,u3a stands for the number
of scientists allocated to the first attempt at completion
of stage 3, andu3b is used to denote the number
of scientists allocated for optimising the second lead
series. The effort needed for finding an additional lead
series,X2b, is assumed to remain identical for all other
following lead series. The effort required for the lead

series optimisation,X3, is also assumed to remain
unchanged. Furthermore, the optimal number of backup
compounds taken in each case,ki, i = 1, 2 for l = 1,
or i = 1, 2, 3 for l = 2, is assumed to be independent
of the actual number of attempts undertaken to find the
first development compound.

Also note that in both Figures 3 and 4,u3b scientists
are allocated to look for an additional development
compound whileu4 scientists are allocated to carry out
stage 4. This dual-task implementation is similar to the
situation where stage2b and stage 3 are carried out
simultaneously. For the sake of simplicity, we assume
that the result of the search for the additional develop-
ment compound is known by the end of stage 4. Thus,

X4
e(u4)

= t4 = X3
e(u3b)

andu3b = e−1(e(u4) · X3
X4

) .

G. Competition Effect between Development Com-
pounds

The expected values for backup compounds are
usually assumed to be lower than that of the first
compound in a series. There are several reasons. First,
each successive backup compound lags an additional
time t4, and is therefore discounted by an additional
factor e−γ2t4 . Second, the expected market for each
backup compound discovered in this series is reduced
by competition from its predecessors. This competition
effect is modelled by introducing a backup factorθ in
the range (0,1). The expected value of thejth compound
in the series is obtained by multiplying the expected
value of the first compound by the factorθje−jγ2t4 .

When comparing two backup compounds optimised
from two different lead series, the competition effect
requires further modelling. Theθ mentioned in the
previous paragraph is applied to backup compounds from
the same series. A second factorη is used to model

220 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

1

(m, l) = (2, 2)

Case (2.1)
p3

Case (F)
q3

q3

Case (2.2)
p3

Case (2.1a)
p3

Case (2.1b)
p3

Case (2.2a)
p3

1 2

4 5

k3

3

Case (2.1c)

q3

q3

Case (2.2b)
p3

6

Case (2.2c)

q3

q3

k1

k2

k3

k2

k1

(m, l) = (2, 2)

Case (2.1a) k1 = 1 k1 = 2 k1 = 3

(m, l) = (2, 2)

Case (2.1b) k2 = 1 k2 = 2 k2 = 3

1 2 3

1 2 3

(m, l) = (2, 2)

Case (2.1c) k3 = 1 k3 = 2 k3 = 3
1 2 3

u3a+ u2b u3a+ u2b u4 u4 u4

u3a+ u2b u4+ u3b u4 u4u3a+ u2b

u3a+ u2b u4+ u3b u4 u4u3a+ u2b

Fig. 4. Event trees and corresponding cases for variousm when (m, l) = (m, 2), m ≥ 2.

the competition between backup compounds developed
from two different series. LetV (r, s) be the value of the
next compound wherer is the number of predecessor
compounds obtained fromthe sameseries ands is the
number of predecessor compounds obtained fromthe
other series. We have

V (0, 0) = V, V (r, 0) = V θr,

V (0, s) = V ηs, V (r, s) = V θrηs.

Normally, we assume thatθ ≤ η ≤ 1 since the
similarity, and hence the competition, between two
backup compounds from two different series is usually
less than that between two backup compounds from
the same series. Furthermore, the probability of the
second development compound passing successfully
through clinical trials, conditional on failure of the first
development compound, is lower than the probability
that the first development compound is successful.
This is because of the positive correlation between
the properties of different compounds, a feature which
is stronger if the compounds are from the same lead
series. For the extreme case where the two series
are identical, it is obvious thatθ = η, indicating
that V (r, s) = V θr+s. If the two series are totally
independent, thenη = 1, andV (r, s) = V θr.

IV. TOTAL EXPECTEDREWARD, TOTAL EXPECTED

COST, AND OPTIMISATION CALCULATIONS

A. All compounds from the same lead series, i.e.
(m, l) = (m, 0)

To estimate the expected rewards of a pharmaceutical
research project, first we defineV as the expected value
of a development compound available now for clinical
trials. This expected value is based on the distribution

of possible cash flows resulting from a new drug. The
possibility that the compound may not survive the
clinical trials is also taken into account. Recall thatT
is the period from the start of the screening process to
the time that competitors become aware of our work,
assuming no compound has been submitted for clinical
trials so far, and that future rewards are discounted at the
rateγ1 up to the timeT , or until the first development
compound is sent for clinical trial, if this is earlier, and
from then on at the rateγ2.

With a maximum ofm attempts for the lead series
optimisation process, the probability that thejth attempt
takes place isqj−1

3 (q3 = 1 − p3), and the total time
spent until the end of thejth attempt ist2 + j · t3, where
j = 1, . . . , m. If the time T is due during the(j + 1)th

attempt, i.e.,t2 + j · t3 ≤ T < t2 + (j + 1) · t3, the
discount rate with self-induced obsolescence,γ2, should
be applied after timeT , and the sum of the discount
factors back to the beginning of stage 2 for the lastm−j
attempts, starting from the(j + 1)th attempt to themth

one, is

qj
3 e−γ2[t2+(j+1)t3]+(γ2−γ1)T ·

m−j−1∑

i=0

qi
3e
−γ2it3 .

Since the total completion time for the firstj attempts
is less thanT , the sum of the discount factors for these
first j attempts is

∑j−1
i=0 qi

3 e−γ1[t2+(1+i)t3] .

The sum of these two discount series may be written
as

S(j,m) = e−γ1(t2+t3)

(
1− yj

1

1− y1

)

+ e(γ2−γ1)T−γ2[t2+(j+1)t3]qj
3

(
1− ym−j

2

1− y2

)

Jiun-Yu Yu and John Gittins 221

wherey1 = q3e
−γ1t3 , y2 = q3e

−γ2t3 , and

j =

0 if T < t2 + t3
i if t2 + it3 ≤ T < t2 + (i + 1)t3, i = 1, ..., m− 1
m if t2 + mt3 ≤ T

According to the discussion on the competition effect
in the previous section, since all backup compounds
are taken from the same lead series (l = 0), only θ
is applied to calculate their values. Thus, the total
expected reward withk backup compounds includes the
factor:

∑k
i=0(θe

−γ2t4)i.

It follows that the total expected reward of the project
is:

R = V p1p2p3e
−γ1t1S(j, m)

(
1− (θe−γ2t4)k+1

1− θe−γ2t4

)
.

The expect cost of the project is measured in
scientist-years, and the cost of a scientist usually
involves salary, overheads, equipments, accommodation,
and technical and secretarial assistance. With discount
rate γ, the cost in scientist-year of employingu
scientists for t years is

∫ t
0 ue−γsds = u

γ

(
1− e−γt

)
.

As a result, the expected cost for stages 1 and 2 is
u1
γ

(
1− e−γt1

)
+ p1e

−γt1 u2a

γ

(
1− e−γt2

)
.

When a maximum ofm attempts for lead series
optimisation are scheduled, stage3 could be carried
out at mostm times. Considering the probability of
occurrence of thejth attempt,q(j−1)

3 , j = 1, . . . ,m, and
the time required to complete this stage,t3, the expected
cost for stage3 discounted to the beginning of the
project isp1p2e

−γ(t1+t2) u3
γ

(
1− e−γt3

) [
1−(q3e−γt3)m

1−q3e−γt3

]
.

In addition, whenm > 1, stage2b is repeated at
most m − 1 times since the first lead series has been
found. Thus, the total discounted expected cost for stage
2b is p1p2e

−γ(t1+t2) u2b

γ

(
1− e−γt2b

) (
1−(q3e−γt3)m−1

1−q3e−γt3

)
.

Recall that in the previous discussion we suggested that
time spent on stage2b is equal to the time for stage
3. Consequently,t3, instead oft2b, will be used in the
following optimisation calculations.

The total expected cost for a 4-stage research project,
including k repeats of stage4 so that a total ofk + 1
compounds will proceed for clinical trials if the first one
is successfully obtained, is listed below:

C =
u1

γ

(
1− e−γt1

)
+ p1e

−γt1 u2a

γ

(
1− e−γt2

)

+p1p2e
−γ(t1+t2) u3

γ

(
1− e−γt3

) (
1− ym

1− y

)

+p1p2p3e
−γ(t1+t2+t3) u4

γ

(
1− e−γkt4

) (
1− ym

1− y

)

+p1p2e
−γ(t1+t2) u2b

γ

(
1− e−γt3

) (
1− ym−1

1− y

)

wherey = q3e
−γt3 .

B. One Attempt Allowed for Second Lead Series Opti-
misation,(m, l) = (m, 1)

In Case(1.1a)in Figure 3, the first development com-
pound is found at Node 2, from where we start stage
4. After spending timet4 to complete this stage, we
successfully obtained a backup compound taken from the
first development compound and a second development
compound from a different lead series. This is the
first completion of stage 4, making the value ofk1

to be 1. According to the aforementioned competition
effect, the value of the backup compound includes the
factor θe−γ2t4 and the value of the second development
compound includes the factorηe−γ2t4 . Since the second
backup compound will be taken from the second lead
series, its value includes the factorθη2e−2γ2t4 . Further
backup compounds will be taken alternately from the
two lead series. It follows that the sum of the values of
all compounds includes the factor1 + (θ + η)e−γ2t4 +
θη2e−2γ2t4 + θ2η2e−3γ2t4 + · · ·, where the number of
terms depends on the value ofk1 . This sum can be
expressed as1 + ERX, where

ERX =

(θ + η)e−γ2t4 + θη2e−2γ2t4 ·(
1 + θe−γ2t4

) (
1−zkx

2
1−z2

)

if k1 is odd, kx = k1−1
2 , kx = 0, 1,

(θ + η)e−γ2t4 + θη2e−2γ2t4

+θ2η2e−3γ2t4
(
1 + ηe−γ2t4

) (
1−zkx

2
1−z2

)

if k1 is even, kx = k1−2
2 , kx = 0, 1,

with z2 = θηe−2γ2t4 .

In Case(1.1b)in Figure 3, the second lead series
fails to produce a second development compound, and
a total of k2 backup compounds will be taken all from
the same lead series as the first development compound.
Thus, the sum of the values of all these compounds
includes the factor1−(θe−γ2t4)k2+1

1−θe−γ2t4 .

222 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Note that inCase(1.ia)andCase(1.ib), i = 2, 3, ...,m,
the first development compound is not found until our
ith attempt at stage 3. This feature has been included
in the functionS(j, m). Moreover, we realise that from
Node 2 in Figure 3 the probabilities forCase(1.1a)
and Case(1.1b)to happen arep3 and q3, respectively.
Therefore, the total expected value for a research project
when (m, l) = (m, 1), m ≥ 2, can be expressed as:

R = V p1p2p3 e−γ1t1S(j,m) ·{
p3 (1 + ERX) + q3

(
1− (θe−γ2t4)k2+1

1− θe−γ2t4

)}
,

whereS(j, m), j, andERX are as discussed above.

As for the total expected cost, from Figure 3 we
realise that sincel = 1, the number of scientists,u3b,
is allocated only once, during the first stage 4. For
Case(1.1a)andCase(1.1b), the difference between them
is thatk1 backup compounds are taken inCase(1.1a)and
k2 in Case(1.1b). As a consequence, the total expected
cost for a 4-stage research project when(m, l) = (m, 1)
can be expressed as :

C =
u1

γ

(
1− e−γt1

)
+ p1 e−γt1 u2a

γ

(
1− e−γt2

)

+p1p2 e−γ(t1+t2) u3a + u2b

γ

(
1− e−γt3

) (
1− ym

1− y

)

+p1p2p3 e−γ(t1+t2+t3)
(

1− ym

1− y

)
·

[
u3b

γ
w +

u4

γ
(p3 w1 + q3 w2)

]

wherey = q3 e−γt3 , w = 1 − e−γt4 , w1 = 1 − e−k1γt4 ,
andw2 = 1− e−k2γt4 .

C. Two Attempts Allowed for Second Lead Series Opti-
misation,(m, l) = (m, 2)

Based on the analysis similar to the above, the total
expected reward,R, and the total expected cost,C, when
(m, l) = (m, 2), m ≥ 2, can be expressed as :

R = V p1p2p3 e−γ1t1S(j, m) ·{
p3 (1 + ERY) + q3p3

(
1 + e−γ2t3 ERZ

)

+q2
3

[
1 + e−γ2t3 z1

(
1− zk3+1

1

1− z1

)]}
,

where z1 = θe−γ2t4 and ERY and ERZ are listed

below, with z2 = θηe−2γ2t4 :

ERY =

ηe−γ2t3 + θηe−γ2t4

+θη2e−2γ2t4
(
1 + θe−γ2t4

) (
1−z

ky
2

1−z2

)

if k1 is odd, ky = k1−1
2 , ky = 0, 1, ,

ηe−γ2t3 + θηe−γ2t4
(
1 + ηe−γ2t4

) (
1−z

ky
2

1−z2

)

if k1 is even, ky = k1
2 , ky = 0, 1,

ERZ =

(θ + η)e−γ2t4 + θη2e−2γ2t4 ·(
1 + θe−γ2t4

) (
1−zkz

2
1−z2

)

if k2 is odd, kz = k2−1
2 , kz = 0, 1,

(θ + η)e−γ2t4 + θη2e−2γ2t4

+θ2η2e−3γ2t4
(
1 + ηe−γ2t4

) (
1−zkz

2
1−z2

)

if k2 is even, kz = k2−2
2 , kz = 0, 1,

C =
u1

γ

(
1− e−γt1

)
+ p1 e−γt1 u2a

γ

(
1− e−γt2

)

+p1p2 e−γ(t1+t2) u3a + u2b

γ

(
1− e−γt3

)
·

(
1 + p3e

−γt3
) (

1− ym

1− y

)

+p1p2p3 e−γ(t1+t2+t3)
(

1− ym

1− y

)
e−γt3 ·

[
q3

u3b

γ
w +

u4

γ

(
p3w1 + q3p3w2 + q2

3w3

)]
,

wherey = q3 e−γt3 , w = 1 − e−γt4 , w1 = 1 − e−k1γt4 ,
w2 = 1− e−k2γt4 , andw3 = 1− e−k3γt4 .

D. Optimisation Calculations with Profitability Index
Criterion

One of our objectives has been to build a stochas-
tic optimisation model to find the allocation of
(u1, u

†
2, u

†
3, u4,m, l, k†) 1 that maximises the pharma-

ceutical research project’s profitability index, the ratio
of total expected reward and total expected cost:

P (u1, u
†
2, u

†
3, u4,m, l, k†) =

R(u1, u
†
2, u

†
3, u4,m, l, k†)

C(u1, u
†
2, u

†
3, u4,m, l, k†)

.

The profitability index is a widely used criterion
for the evaluation of business activities and research
projects. It represents the expected reward obtained per

1To simplify the notation,u†2 stands foru2a and u2b, u†3 stands
for u3 in the (m, l) = (m, 0) model, and foru3a and u3b in the
(m, l) = (m, 1) and (m, l) = (m, 2) models. Similarly,k† means
k in the (m, l) = (m, 0) model,k1 and k2 in the (m, l) = (m, 1)
model, andk1, k2, andk3 in the (m, l) = (m, 2) model.

Jiun-Yu Yu and John Gittins 223

unit of expected cost.

Since the Newton-Raphson algorithm is employed
to maximise the profitability indexP , its first partial
derivatives with respect to the decision variables are
required. The maximum occurs at a point at which these
first partial derivatives are all equal to zero, so that

∂P

∂x
=

C ∂R
∂x −R∂C

∂x

C2
= 0,

wherex ∈
(
u1, u

†
2, u

†
3, u4, k

†
)
.

E. Optimisation Calculations with Internal Rate of Re-
turn

Let α denote the monetary cost of a scientist-year.
The internal rate of return of a project is defined
to be the discount rateγI that satisfies the equation:
G(γI , u1, u

†
2, u

†
3, u4, m, l, k†) = 0, where

G(γI , u1, u
†
2, u

†
3, u4,m, l, k†)

= R(γI , u1, u
†
2, u

†
3, u4,m, l, k†)

−αC(γI , u1, u
†
2, u

†
3, u4,m, l, k†).

For the internal rate of return criterion, the discount
rates applied to model obsolescence are further broken
down into components as follows:

γ1 = γ + δ

γ2 = γ + δ + ζ.

Here δ = fξ is the rate due to obsolescence, andζ is
the rate due to the additional self-induced obsolescence
effect. It is important to break the discount rates into
these components becauseδ and ζ remain constant
while we adjustγ to look for the internal rate of return
of a research project.

The profitability index ranks research projects
according to the expected net present value generated
per unit of expenditure. In contrast, the internal rate
of return of a research project can be regarded as
the rate of growth of capital within the project. Our
overall objective is to investigate resource allocations
which improve profitability, using these two criteria as
guides. Note that the profitability index and internal
rate of return criteria usually lead to different ’optimal’
allocations.

Since the equationG(γI , u1, u
†
2, u

†
3, u4,m, l, k†) = 0

holds for all values of the parameters, it follows that
∂G
∂γ dγ + ∂G

∂x dx = 0 , wherex ∈ (u1, u
†
2, u

†
3, u4, k

†), and

dx is a small change inx anddγ is the resulting change
in γ. It follows that

∂γI

∂x
= −

∂G

∂x
∂G

∂γI

,

and

∂2γI

∂x2
= −

∂G

∂γI
· ∂2G

∂x2
− ∂G

∂x
· ∂2G

∂x∂γI(
∂G

∂γI

)2

 ,

where ∂G
∂x = ∂R

∂x − α∂C
∂x , ∂2G

∂x2 = ∂2R
∂x2 − α∂2C

∂x2 ,
∂G
∂γI

= ∂R
∂γI

− α ∂C
∂γI

, ∂2G
∂x∂γI

= ∂2R
∂x∂γI

− α ∂2C
∂x∂γI

.

To provide reasonable values for the number of
scientists to be allocated to each stage, each variable
ui, i = 1, 2a, 2b, 3, 3a, 3b, 4 is subject to an upper limit,
which is set to be 100 in this paper. Recall thatu2b

and u3b can be expressed as functions ofu3a and u4,
respectively. If eitheru3a or u2b is greater than this
upper limit, the greater one is set to be 100, and the
other one is determined as described in section II.C.
The same procedure applies if eitheru4 or u3b is greater
than 100.

To perform these optimisation calculations,
expressions for more than 200 derivatives are required.
A FORTRAN 90 programme has been written which
enables users to key in input parameters to obtain the
corresponding optimal solutions.

V. PARAMETER VALUES

To keep our illustrative examples simple, the team-
size effectiveness function for each stage except stage 1
was chosen to be identical. The most efficient team-size
(uopt) was assumed to be 15 scientists.DBEFF was
assumed to be 0.9, so that the team would suffer a
10% loss of efficiency if the team size were to be
doubled. These two assumptions can be summarised as
e(15) = 15 and e(30) = 27. Usually fewer chemists
are needed before the screening of compounds begins
as a project at that stage tends to be in the hands of
bioscientists. For this reason the most efficient team-size
is set to be 7.5 for stage 1. For stage 1,DBEFF was
again assumed to be 0.9.

The completion times for stages 1, 2, 3, and 4 are
taken to be 2, 2, 2, 1 year(s) respectively, with team-size
of 8, 20, 20, and 20 scientists. As for stage2b, on

224 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

the assumption that the effort required for each of the
2nd, ..., mth lead series is the same and is less than that
needed for the first one, two possible completion times
for stage2b are used in the following calculations, 1 and
1.5 year(s), still with a team-size of 20 scientists. These
input parameters are used to obtain the effort required
to complete each stage, measured in scientist-years,
from the equationX = e(u)t.

The expected value of the first development compound
if it is available now for clinical trials,V , is set at
£40,000,000. The monetary cost of a scientist-year,
α, includes not only the annual salary of a scientist,
but also overhead, accommodation, and administrative
expenses associated with the scientist. The cost of a
scientist definitely varies from scientist to scientist
depending on his/her position and the work he/she does.
But for illustrative purposes, we may assume that the
cost of a scientist-year is around£100,000 on average.

The exponential discount rateγ is set at 0.09,
corresponding to an effective annual interest rate of
9.4% in real terms. To determine the values ofγ1 and
γ2, recall thatγ1 = γ + fξ. Hereξ∆t is the probability
of a competitor sending a compound for clinical trials in
a short time interval∆t, andf is the expected fraction
by which a competitor’s earlier development compound
reduces the value of a development compound. We see
that ξ = 0.25 means that other companies, in total, are
generating development compounds at the rate of one in
every four years. On the assumption thatf = 0.24, we
useγ1 = 0.09 + 0.25× 0.24 = 0.15 in our optimisation
calculations. Furthermore, the exponential discount rate
including self-induced obsolescence,γ2, is assumed to
be 0.40. Thus, calculations for the profitability index are
carried out with discount rates(γ1, γ2) = (0.15, 0.40).
For calculations for the internal rate of return, since
γ1 = γ + δ andγ2 = γ + δ + ζ, we haveδ = 0.06 and
ζ = 0.25.

The factor η for the competition effect between
development compounds fromtwo different series is
assumed to be 0.9. The probability of a development
compound surviving clinical trials and ultimately
becoming a marketable new drug is at most 20%.
On the assumption that any development compound
discovered after the first marketable new drug is
usually less valuable because the market would have
been dominated by the first one, the probability of
surviving clinical trials of 20% can be translated to
η = 0.8. The figure of 0.9 allows for the fact that a
later development compound might still be marketable,

despite a reduction in value because of drugs marketed
earlier. Two alternative values, 0.8 and 0.6, are assumed
for θ, the competition effect factor for development
compounds fromthe sameseries. These two values
represent a low and a high level of similarity between
compounds, respectively.

For the probabilities of success for stages 1, 2,
and 3, four combinations are used:(0.3, 0.3, 0.5),
(0.3, 0.5, 0.7), (0.5, 0.5, 0.5), and (0.5, 0.7, 0.7),
representing unfavourable, general, average, and
favourable conditions, respectively. Note that each of
the three cases,(m, l) = (m, 0), (m, l) = (m, 1), and
(m, l) = (m, 2), is optimised and that two values for
t2b are assumed. Thus, for each case, the profitability
index and the internal rate of return(γI) are calculated
with t2b = 1.0 and t2b = 1.5, respectively, for each of
the 8 combinations of(θ, η) and (p1, p2, p3).

VI. RESULTS

Tables 1 and 2 show the values ofm, l, and the other
control variables that produce the highest profitability
index (PI) and internal rate of return (IRR) for each
combination of(θ, η) and (p1, p2, p3) with t2b = 1.0
and t2b = 1.5, respectively. An∗ is attached to each
of these variables in the tables to denote that they
produce the best results. The first column in each table
is an abbreviated code for(p1, p2, p3); for example,335
means(p1, p2, p3) = (0.3, 0.3, 0.5).

The most striking observation from these two tables
is that whenθ is 0.6, which means there is strong
competition between successive backup compounds
taken from the same series, the best value ofl is
1, whereas whenθ = 0.8, which means there is
less competition between development compounds
from the same series, the best value ofl is 0. Thus,
if the competition between the successive backup
compounds taken from the same series is high, then it
is worth searching for a second development compound
from a different lead series and using these two series
alternately to look for backup compounds. This outcome
is as we might have expected.

We can also observe that, whent2b increases from 1.0
year to 1.5 years, the suggested value ofm decreases
for most combinations of(θ, η) and (p1, p2, p3). This
is also a reasonable result since as it takes more time
and effort to find an additional lead series, we may be
reluctant to search for more lead series.

Jiun-Yu Yu and John Gittins 225

(
�
, �) = (0.6 , 0.9), t 2b = 1.0

p 123 m* l* u 1 * u 2 * u 2b * u 3 * u 3b * u 4 * k 1 * k 2 * k 3 * PI
335 5 1 9 57 32 100 100 31 4 3 0 79325.63
555 4 1 11 59 32 100 100 31 4 3 0 116023.69
357 4 1 9 54 32 100 100 31 4 3 0 133454.46
577 4 1 12 52 26 76 100 31 3 2 0 172841.00
p 123 m* l* u 1 * u 2 * u 2b * u 3 * u 3b * u 4 * k 1 * k 2 * k 3 * IRR
335 5 1 8 49 32 100 100 31 4 3 0 -0.04
555 4 1 11 64 32 100 100 31 4 3 0 0.20
357 5 1 10 73 32 100 100 31 4 3 0 0.27
577 5 1 14 90 32 100 100 31 4 3 0 0.49

(
�
, �) = (0.8 , 0.9), t 2b = 1.0

p 123 m* l* u 1 * u 2 * u 2b * u 3 * u 3b * u 4 * k 1 * k 2 * k 3 * PI
335 5 0 9 59 32 100 0 100 6 0 0 102743.98
555 3 0 11 57 32 100 0 83 5 0 0 149190.93
357 3 0 9 53 32 100 0 79 5 0 0 158931.36
577 2 0 11 46 24 67 0 63 4 0 0 210015.44
p 123 m* l* u 1 * u 2 * u 2b * u 3 * u 3b * u 4 * k 1 * k 2 * k 3 * IRR
335 4 0 13 61 32 100 0 100 6 0 0 0.10
555 4 0 17 82 32 100 0 100 6 0 0 0.37
357 4 0 15 94 32 100 0 100 6 0 0 0.38
577 4 0 19 100 32 100 0 100 6 0 0 0.63

TABLE I

RESULTS FORt2b = 1.0.

(
�
, �) = (0.6 , 0.9), t 2b = 1.5

p 123 m* l* u 1 * u 2 * u 2b * u 3 * u 3b * u 4 * k 1 * k 2 * k 3 * PI
335 5 1 9 58 60 100 100 31 4 3 0 75507.30
555 3 1 10 56 43 69 100 31 5 3 0 107399.27
357 5 1 8 54 44 71 100 31 5 3 0 125282.33
577 2 1 12 50 37 58 100 31 3 2 0 163301.35
p 123 m* l* u 1 * u 2 * u 2b * u 3 * u 3b * u 4 * k 1 * k 2 * k 3 * IRR
335 4 1 8 49 60 100 100 31 4 3 0 -0.08
555 4 1 12 64 60 100 100 31 4 3 0 0.15
357 4 1 10 70 60 100 100 31 4 3 0 0.24
577 4 1 14 86 60 100 100 31 4 3 0 0.46

(
�
, �) = (0.8 , 0.9), t 2b = 1.5

p 123 m* l* u 1 * u 2 * u 2b * u 3 * u 3b * u 4 * k 1 * k 2 * k 3 * PI
335 4 0 9 60 60 100 0 100 6 0 0 98406.23
555 2 0 11 51 60 100 0 90 5 0 0 141103.80
357 2 0 9 51 60 100 0 84 5 0 0 152204.60
577 2 0 11 47 39 61 0 65 4 0 0 200466.04
p 123 m* l* u 1 * u 2 * u 2b * u 3 * u 3b * u 4 * k 1 * k 2 * k 3 * IRR
335 4 0 13 60 60 100 0 100 6 0 0 0.07
555 3 0 17 78 60 100 0 100 6 0 0 0.34
357 3 0 15 91 60 100 0 100 6 0 0 0.36
577 2 0 19 100 60 100 0 100 6 0 0 0.60

TABLE II

RESULTS FORt2b = 1.5.

Note that in cases wherel = 1, k1 is always greater
than k2. Recall that k1 is the number of backup
compounds taken when our attempt at the search for
a second development compound is successful while
k2 is the counterpart when the attempt fails. The result
that k1 > k2 indicates that, to increase the profitability
of the research project, it is worth taking more backup

compounds when we find two development compounds
from different lead series.

Most of the optimal numbers of scientists allocated
to each stage are much greater than 50. In fact, many
of them reach the upper limit we set in the models
(100), indicating that the unconstrained optima for these

226 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

variables are even greater. These big values must be
treated with great caution because they are obtained
from the extrapolation of the team-size effectiveness
function well beyond the range of values at which it
was fitted, namely, 15 and 30. Furthermore, since our
model of the research process is simpler then the real
process, it is unwise to accept the resulting optimal
allocation as definitive.

VII. C ONCLUSIONS

In this paper, a mathematical model for improving
the profitability of a pharmaceutical research project
is developed using both the profitability index and the
internal rate of return criteria. Maximum numbers of
attempts to look for the first development compound
and another one from a different lead series, termed
m and l, respectively, are introduced. The optimal
numbers of scientists to be allocated to each research
stage and the optimal number of backup compounds to
be identified are also calculated.

The purposes of this paper are to set out an extended
version of the model described in [12] and to show that
this model gives reasonable results for some illustrative
examples. There is scope for further refinement of our
model to make it more realistic, such as variations of
the event trees currently used in our model and use of
a team-size effectiveness function based on aK − fold
increase in team size.

REFERENCES

[1] S. W. Bergman and J. C. Gittins.Statistical Methods for
Pharmaceutical Research Planning. Marcel Dekker, New York,
1985.

[2] F. Black and M. Scholes. The pricing of options and corporate
liabilities. Journal of Political Economics, 81:637–659, 1973.

[3] R. A. A. Boschi. Modelling exploratory research.European
Journal of Operations Research, 10:250–259, 1982.

[4] E. H. Bowman and G. T. Moskowitz. Real options analysis and
strategic decision making.Organization Science, 12:772–777,
2001.

[5] R. Brealey and S. Myers.Principles of Corporate Finance.
McGraw-Hill, 2000.

[6] C.-F. Burman and S. Senn. Examples of option values in drug
development.Pharmaceutical Statistics, 2:113–125, 2003.

[7] B. P. K. Chen.Prioritization of Research Projects in the Phar-
maceutical Industry. DPhil. thesis, Department of Statistics,
University of Oxford, Oxford, UK, 2004.

[8] M. Ding and J. Eliashberg. Structuring the new product
development pipeline. Management Science, 48:3:343–363,
2002.

[9] A. K. Dixit and R. S. Pindyck.Investment Under Uncertainty.
Princeton University Press, Princeton, New Jersey, 1994.

[10] J. C. Gittins. Quantitative methods in the planning of phar-
maceutical research.Drug Information Journal, 30:479–487,
1996.

[11] J. C. Gittins. Algorithms for allocating resources to multi-stage
pharmaceutical research projects. In A. H. Christer, S. Osaki,
and L. C. Thomas, editors,Stochastic Modelling in Innovative
Manufacturing, pages 123–139. Springer, 1997.

[12] J. C. Gittins. Why crash pharmaceutical research?R&D
Management, 27:79–85, 1997.

[13] G. Islei et al. Modeling strategic decision making and perfor-
mance measurements at ICI Pharmaceuticals.Interfaces, 21:4–
22, 1991.

[14] D. V. Lindley. Making Decisions. John Wiley & Sons, London,
1991.

[15] C. H. Loch and K. Bode-Greuel. Evaluating growth options
as sources of value for pharmaceutical research projects.R&D
Management, 31:231–248, 2001.

[16] P. McNamee and J. Celona.Decision analysis with Supertree.
The Scientific Press, San Francisco, 1990.

[17] M. Metcalf and J. Reid. Fortran 90/95 Explained. Oxford
University Press, Oxford, 1996.

[18] P. Miller. Role of pharmacoeconomic analysis in R&D decision
making. Pharmacoeconomics, 23:1–12, 2005.

[19] M. Perlitz, T. Peske, and R. Schrank. Real options valuation:
the new frontier in R&D project evaluation?R&D Management,
29:255–269, 1999.

[20] K. L. Poh, B. W. Ang, and F. Bai. A comparative analysis of
R&D project evaluation methods.R&D Management, 31:63–
75, 2001.

[21] B. Spilker. Multinational Drug Companies – Issues in Drug
Discovery and Development. Raven Press, New York, 1989.

[22] J. S. Stonebraker. How Bayer makes decisions to develop new
drugs. Interfaces, 32:77–90, 2002.

[23] W. T. Vetterling W. H. Press, S. A. Teukolsky and B. P.
Flennery. Numerical recipes in FORTRAN 90 : the art of
parallel scientific computing. Cambridge University Press,
Cambridge, 1992.

[24] J.-Y. Yu. Software for Improving the Profitability of Pharmaceu-
tical Research. MSc. thesis, Department of Statistics, University
of Oxford, Oxford, UK, September 2002.

[25] J.-Y. Yu. Models and Software for Improving the Profitability of
Pharmaceutical Research. DPhil. transfer thesis, Department of
Statistics, University of Oxford, Oxford, UK, December 2004.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 227

Abstract—The Assembly Line Worker Assignment and

Balancing Problem arises in those assembly lines where we
have certain limited resources available in which the
operation time for every task is different depending on who
executes the task, and where there are also some task-
worker incompatibilities defined. This is quite usual in
Sheltered Work Centres for disabled where each worker has
different limitations and operation times. This paper deals
with the extension of this problem that suppose the
application of U-line principles in this environment. The
problem has been named as UALWAB and both a valid IP
model and a Laser Search method for the problem are
presented and tested against experimental and real data of a
Sheltered Work Centre; whose application can suppose its
growth, providing more jobs for more disabled, but always
considering the specific limitations that these workers have.
In this sense this paper shows one of the real applications
where OR can help not only to get economic and productive
benefits but also certain social aims.

Keywords— Assembly Line Balancing, U-lines

I. INTRODUCTION
here are about 386 million disabled people
between the age of 16 and 64, normally with

very high unemployment rates from 13% to even
80% in certain countries. Current practices for the
treatment of the physically and/or mentally
handicapped prescribe meaningful job activity as a
mean towards a more fulfilling life and societal
integration [2]. In many countries, these practices
have facilitated the development of many Sheltered
Work centres for Disabled (from now on SWD)
where fortunately disabled people can get a job in
the same way as any other person. This model tries
to get away from the traditional stereotype that

considers disabled people as not able to develop a
continuous professional work. Just as any other
firm, a SWD compete in real markets and must be
flexible and efficient enough to adapt to market
variations. The only difference is that the SWD is a
Not-For-Profit organisation. Thus, the potential
benefit that may be obtained from being efficient
usually improves the growth of the SWD. This
means: more jobs for disabled people, which is in
fact the real primary aim of every SWD. Therefore
different key policies issues, like proposed in [15],
are desirable in order to achieve this primary aim.

One of the policies that can provide more
efficiency in the social and labour integration of
disabled is the adoption of assembly lines as
productive configuration in these centres. As it is
well known, in an ordinary work environment this
configuration can be very harmful for the workers
implied, if no more considerations of job rotation,
work enrichment or other techniques are taken into
account [12]. But in the SWD specific environment,
assembly lines can provide many advantages, since
the traditional division of work in single tasks may
become a perfect tool for making certain worker
disabilities invisible. In fact, an appropriate task
assignment can even become a good therapeutic
method for certain disabilities rehabilitation.
However, some specific constraints relative to time
variability arise in this environment, mainly due to
the great difference among the mean operation times
for each task depending on which person executes it.

Assembly Line literature is mainly based on fixed
operation times. This simplification is only justified

Application of U-Lines principles to the
Assembly Line Worker Assignment and

Balancing Problem (UALWABP). A model and
a solving procedure.

T

Cristóbal Miralles*, José Pedro García† and Carlos Andrés ‡

Depto. Organización de Empresas - UPV
Camí de Vera s/n, 46071

Valencia, Spain

* cmiralles@omp.upv.es

† jpgarcia@omp.upv.es

‡ candres@omp.upv.es

228 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

in those cases where operation time variation is
small enough, but is not valid in SWD where some
workers can be very slow, or even incapable, when
executing certain tasks, but very efficient when
developing some others.

A. The Assembly Line Worker Assignment and
Balancing Problem

This real situation was the source of inspiration
for defining the new problem called Assembly Line
Worker Assignment and Balancing Problem
(ALWABP), which in [14] is mathematically
modeled and where different solving approaches are
proposed.

This problem arises in those assembly lines where
we have certain limited resources available
(normally workers) in which the operation time for
every task is different depending on who executes
the task, and where there are also some task-worker
incompatibilities defined. In its basic form, an
assembly line consists of a finite set of work
elements or single tasks, each having an operation
processing time and a set of precedence relations,
which specify the permissible orderings of the tasks.
The fundamental assembly line balancing problem is
to assign the tasks to an ordered sequence of
stations, such that the precedence relations are
satisfied and some measure of effectiveness is
optimized [7]. However, the problem here not only
consists of assigning tasks to stations, but also
available workers to stations; always respecting the
incompatibilities when assigning tasks to workers.

Some other references also face a similar double
assignment of tasks and resources to stations. For
example some cost-oriented models assume that the
equipment of the stations is given and that the
production process is fixed, then the total cost must
be minimized by optimally integrating design
(selecting the machine type to locate at each
activated station) and operating issues (assigning
tasks to observe precedence relationships and cycle
time restrictions). When these decisions are
connected, the term Assembly Line Design Problem
[1] or Assembly System Design Problem [18] are
frequently used in the literature.

Although ALWABP can be included in this kind
of problems, it is not a cost problem in which there
are alternative machines with different costs and the
total cost has to be minimized. Furthermore, in
ALWABP the available resources are constrained:
there are unique workers that can only be assigned
once. In some cases there exist workers with similar
characteristics, but even in these cases there is not
an infinite number of workers available, as assumed
in most ASDP problems.

SWD are a prototypical environment for human
diversity, but ALWABP is not exclusive of this
environment. Results obtained in [14] are extensible
to ordinary assembly lines with non disabled
workers, since diversity and some other considered
real features are also present.

B. Objectives and structure of the paper
A very interesting extension of ALWAB problem

that can help to satisfy SWD requirements is the use
of U-shaped layouts with crossover workers. This
would enable more available combinations when the
manager has to cope with assigning tasks to
workers, since the U-type lines have great
assignment flexibility and balancing efficiency. In
this sense the aim of this paper is to propose an
extension to ALWABP that will be named as
UALWABP. This extension is mathematically
modeled, previously establishing certain basic
assumptions, and a Laser Search solving procedure
is designed and tested against a set of pseudo-
benchmark problems in order to check its efficiency.

The paper is organized as follows: first we review
the related U-shape assembly line balancing
approaches in the literature. Then, we model the
UALWAB problem proposed, previously
highlighting the basic assumptions for the problem.
This model is inspired on Urban’s model presented
in [24], which is the only integer programming
model in the literature for U-lines. After formulating
a mathematical model for this new problem, a Laser
Search Branch and Bound-based procedure is
defined in section IV, and compared against the IP
model in section V. The experimental study is
carried out with a set of self made problems
generated through a two-level three-factor full
factorial development. This enables to obtain valid
conclusions that are also reported. Finally an
application to a real case of both, the IP model and
the procedures described, is presented and some
conclusions and further research lines are exposed.

II. STATE OF THE ART OF THE U-LINES
The assembly line balancing problem has been

studied extensively since the very first publication
of [19]. Simple Assembly Line Balancing Problem
(SALBP) [1] is known to be NP-hard [10], and
SALBP is a special case of ALWABP where every
task has a fixed duration. Therefore, ALWABP is
also NP-hard. When we talk about SALBP the aim
can be to minimize the number of stations given a
desired cycle time (SALBP-1) or to minimize the
cycle time given a fixed number of workstations
(SALBP-2), and several techniques have been
proposed for the solution of both problems with

Cristóbal Miralles et al.

229

different considerations of tasks times and
configurations (see the reviews of [6], [7] or [22]).

Recently, U-type layouts have been utilized in
many production lines in place of the traditional
straight-line configuration due to the use of just-in-
time production principles. In 1994, [13] presented a
new problem derived from the traditional ALB
problem where production lines are arranged as U-
type lines instead of straight lines. The U-type
assembly line is an attractive alternative for
assembly production systems since operators
become multiskilled by performing tasks located on
different parts of assembly line [9]. Stations can be
arranged so that during the same cycle two
workpieces at different positions on the line can be
handled. Hence, the difference to SALBP is that a
station k can contain not only tasks whose
predecessors are assigned to one of the stations 1,...,
k, but also tasks whose predecessors will be finished
until the product returns to station k for the second
time[21].

We can define two problem versions of U line
balancing problems regarding to SALBP: UALBP-
1: Given the cycle time C, minimize the number of
stations m; and UALBP-2: Given the number of
stations m, minimize the cycle time C.

After Miltenburg first approach, in 1997 [17]
developed bounds and approximations for the cycle
time when task times are random variables and the
number of stations is given (stochastic UALBP-2).
Later, [24] gives an integer programming
formulation for UALBP-1 and solves problem
instances with CPLEX, and [23] develop the
procedure ULINO (U-Line Optimizer) and apply it
to all versions of UALBP distinguished above.

[5] present a simulated annealing algorithm for the
problem, and [25] present a chance-constrained,
piecewise linear integer program for UALBP-1 with
stochastic task times, which can be solved with
CPLEX for small problems. [3] propose a hybrid
heuristic composed of priority rule based procedures
and an improvement step.

More recently, [9] present a shortest route
formulation for the simple U line balancing problem
(SULB) inspired in the shortest route model
developed by [10] for the traditional SALBP. Lastly
[8] propose a goal programming model based both
on the Urban integer programming formulation [24]
and the goal model of [4], resulting in the first multi-
criteria decision making approach to the U-line.

III. ADAPTATION OF URBAN’S INTEGER
PROGRAMING FORMULATION TO UALWABP

As presented in the above state of the art, there is
a small and growing literature on ULB problem.

Since the SULB problem was first modeled by [13],
the only one integer programming model in the
literature has been the Urban’s model presented in
[24]. This reference can be a good baseline for
adapting the ALWABP mixed integer programming
model presented in [14] to a U-shaped scenario.

The distinguishing characteristic of the ULB
problem is that it must allow for the forward and
backward assignment of tasks to workstations; for
example, the first and the last task of an assembly
line can be placed in the same workstation on a U-
line, but not on a traditional line [8]. Urban
accomplished this in [24] by establishing a
‘‘Phantom’’ network and appending it to the
original precedence network. Then, starting in the
middle of this extended network, assignments to the
workstations can be made forward through the
original network, backward through the phantom
network, or simultaneously in both directions. Thus,
before presenting the notation and the IP model
created, certain basic assumptions must be stated in
order to completely define our U-problem:

1) Tasks processing times and precedence

relationships are known deterministically.
2) A single product is assembled on the line.
3) We define a U paced line where buffers are

not considered.
4) There are certain workers available, where

task processing time can be different
depending on which one of the workers
executes the task, including some
incompatibilities in the task times matrix

5) Every worker is assigned to only one
workstation, but crossover workstations are
possible due to the U-shape of the line.

6) Every task is assigned to only one
workstation, provided that the worker selected
for that station is capable of performing the
task.

With these basic assumptions, the IP model for

this problem will be defined using this notation:

According to this notation we have the following

MIP formulation:

230 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

 z = Min C (1)

subject to:

() 1; shi shi
h H s S

x z i N
∈ ∈

+ = ∀ ∈∑∑ (2)

 1; sh
s S

y h H
∈

≤ ∀ ∈∑ (3)

 1; sh
h H

y s S
∈

≤ ∀ ∈∑ (4)

 , / shi shj j
h H s S h H s S

s x s x i j i D
∈ ∈ ∈ ∈

⋅ ≤ ⋅ ∀ ∈∑∑ ∑∑ (5)

 , / shi shj j
h H s S h H s S

s z s z i j i D
∈ ∈ ∈ ∈

⋅ ≥ ⋅ ∀ ∈∑∑ ∑∑ (6)

 () ; ; hi shi shi
i N

p x z C h H s S
∈

⋅ + ≤ ∀ ∈ ∀ ∈∑ (7)

 () ; ; shi shi sh
i N

x z M y h H s S
∈

+ ≤ ⋅ ∀ ∈ ∀ ∈∑ (8)

1; (,)shi
s S

x i h A
∈

= ∀ ∈∑ (9)

with:

hi
h H i N

M p
∈ ∈

> ∑ ∑

As it is showed, it is necessary to define parallel
variable xshi and zshi so that the assignments can be
done forward in the precedence network or
backwards in the phantom precedence network.
Therefore we have that:
• Objective function (1) minimizes the cycle

time.
• With constraints set (2) every task i is assigned

to a single station s and worker h on the real or
in the phantom network.

• (3) and (4) ensure that every worker can be
assigned to an only one station, and that in
every station there is only one worker.

• Constraints (5) and (6) imply that the
precedence constraints are not violated on the
original network and phantom network.

• (7) and (8) ensure that every worker h assigned
to station s can have more than one task,
whenever given cycle time C is not overcome
(including tasks assigned both from original
and from phantom network). As Cycle Time C
and ysh are both variables, (7) and (8) are
defined separately in order to maintain the
model linearity.

• (9) model those situations where certain task-
worker assignments (A) must be considered a
priori by therapeutic or other specific reasons.

In analogy with UALBP-2, where the aim is to
minimize the cycle time given a set of workstations,
this problem is named as UALWABP-2, modeling
the most typical situation in SWD: given certain
unique workers, to minimize the cycle time.

In UALBP-1, the aim is to minimize the number
of stations given a target cycle time, and then an
UALWABP-1 problem can be easily formulated just
by modifying the exposed model. As this situation is
not so usual in this environment, for the sake of
brevity, we prefer to focus this paper just in the
UALWABP-2 problem, although the procedure
presented in the next section has a modular design
that enables the resolution of both problem types.

IV. LAU: LASER SEARCH DESIGNED FOR
UALWABP

In the last decades, many Branch and Bound
approaches have been proposed in the literature for
solving different combinatorial problems, including
assembly line balancing. The Branch and Bound
here proposed is a Depth First Search procedure that
works with a LAser Search strategy ([20], [22]) and
has been named as LAU.

Most of SALBP-2 resolution procedures in the
literature are search methods based on repeatedly
solving instances by SALBP-1 procedures [22]. The
same way, the procedure developed for solving
UALWABP-2 is somehow based on a UALWABP-
1 approach. In this sense, the procedure always
explores the solution space trying to find the
assignment with less number of stations. The first
attempt is done with a starting cycle time C, and
while C is unfeasible (when C is too low because
more than the available workers are needed) it is
iteratively increased by one. The first time that C is

TABLE I - NOTATION USED FOR UALWABP
i,j
h
s
N
H
S
A
C
m
phi

Dj

xshi

zshi

ysh

Task
Worker
Workstation
Set of tasks
Set of available workers
Set of Workstations
Set of assignments a priori (i,h) task-worker
Cycle Time
Number of worksations
Processing time for task i when worker h
executes it
Set of tasks immediately preceding task j in the
precedence network
Binary variable equal to 1 only if task i is
assigned to worker h in station s
Binary variable equal to 1 only if task i is
assigned to worker h in station s in the phantom
precedence network
Binary variable equal to 1 only when worker h is
assigned to station s

Cristóbal Miralles et al.

231

possible, the assignment will normally include all
workers available, and this will be the optimal
solution for the UALWABP-2 with a minimum
cycle time.

A. Starting bound for cycle time
In this sense, the starting cycle time for all the

procedures is set to C = max (C1, C2), since cycle
time should accomplish the following statements:

• A cycle time may never be less than the

minimum task time, since tasks are indivisible.
In this case, in the best assignment that could
be achieved, every task would be assigned to
the worker that performs it fastest. Then, being
lowpi the lowest processing time for every task
i, we have:

 1 max() i NiC C lowp≥ = ∀ ∈ (10)
• On the other hand, if we relax the problem by

ignoring the precedence constraints and by
expecting a perfect assignment (in which every
task is assigned to the worker with the lowest
processing time) we can adapt the bound
defined in [2] for SALBP, which is obtained by
using an analogy with the Bin Packing
Problem. In our case, this bound is:

 C 2
i

i N
lowp

C
H

∈

⎡ ⎤
⎢ ⎥≥ = ⎢ ⎥
⎢ ⎥⎢ ⎥

∑
 (11)

B. Branching scheme of LAU
Regarding the branching, with the actual cycle

time, there are two different situations to manage
throughout the process of creating the solution tree:

• Starting in node 0, when a new station is

opened, one node for every combination of
workers and task available is created.
Excluding the incompatibilities, the feasible
tasks will be: on one hand the tasks that have
no predecessors (or its predecessors have been
already assigned) developed by the workers
still not assigned; on the other hand the tasks in
the phantom network that have no successors
(or they have been already assigned) developed
by the still available workers.

• Once inside a station, only feasible tasks for
the worker actually assigned to that station are
selected, and one node is created for each one
of these tasks (with the same double
consideration of precedence depending on if
we are in the phantom network or not).

Therefore, according to a Laser Search strategy, in

every iteration only one descending node is built and

developed at a time until:
- a leaf node is reached
- no leaf node is reached, but the all workers

are already assigned.
- the current node is fathomed.

In the three cases on its way back to the root, the

search follows the first possible alternative branch,
but each node is completely developed before its
ancestor nodes are revisited [20].

If all the possible paths have been explored and no
solution is provided, this means that the tried cycle
time is not feasible with the available workers, and
must be increased by one; resetting then the
algorithm and starting again. The procedure iterates
this way making all necessary returns to ancestor
nodes in order to guarantee an optimal solution.

V. EXPERIMENTAL STUDY

A. Experimental study for the procedures
developed

Since UALWABP is a new problem, there is no
standard set of benchmark problems available for
testing. So we have constructed a two-level three
factors full factorial experimental study based on the
Mitchell problem, from the classical collection of
SALBP problems of [11]. From this standard
problem the original precedence network was
preserved. The original task time was used for first
worker and new workers tasks times were randomly
generated from first worker ones. From our
experience in SWD involved in our R&D project,
the range for randomly generating these times
should not be greater than three times the original
task time. When a worker is over this range for a
certain task, we will assume that this task shouldn’t
be assigned to him/her. The time for that task when
developed by this worker will be then infinite
(which means: task not assignable to this worker). In
fact, different percentages of incompatibilities in the
tasks-workers matrix were also defined for this full
factorial study. The problems were generated
according to the following three parameters:
• NrW: The relation between the number of

tasks and the number of workers (size of the
matrix).

• Var: Variability of task times for the different
workers.

• Inc: The percentage incompatibilities defined a
priori in the task-worker matrix.

For the first factor two levels, high (number of
tasks 3 times higher than number of workers) and
low (number of tasks 6 times higher than number of
workers), were defined. The different tasks times for

232 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

every task i were randomly generated from a
uniform distribution with range selected according
to the original time ti. The two levels defined for the
task times variability used the distributions U[1,ti]
and U[1, 3ti] for low and high variability. And
finally, the low and high percentage of
incompatibilities in the tasks-workers matrix was set
to 10% and 20% approximately.

40 problems were generated following this outline
in order to compare the behaviour of LAU
procedure against the Integer Programming
approach when facing different kinds of problem.
This structured way of experimenting let us obtain
valid partial and global conclusions that will be
exposed. The IP model of UALWABP-2 was
translated into MPL language so that every problem
was run with CPLEX 9.0, with the following
results.

B. Results
In this section we summarize the relative behavior

of both methods by comparing the mean values of
the computational time (in seconds) needed by IP
and by Laser Search procedure (IP and LAU in next
figures). In the table II we observe the ANOVA
(analysis of variance) obtained and how the main
significant factor is the number of workers.

As it is shown in the next figure an overall better
behaviour of LAU is achieved, with important
differences in some of the instances. The next figure
indicates this difference between both methods:

 Fig.1. Means and 95.0 % LSD Intervals Graphic for

IP model and LAU

About the double interactions we only notice one

significant interaction between the Method applied
(A in the ANOVA table) and the number of workers
NrW (B in the ANOVA table). It has been noticed a
quite important difference when facing problems
with more or with less workers available (larger or
smaller problems). For smaller problems (Low
number of workers) the IP model has better
behaviour; however LAU is much faster for finding
an optimal solution when problems are bigger:

Fig.2. Interaction Method vs. NrW 95.0 % LSD
Intervals

IP model is more affected by upper values of

NrW probably because it needs to generate many
more constraints as the task-times matrix raise.
Apart from this, no more significant interactions
have been founded between the Method applied and
the variability of task times for the different workers
(Var), or the percentage of task-worker
incompatibilities defined a priori (Inc).

VI. APPLICATION TO A REAL CASE
An application to a real case of both the IP model

and the procedure described is now presented in
order to clarify the potential real benefits of
UALWABP. With this aim we used the data of the
ALWABP case study presented in [15]. In that
reference some resolution proposals are successfully
applied in a SWD whose main industrial activities
are related to assembling of electronic components.
In the section of the SWD where this research was

TABLE II – ANOVA SUMMARY OF RESULTS

Cristóbal Miralles et al.

233

carried out, a prototype assembly line for the
product with highest demand was designed and
successfully implemented.

Seven workers were selected for this
reengineering process. After a long process of task
times definition, the final data file with the operation
times for the 18 tasks and seven workers (h1 to h7)
implied was determined. This task-workers matrix
with the existent incompatibilities (Inf) is shown::

The IP model for ALWABP was fed with this

data and run with CPLEX 9.0 and the solution
provided, in a traditional straight-line approach, is
the one showed in figure 3. In this solution we can
see how, from the seven workers implied, the
worker h1 placed in the fifth station is the
bottleneck and the sum of his tasks (task 9, 13 and
14) is 177 min-3:

Fig.3. ALWABP-2 case resolution

The same data file was used in this research in

order to validate the U-line concepts presented in
this paper as an extension of the problem. Both the
UALWABP IP modeling approach and the Laser
Search approach gave the same final solution which

showed a better cycle time performance:

Fig.4. UALWABP-2 case resolution

 As can be observed, the bottleneck is now the

worker h4 and the sum of his tasks (task 3 and 6) is
171 min-3. In this solution, two workers (h5 and h2)
are placed in crossover workstations, which enables
to achieve a better cycle time and more
combinations of feasible assignments for job
rotation procedures (which is a further research line
that we are already actually exploring).

In this case the IP model run with CPLEX 9.0
needed 47397 seconds to solve the problem, while
LAU algorithm needed only 261 seconds; both in a
Penthium IV 1GHz (and also the previous tests).
This confirms some of the conclusions obtained in
the previous section: for big problems, the LAU
procedure achieves much better results.

VII. CONCLUSIONS
The assembly lines are very useful in SWD since

the division of work in single tasks can make some
disabilities disappear, just by finding a proper
assignment of tasks to workers and workers to
stations. Although the ALWAB problem models the
main features of the assembly lines in this
environment, new approaches are necessary to
increase the feasible assignments.

In this paper an extension of this problem, named
as UALWABP, has been presented and modeled.
This model proposes a U-shaped solution where
crossovers stations are allowed and some specific
constraints must be considered. LAU, a Branch and
Bound procedure, that uses Laser Search as strategy,
has been presented and tested against the IP model
through an experimental study. The main
conclusion of this study has been the better
performance of LAU procedure when the number of
workers, and then the possible combinations,
increase.

TABLE III - TASK TIMES MATRIX DEFINED

Workers
Tasks h1 h2 h3 h4 h5 h6 h7

1 31 31 31 26 26 31 31
2 84 84 80 53 51 71 80
3 115 115 146 73 66 113 110
4 115 115 141 94 73 110 110
5 80 80 84 74 65 75 80
6 119 114 141 98 86 139 119
7 84 84 80 61 73 75 80
8 93 81 124 90 87 94 93
9 26 27 53 44 30 35 35
10 31 44 Inf 42 38 56 44
11 39 42 Inf 42 39 55 44
12 15 14 Inf 15 15 16 15
13 70 90 Inf 80 59 88 80
14 81 101 Inf 92 71 81 66
15 97 97 Inf 98 60 97 63
16 106 106 168 82 84 98 85
17 Inf Inf 181 Inf Inf 124 Inf
18 Inf Inf 26 Inf Inf 26 Inf

234 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

A sample of application of these procedures with
real data of a SWD, whose main industrial activities
are related to assembling of electronic components,
has been useful for validating the proposal.

Further research includes two main topics that
would widen the scope of the problem. The first one
is considering parallel workstations, which would
enable even more combinations of assignments.
Both modelling and design of solving procedures
should be faced in this new scenario. The other main
research line will be the design of efficient job
rotation procedures, taking advantage of the new
combinations that U-lines and parallel stations
would provide. Job rotation is always desirable but
here is even more important, since it can contribute
to the improvement, if not simply fundamental
maintenance, of certain worker abilities. As the task
times are different depending on the worker, these
procedures are not as obvious as in ordinary
assembly lines.

SWD should be the first who benefit from these
research lines. The continuous improvement of
resolution methods for this environment is very
important: although SWD receive some institutional
help, these centres have to survive in real markets
and, therefore, then need to run efficiently
considering also the limitations of the individuals
that work there. Only through efficiency can reach
their primary aim: to grow in order to provide more
jobs for more disabled people which is, in fact, the
final aim of this research.

ACKNOWLEDGEMENTS
This work was developed under research projects

DELIMER (DPI2004-03472) and GESCOFLOW
(DPI2004-02598) both supported by the Spanish
National Science&Technology Commission CICYT.
The authors would also like to acknowledge the
SWD involved in this research for their
collaboration.

REFERENCES
[1] Baybars, I. (1986), “A survey of exact algorithms for the

simple assembly line balancing problem”, Management
Science 32, 909-932.

[2] Bellamy, G.T., Horner R.H., Inman D.P., (1979),
“Vocational Habilitation of Severely Retarded Adults: A
direct Service Technology”, University Press, Baltimore

[3] Chiang, W.-C., Urban, T.L., (2002). A hybrid heuristic for
the stochastic U-line balancing problem, Working Paper,
University of Tulsa, Oklahoma, USA.

[4] Deckro, Rangachari, (1990), “A goal approach to assembly
line balancing”, Computers and Operations Research 17,
509–521.

[5] Erel, E., Sabuncuoglu, I., Aksu, B.A. (2001), “Balancing of
U-type assembly systems using simulated annealing”,
International Journal of Production Research 39, 3003-
3015.

[6] Erel, E., Sarin S. (1998) “A survey of the assembly line
balancing procedures”. Production Planning and Control
9, No 5, 414-434.

[7] Ghosh, S., Gagnon R.J. (1989), “A comprehensive
Literature Review and Analysis of the Design, Balancing
and Scheduling of Assembly Systems”, International
Journal of Production Research 27, 637-670

[8] Gökçen, H., Kürsad A. (2004), “A goal Programming
approach to simple U–line balancing problem”. Accepted
in European Journal of Operational Research, to be
published.

[9] Gökçen, H., Kürsat A., Gencer C., Kizilkaya, E. (2004),
“A shortest route formulation of simple U-type assembly
line balancing problem”. Accepted in Applied
Mathematical Modelling, to be published.

[10] Gutjahr, A.L., Nemhauser G.L. _(1964), “An algorithm for
the line balancing problem”, Management Science 11 (2)
(1964) 308–315.

[11] Hoffmann, T.R. (1990), “Assembly line balancing: A set of
challenging problems”, International Journal of Production
Research 28, 1807-1815.

[12] Marin, J. A., M. Pardo and T. Bonavia (2002), “The
Impact of Training and Ad Hoc Teams in Industrial
Settings”, 6th International Workshop on Teamworking
(IWOT 6). Mälmo (Sweden).

[13] Miltenburg, J., Wijngaard, J. (1994), “The U-line
balancing problem”, Management Science 40, 1378-1388.

[14] Miralles C., García-Sabater, J.P., Andrés C., Cardós M.
(2005): “Branch and Bound Procedures for solving the
Assembly Line Worker Assignment and Balancing
Problem. Application to Sheltered Work Centres for
Disabled”. Accepted in Discrete Applied Mathematics.

[15] Miralles C., García-Sabater, J.P., Andrés C., Cardós M.
(2005), “Advantages of assembly lines in sheltered work
centres for Disabled. A Case Study”, Proceedings of the
International Conference on Production Research ICPR
2005 in Salerno (Italy).

[16] Miralles C., Andrés C., García-Sabater, J.P. (2005),
“Model and heuristic approach for the Assembly Line
Worker Assignment and Balancing Problem. Application
to Sheltered Work Centres for Disabled” International
Conference on Industrial Engineering and Systems
Management IESM May 2005, Marrakech (Morocco).

[17] Nakade, K., Ohno, K., Shanthikumar, J.G. (1997), “Bounds
and approximations for cycle times of a U-shaped
production line”, Operations Research Letters 21, 191-200.

[18] Pinnoi, A., Wilhelm W.E. (1997), “A family of
hierarchical models for assembly system design,
International Journal of Production Research 35, 253-280

[19] Salveson, M.E. (1955): The assembly line balancing
problem. Journal of Industrial Engineering 6, No 3, 18-25

[20] Scholl, A. (1999), “Balancing and sequencing assembly
lines”, 2nd edition, Physica, Heidelberg

[21] Becker, C., Scholl, A. (2003) “A survey on problems and
methods in generalized assembly line balancing”,
European Journal of Operational Research (to be
published, available online).

[22] Scholl, A. and Becker, C. (2004) “State-of-the-art exact
and heuristic solution procedures for simple assembly line
balancing”. European Journal of Operational Research (to
be published, available online).

[23] Scholl, A., Klein, R. (1999), “ULINO: Optimally
balancing U-shaped JIT assembly lines”, International
Journal of Production Research 37, 721-736.

[24] Urban (1998), “Optimal balancing of U-shaped assembly
lines”, Management Science 44(5) 738–741

[25] Urban, T.L., Chiang, W.-C. (2002), “Piecewise-linear
optimization of the U-line balancing problem with
stochastic task times” European Journal of Operational
Research.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 235

Modelling and Forecasting Spanish Mortality
Ana Deb́on Aucejo∗ and Francisco Puig Blanco†

∗Universidad Polit́ecnica de Valencia /Dept. de Estadı́stica e I. O. Aplicadas y Calidad.
Camino de Vera, s/n. 46022-Valencia (Spain)

Email: andeau@eio.upv.es
†Universitat de Val̀encia/Dept. de Direcció d’Empreses. “Juan J. Renau Piqueras”

Av. Tarogers, s/n. 46022-Valencia (Spain)
Email: francisco.puig@uv.es

Abstract— Experience shows that standard life tables
overestimate death probabilities. This fact has a negative
consequence for insurance companies because premiums
are lower than they actually should be otherwise. The
reason for this overestimation is that standard life tables, as
they are computed for a specific period of time, cannot take
into account the decreasing mortality trend over time. Dy-
namic life tables overcome this problem by incorporating
the influence of the calendar when graduating mortality.
Recent papers on the topic look for the development of
new methods to deal with this dynamism.

The majority of methods used in dynamic tables are
parametric, these methods apply traditional mortality laws
and then analyze the evolution of estimated parameters
with time series techniques.

Our contribution consists in applying Lee-Carter meth-
ods to Spanish mortality data, exploring residuals and
future trends.

Keywords— Standard Life Tables, Dynamic Life Tables,
Lee-Carter, Forecasting.

I. I NTRODUCTION

T HE most recent actuarial literature recognises the
fact that mortality evolves over time. Mortality

experiences that correspond to different periods display
different death probabilities for the same age. This is
supported by the fact that mortality has been seen to
gradually decline over time, although the decrease is not
necessarily uniform across age groups. Therefore, it is
important to be able to measure mortality changes over
time accurately, as life insurance policy gains depend on
survival. If the standard table used to calculate annuities
and reserves predicts higher mortality probabilities than
is actually the case among policy-holders, the latter will
have been undercharged and the insurance company will
make a loss.

The concept of a dynamic table seeks to solve this
problem by jointly analyzing mortality data correspond-
ing to a series of consecutive years. This approach allows
the calendar effect’s influence on mortality to be studied.

A compilation of a sample of dynamic models and their
classification can be found in [1], [10] and [13].

We aim to use Lee-Carter model to obtain Spanish
dynamic tables. By determining this structure, we will
be able to make predictions by applying the model.

The current time-dependent mortality measurements
are, probability of death,qxt, the force of mortality,µxt,
and the central mortality rates,mxt, all described as
being at agex and yeart.

The following article is structured as follows: Section
2 briefly presents the Lee-Carter’s methodology to be
used. Section 3 presents the results of the application of
the method to the analysis of Spanish mortality data,
corresponding to the period 1980-1999 and also the
results of the prediction of specific mortality rates in the
year 2000 (qx,2000), obtained by means of the adjusted
models.

Section 4 contains the conclusions drawn from the
results presented in the previous section.

II. A DJUSTMENT AND PREDICTION OFqxt

The Lee-Carter Model, developed in [7], consists in
adjusting the following function to the central mortality
rates,

mxt = exp(ax + bxkt) + ǫxt

or, equally, the function

ln (mxt) = ax + bxkt + ǫ′xt, (1)

applied to its logarithm matrix. In the previous two
expressions, the double subscript refers to the age,x, and
to the year or unit of time, t,ax andbx are age-dependent
parameters andkt is a specific mortality index for each
year or unit of time. The errorsǫxt, with a zero average
and varianceσ2

ǫ , reflect the historical influences of each
specific age that are not captured by the model.

In [6] the author remarks that nothing ensures that
equation (1) will not exceded unity, while this possibility
could be avoided by modelling the logit death rates. We

236 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

are going to apply this model to logit death probability
qxt,

ln

(

qxt

1 − qxt

)

= ax + bxkt + ǫ′xt, (2)

or, equally, the function,

qxt =
exp(ax + bxkt)

1 + exp(ax + bxkt)
+ ǫxt

A. Estimation

In order for the model to have only one solution, pa-
rameters must be normalised,

∑

x

bx = 1 and
∑

t

kt = 0.

Given that the structure is invariant under either of
the parameter transformations,(ax, bx/c, ckt) or (ax +
cbx, bx, kt − c), for any constantc.

1) Lee-Carter:

a) The estimateax as,

â1
x =

∑

t

ln

(

qxt

1 − qxt

)

T
,

with T number of years.
b) The valuesbx and kt are estimated by singular

value decomposition (SVD) applied to the matrix,

ln

(

qxt

1 − qxt

)

− â1
x. Then k̂SV D

t and b̂SV D
x are the

respective first right and first left singular vectors.

The solution with
∑

x

b̂x = 0 is b̂x =
b̂SV D
x

∑

b̂SV D
x

then k̂1
t = k̂SV D

t

∑

b̂SV D
x .

c) Later,kt is reestimated to fit the total number of
deaths observed and estimated, by means of the
equation

Dt =
∑

x

(

Nxt
exp(â1

x + ktb̂x)

1 + exp(â1
x + ktb̂x)

)

, (3)

where Dxt, Nxt are number of death and the
population at agex in year t andDt =

∑

x

Dxt is

total deaths in yeart. After applying equation 3,
we obtaink̂2

t and transform̂k2
t − mean(k̂2

t) = k̂t

and â1
x + b̂xmean(k̂2

t) = âx.
Finally, the solution is(âx, b̂x, k̂t) that we could improve
by conditional generalized linear models (GLM), as [3]
applied them to force of mortality.

2) Lee-Carter-GLM: In this paper we will use GLM
applied to probability of death,qxt, because the number
of deathsDxt ∼ Bi(Ext, qxt), where Ext are initial
exposed to risk,

d) for eachx with

log

(

qxt

1 − qxt

)

= offset(âx) + bxk̂t,

we obtainb̂
GLM(1)
x with

∑

x

b̂GLM(1)
x = S 6= 1,

e) then for eacht with

log

(

qxt

1 − qxt

)

= offset(âx) + b̂GLM(1)
x kt,

we obtaink̂
GLM(1)
t with

∑

x

k̂
GLM(1)
t 6= 0,

f)

b̂GLM
x =

b̂
GLM(1)
x

S

k̂GLM
t = k̂

GLM(1)
t S − mean

(

k̂
GLM(1)
t S

)

âGLM
x = âx + b̂GLM

x mean
(

k̂
GLM(1)
t S

)

Now, the solution is(âGLM
x , b̂GLM

x , k̂GLM
t) which satis-

fies the constrains.

B. Residuals

Little attention appears to have been paid to the
definition and analysis of residuals in the literature; [11]
is an exception. This work focuses on SVD residuals,

ǫ̂′xt = ln

(

qxt

1 − qxt

)

− (âx + k̂tb̂x)

standardized by dividing by
√

∑

ǫ̂′2xt

ν
,

whereν = (n − 1)(T − 2) are degrees of freedom with
n number of ages.

As an alternative, [12] used Pearson residuals in the
context of Poisson distribution associated withµxt. In
this context, we could use these residuals forqxt with
Binomial distribution,

zxt =
Dxt − Nxtqxt

√

Nxtqxt(1 − qxt

).

In this paper, we study SVD residuals with the usual
graphs. We add a Mean Absolute Percentage Error
(MAPE) to analyse the goodness-of-fit for each of the
years, criteria used by [5].

C. Prediction

Once the series of valueŝkt have been estimated, the
last step of the Lee-Carter model consists in finding a
model for the series using Box-Jenkins methodology. In
many of these applications, a good model for thekt is

k̂t = c + k̂t−1 + ut.

where c is constant andut is white noise. With this
model, the prediction ofkt varies in a linear way and

Ana Deb́on Aucejo and Francisco Puig Blanco 237

each death rate predicted varies at a constant exponential
rate.

Some authors have made suggestions and modified
this method, including [2], [14] and [6] himself, who
compares his method to other alternatives, such as that
of [8], [9].

III. A NALYSIS OF MORTALITY DATA IN SPAIN

A. Data

The models described in Section 3 have been used
to adjust mortality data for men and women separately.
The data have been collected in Spain in the period 1980-
1999 and correspond to the range of ages from 0 to 96.
The population of the country studied was 40,847,371
in the last census carried out in 2001.

The crude estimates ofqxt that the models require,
have been obtained by means of the procedure used by
the Instituto Nacional de Estadı́stica (Spanish National
Institute of Statistics),

q̇xt =
1/2(Dxt + Dx(t+1))

Pxt + 1/2Dxt
,

where Dxt are the deaths in yeart at agex, Dx(t+1)

are the deaths in yeart + 1 at agex, and Pxt is the
population that on December 31 of yeart were agedx.
The formula can be applied to all ages, except for zero,
due to the concentration of deaths in the first few months
of life. This expression has been used for this age,

q̇0t =
0.85D0t + 0.15D0(t+1)

P0t + 0.85D0t
.

B. Model Adjustment

The high number of parameters estimated in this
model,97×2+20 = 194 for men and a similar number
for women, cannot be fully presented in a paper of this
extent. Instead, we preferred to present them in the form
of a graph in Figure 1. By comparing parameterax for
both sexes, it is verified that mortality among women is
lower than among men. Parameterbx displays negative
values for ages from 24 to 40 for men, for ages from
28 to 32 for women and for both sexes at advanced ages
(more than 92,93), which indicates that mortality in these
age groups does increase over time.

The differences between Lee-Carter and Lee-Carter-
GLM are very small inax values for both sexes. In the
case ofbx, the differences between Lee-Carter and Lee-
Carter-GLM are greater among men than among women.

Estimate values forkt are displayed in Figure 1(c).
The graph clearly shows that the decrease in mortality for

women is more marked. The differences between Lee-
Carter and Lee-Carter-GLM are greater among men than
among women.

[5] use the Heligman-Pollards laws to research the
way in wich the calendar time affects mortality patterns
in the Spanish population, and how this information can
be used to elaborate predictions. They remark that the
evolution has differed by gender and age ranges. Men’s
main ages are as follows,

i) Ages from 0 to 10: clear decreasing trend.
ii) Ages from 11 to 40: the accident hump has

developed throughout the period to include
these ages.

iii) Ages from 41 to 90: clear decreasing trend with
maximum differences around age 70, minimum
at the range extremes.

By contrast, womens age ranges are as follows,

i) Ages from 0 to 15: clear decreasing trend.
ii) Ages from 16 to 35: no trend, it is the accident

hump effect.
iii) Ages from 36 to 90: again clear decreasing

trend, reaching their maximum differences at
age 75, minimum at the range extremes.

We confirm this evolution in Figures 2 and 3, which is
similar in both models, and then, we explore the behavior
for ages greater than 90 years.

In recent times, mortality statistics have improved the
study of mortality shape at very old ages. [10] remarks
that the mortality at very old ages is slowly increasing;
Figure 4 shows this fact for the Spanish mortality.

C. Goodness-of-fit

Residuals plots in Figures 5 and 6. The plots show un-
satisfactory behavior of residuals with different variances
and the mean value which could be not zero.

A more detailed examination of the residuals shows
autocorrelations in each year for both models (Figure
7). Nearly all the residuals are autocorrelated and show
a definitive pattern.

In order to measure the goodness-of-fit of each year
for both models and compare them with [5] results, we
have included Table I, wich showsMAPE. Analyzing
theMAPE, we can conclude that the model Lee-Carter-
GLM improves the goodness-of-fit measures more in the
case of men than women.

D. Forecasting

As far as the modelling ofkt by means of temporal
series is concerned, the series of first differences is seen

238 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

0 20 40 60 80

−
8

−
6

−
4

−
2

age

ax

Men
Women

(a) ax

0 20 40 60 80

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

0.
06

age

bx

(b) bx

1980 1985 1990 1995

−
15

−
10

−
5

0
5

10
15

In
de

x
k

Men
Women

(c) kt

Fig. 1. Estimated values according to Lee-Carter (solid line) and Lee-Carter-GLM (dotted line).

1980 1985 1990 1995

−
9

−
8

−
7

−
6

−
5

−
4

Ages 0−10

year

lo
gi

t(
qx

)

Empirical
Adjusted

1980 1985 1990 1995

−
9.

0
−

8.
5

−
8.

0
−

7.
5

−
7.

0
−

6.
5

−
6.

0

Ages 11−40

year

lo
gi

t(
qx

)

1980 1985 1990 1995

−
7

−
6

−
5

−
4

−
3

−
2

−
1

Ages 41−90

year

lo
gi

t(
qx

)

Fig. 2. Logit rates versus year (1980-1999) for men by age.

1980 1985 1990 1995

−
9

−
8

−
7

−
6

−
5

−
4

Ages 0−15

year

lo
gi

t(
qx

)

Empirical
Adjusted

1980 1985 1990 1995

−
9.

0
−

8.
5

−
8.

0
−

7.
5

−
7.

0
−

6.
5

−
6.

0

Ages 16−35

year

lo
gi

t(
qx

)

1980 1985 1990 1995

−
7

−
6

−
5

−
4

−
3

−
2

−
1

Ages 36−90

year

lo
gi

t(
qx

)

Fig. 3. Logit rates versus year (1980-1999) for women by age.

to be stationary serie for both sexes. The adjusted models
are

kt = −0, 922584+kt−1+ut, and kt = −1, 65504+kt−1+ut

for men and women respectively in the case of Lee-
Carter model, whereut is white noise.

The adjusted models are

kt = −0, 822322+kt−1+ut, and kt = −1, 60528+kt−1+ut

for men and women respectively in the case of Lee-
Carter-GLM model, whereut is white noise.

The forecasted values ofkt are shown in Figures 8,
9, and in Table II for the period 2000-2011 for men and
women.

E. Predictions for 2000

We focus on the projected rates of death in order to
measure goodness of model to make predictions. The

Ana Deb́on Aucejo and Francisco Puig Blanco 239

1980 1985 1990 1995

−
1.

6
−

1.
4

−
1.

2
−

1.
0

−
0.

8
−

0.
6

Ages 91−96

year

lo
gi

t(
qx

)

(a) Men

1980 1985 1990 1995

−
1.

6
−

1.
4

−
1.

2
−

1.
0

−
0.

8
−

0.
6

Ages 91−96

year

lo
gi

t(
qx

)

(b) Women

Fig. 4. Logit rates versus year (1980-1999) by old age.

1980 1985 1990 1995

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

year

sv
d

re
si

du
al

s

(a) Men

1980 1985 1990 1995

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

year

sv
d

re
si

du
al

s

(b) Women

Fig. 5. Residuals SVD versus year

0 20 40 60 80

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

age

sv
d

re
si

du
al

s

(a) Men

0 20 40 60 80

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

age

sv
d

re
si

du
al

s

(b) Women

Fig. 6. Residuals SVD versus age

240 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

1980

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

1985

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

1990

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

1999

(a) Men

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

1980

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

1985

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

1990

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

1999

(b) Women

Fig. 7. Autocorrelations of residuals SVD versus year

kt

actual
forecast
95,0% limits

1980 1985 1990 1995 2000 2005 2010 2015
-27

-17

-7

3

13

(a) Men

kt

actual
forecast
95,0% limits

1980 1985 1990 1995 2000 2005 2010 2015
-43

-33

-23

-13

-3

7

17

(b) Women

Fig. 8. Forecast ofkt according to Lee-Carter model

kt

actual
forecast
95,0% limits

1980 1985 1990 1995 2000 2005 2010 2015
-27

-17

-7

3

13

(a) Men

kt

actual
forecast
95,0% limits

1980 1985 1990 1995 2000 2005 2010 2015
-43

-33

-23

-13

-3

7

17

(b) Women

Fig. 9. Forecast ofkt according to Lee-Carter-GLM model

predictions ofqx,2000 corresponding to 2000 have been
calculated. The crude estimates are avaliable to us as we
also have mortality data for the year 2001.

The MSE andMAPE are a numerical summary of
the accuracy of the predictions, which are displayed in
Table III.

IV. CONCLUSIONS

In Table III, MAPE and theMSE show that the
predictions made by both models in the case of women
are better than men.

The Heligman and Pollard second law was used by [5]
but with a maximum age of 90 and for the period of 1975
to 1993. By contrast, the maximum age in this analysis
is 96 and the period of 1980 to 1999. In this respect, it
is interesting to compare our with those obtained by the
authors mentioned. They achieve a slightly better fitting

for men, but the fitting for women presents worse results
than ours.

As far as the Lee-Carter-GLM method is concerned,
the decrease inMSE is 40.05% for men and 6.05%
for women. These percentages are 9.87% and -6.24%
respectively, when comparedMAPE.

This work pays attention to SVD residuals, vari-
ance and autocorrelations. The modelling of residuals
by means of spatio-temporal methods, such as those
developed by [4] would supposedly better capture the
momentary progress of the phenomenon and could im-
prove the results obtained up to now.

REFERENCES

[1] B. Benjamin and J. Pollard,The Analysis of Mortality and Other
Actuarial Statistics, 6th ed. London: Butterworth-Heinemann,
1992.

Ana Deb́on Aucejo and Francisco Puig Blanco 241

Lee-Carter Lee-Carter-GLM
Year Men Women Men Women
1980 4.37 5.26 6.14 5.06
1981 5.03 4.07 7.27 3.87
1982 5.27 4.99 7.15 4.73
1983 3.98 4.74 5.66 4.43
1984 6.69 5.25 5.14 5.00
1985 3.12 4.36 4.35 4.17
1986 4.39 4.47 4.63 4.43
1987 4.78 4.82 4.76 4.85
1988 6.13 4.86 5.40 4.90
1989 7.59 5.10 6.65 5.12
1990 8.20 5.00 7.25 4.99
1991 7.61 5.04 7.13 4.98
1992 5.71 5.30 5.88 5.20
1993 5.52 5.51 6.09 5.39
1994 5.66 5.78 6.23 5.77
1995 4.95 6.08 6.19 6.03
1996 5.68 4.75 5.54 4.77
1997 8.21 5.32 6.66 5.74
1998 10.38 7.12 8.62 7.67
1999 13.26 7.69 9.50 8.24

TABLE I

MEAN ABSOLUTE PERCENTAGEERROR FOR EACH YEAR BY

GENDER

[2] L. Carter and R. Lee, “Modeling and forecasting U. S. sex
differentials in mortality,”International Journal of Forecasting,
vol. 8, no. 3, pp. 393–411, November 1992.

[3] I. Currie, J. Kirkby, M. Durban, and P. Eilers, “Smooth Lee-
Carter models and beyond,” inWorkshop on Lee-Carter Meth-
ods, 2004.

[4] A. Debón, , F. Mart́ınez-Ruiz, and F. Montes, “Dynamic life
tables: a geostatistical approach,” in8th International Congress
on Insurance: Mathematics & Economics, Rome, Italy, Junio
2004.

[5] A. Felipe, M. Guillén, and A. Ṕerez-Maŕın, “Recent mortality
trends in the spanish population,”British Actuarial Journal,
vol. 8, no. 4, pp. 757–786, 2002.

[6] R. Lee, “The lee-carter method for forecasting mortality, with
various extensions and applications,”North American Actuarial
Journal, vol. 4, no. 1, pp. 80–91, 2000.

[7] R. Lee and L. Carter, “Modelling and forecasting U. S. mor-
tality,” Journal of the American Statistical Association, vol. 87,
no. 419, pp. 659–671, Septiembre 1992.

[8] R. McNown and A. Rogers, “Forecasting cause-specific mor-
tality using time series methods,”International Journal of
Forecasting, vol. 8, no. 3, pp. 413–432, 1992.

[9] ——, “Forecasting mortality: A parametrized time series
aproach,”Demography, vol. 26, no. 4, pp. 645–660, 1989.

[10] E. Pitacco, “Survival models in dynamic context: a survey,”
Insurance: Mathematics and Economics, vol. 35, no. 2, pp. 279–
298, 2004.

[11] A. Renshaw and S. Haberman, “Lee-Carter mortality fore-
casting: a parallel generalized linear modelling aproach for
England and Wales mortality projections,”Journal of the Royal
Statistical Society C, vol. 52, no. 1, pp. 119–137, 2003.

[12] ——, “On the forecasting or mortality reduction factors,”Ac-

Lee-Carter
Men Women

Pred. 95% Interval Pred. 95% Interval
2000 -10,58 -12,32 -8,84 -17,32 -19,24 -15,41
2001 -11,50 -13,96 -9,05 -18,98 -21,69 -16,27
2002 -12,43 -15,44 -9,41 -20,64 -23,95 -17,32
2003 -13,35 -16,83 -9,87 -22,29 -26,12 -18,46
2004 -14,27 -18,16 -10,38 -23,94 -28,23 -19,66
2005 -15,19 -19,45 -10,94 -25,60 -30,29 -20,91
2006 -16,12 -20,71 -11,52 -27,25 -32,32 -22,19
2007 -17,04 -21,95 -12,12 -28,91 -34,33 -23,49
2008 -17,96 -23,17 -12,75 -30,56 -36,31 -24,82
2009 -18,88 -24,38 -13,39 -32,22 -38,28 -26,16
2010 -19,81 -25,57 -14,04 -33,87 -40,23 -27,52
2011 -20,73 -26,75 -14,71 -35,53 -42,17 -28,89

Lee-Carter-GLM
Men Women

Pred. 95% Interval Pred. 95% Interval
2000 -8,11 -9,35 -6,88 -16,12 -17,72 -14,53
2001 -8,94 -10,68 -7,19 -17,73 -19,99 -15,47
2002 -9,76 -11,89 -7,63 -19,33 -22,10 -16,57
2003 -10,58 -13,05 -8,12 -20,94 -24,13 -17,74
2004 -11,40 -14,16 -8,65 -22,54 -26,12 -18,97
2005 -12,23 -15,24 -9,21 -24,15 -28,06 -20,24
2006 -13,05 -16,31 -9,79 -25,76 -29,98 -21,53
2007 -13,87 -17,35 -10,39 -27,36 -31,88 -22,84
2008 -14,69 -18,39 -10,99 -28,97 -33,76 -24,17
2009 -15,51 -19,41 -11,62 -30,57 -35,62 -25,52
2010 -16,34 -20,42 -12,25 -32,18 -37,47 -26,88
2011 -17,16 -21,43 -12,89 -33,782 -39,31 -28,25

TABLE II

PREDICTIONS OFkt FOR MEN AND WOMEN

Lee-Carter Lee-Carter-GLM
MSE MAPE MSE MAPE

Men 0.01301 11.85 0.00788 10.69
Women 0.00893 7.69 0.00839 8.17

TABLE III

MSE AND MAPE FOR PREDICTIONS FOR EACH GENDER.

tuarial Research Report, vol. 135, Febrero 2001.
[13] E. Tabeau, A. Van den Berg Jeths, and C. H. (Eds),A Review of

Demographic Forecasting Models for Mortality. Forecasting in
Developed Countries: From description to explanation. Kluwer
Academic Publishers, 2001.

[14] J. Wilmoth, “Computational methods for fitting and extrapo-
lating the Lee-Carter model of mortality change,”Technical
Report, Departament of Demography, University of California,
Berkeley, 1993.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 243

Abstract—Annualising working hours (AH) is a means of
achieving flexibility in the use of human resources to face
the seasonal nature of demand. There are few papers
dealing with the problem of planning staff working hours
under an annualised hours agreement. The proposed
planning procedures are able to minimise costs due to
overtime and temporary workers but, due to the difficulty of
solving the problem, it is normally assumed both that the
holiday weeks are fixed beforehand and that workers from
different categories who are able to perform a specific type
of task have the same efficiency. In the present paper, those
assumptions are relaxed and a more general problem is
solved. The computational experiment leads to the
conclusion that MILP is a technique suited to dealing with
the problem.

Keywords—manpower planning, annualised hours,
service industry, integer programming.

I. INTRODUCTION
NNUALISING working hours (AH)—i.e., the
possibility of irregularly distributing the total

number of staff working hours over the course of a
year—is a means of achieving flexibility, because
AH allows production capacity to be adapted to
fluctuations in demand, thus reducing costs
(overtime, temporary workers and inventory costs).
 AH gives rise to new problems that have hitherto
been given little attention in the literature. For
instance, in [5], [6], [7] and [1] it is emphasised that
the concept of annualised hours is surprisingly
absent from the literature on planning and
scheduling. A significant difficulty to be faced is
that the diversity of production systems means that
the problems that AH entails vary greatly; in [4], the
characteristics of the planning problem are discussed
and a classification scheme is proposed, giving rise
to thousands of different cases; moreover, AH often
implies the need to solve a complicated working
time planning problem. Some authors deal with
different versions of the problem (see, for example,
[5], [6], [11], and [1]-[3]), but most papers (for
example, [8]-[10]) discuss AH only from a
qualitative point of view.
 In [3], a MILP (Mixed Integer Linear
Programming) model is used to solve the problem of

planning staff working hours with an annual
horizon. Two hierarchical categories of workers are
considered and the costs of overtime and of
employing temporary workers are minimised. In the
aforementioned paper, the following is assumed to
ease its resolution: (i) the holiday weeks are fixed a
priori; and (ii) the workers from different categories
who are able to perform a specific type of task have
the same efficiency.

Actually, although workers from different
categories may be able to perform a specific type of
task, obviously certain categories frequently require
more time than others do. In addition, the allocation
of holiday weeks may be a decision variable of the
model with the objective both of minimising costs
and helping in the bargaining process: computing
the difference of costs between a situation in which
holidays are fixed a priori and one in which those
are decision variables, the company knows the
maximum amount of money that could offer to
workers in exchange of being able to fix their
holidays in the best moment. Therefore, in this
paper, assumptions in aforementioned paper are
relaxed and a more general problem is solved.

The main aims are to approach the planning of
working hours and holiday weeks over the course of
a year in services that employ cross-trained workers
who have different relative efficiencies, to show that
MILP is an appropriate tool for this aim, and of
course to verify that the possibility of determining
holiday weeks with the model provides better
results. The rest of the article is organised as
follows: the section 2 introduces the problem and
two MILP models for planning AH over a year;
section 3 include the results of the computational
experiment; section 4 show how results could be
used to help in the bargaining process; and, finally,
section 5 exposes the conclusions.

II. TWO MILP MODELS TO PLAN HOLIDAYS AND
WORKING TIME UNDER AH

Solving the planning problem involves
determining the number of weekly working hours
and holiday weeks for each member of staff.

A

Planning holidays and working time under
annualised hours

Amaia Lusa, Albert Corominas and Rafael Pastor

Universitat Politècnica de Catalunya/Research Institute IOC
Av. Diagonal 647, p11, 08028 Barcelona, Spain

Email: {albert.corominas\amaia.lusa\rafael.pastor@upc.edu}

244 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

A service system that is carried out on an
individual basis is considered (so working hours for
each worker may be different). Different types of
tasks are involved, the product is not storable and
the company forecasts the seasonal demand.

The production capacity in any given week must
be greater than or equal to that which is needed and,
if the staff does not provide entirely this capacity,
temporary workers will be hired for the number of
hours required. Overtime is admitted, but its total
amount is bounded; overtime hours are classified
into two blocks and the cost of an hour belonging to
the second block is greater than that of an hour of
the first. From the outset, the objective function is
the cost of overtime plus the cost of employing
temporary workers; it is possible to break the tie
between optimal solutions by considering the
penalties associated with the assignment of different
types of tasks to categories of employees (adding
this function to the first one with a small weight).

Workers from different categories may frequently
be able to perform a specific type of task, although
certain categories may require more time than others
may. Therefore, cross-trained workers are
considered: certain categories can perform different
types of tasks and can have different relative
efficiencies associated with them (for example, a
value of 0.9 means that a worker in that category
needs to work 1/0.9 hours to serve a demand that a
worker with a relative efficiency equal to 1 would
serve in 1 hour).

The conditions to be fulfilled by the solution are
the following:

i) the total of annual working hours is fixed;
ii) the weekly number of working hours must

fall within an interval defined by a lower
and upper bound;

iii) the average weekly working hours for any
set of twelve consecutive weeks is upper
bounded;

iv) if the average weekly working hours over a
specified number of consecutive weeks
(“week-block”) is greater than a certain
value, then over a given number of weeks
immediately succeeding the week-block,
the number of working hours must not be
greater than a certain value;

v) if “strong” and “weak” weeks are defined
as those in which the number of working
hours is respectively greater or less than
certain specified values, there is an upper
bound for the number of strong weeks and a
lower bound for the number of weak weeks.

Below, we introduce the two models to be
tested.
In M1, holiday weeks are determined by the

model but, in M2, these are fixed a priori (in both
cases, in the computational experiment, two

consecutive holiday weeks in winter and four
consecutive holiday weeks in summer are assumed).

We use the following notation:
Data
T Weeks in the planning horizon (in general,

52)
C Set of categories of workers
F Set of types of tasks
E Set of members of staff
ρjk Relative efficiency associated with the

workers in category j in the
accomplishment of tasks of type k
(j=1,...,|C|; k=1,...,|F|); 0≤ ρjk ≤1. If ρjk=0,
workers in category j are not able to
perform tasks of type k.

ˆ
kC Sets of categories of workers that can be

assigned to tasks of type k (kĈ =j∈C |ρjk >0)

jF̂ Sets of types of tasks which can be

performed by employees in category j (jF̂ =

k ∈ F | ρjk >0)
jkp Penalty associated with an hour of work in a

task of type k of a staff member in category j
(∀k∈F; ∀j∈ kĈ)

λ Parameter to weigh the penalties to establish
the trade-off between these and the monetary
costs of the solution.

jÊ Set of employees in category j (j=1,…,|C|)
rtk Required working hours for tasks of type k

in week t (t=1,..,T; k=1,…,|F|)
Hi Stipulated ordinary annual working hours of

employee i (∀i∈E)
α1, α2 Maximum proportions, over the annual

amount of ordinary working hours, of
overtime corresponding to blocks 1 and 2
respectively.

β1i, β2i Respectively, the cost of an hour of overtime
for block 1 and block 2 for employee i
(∀i∈E), with β1i < β2i

hmit, hMit Lower and upper bounds of the number of
working hours for worker i in week t (∀i∈E;
t=1,..,T); hmit < hMit

L, hL L is the maximum number of consecutive
weeks in which the average weekly working
hours cannot be greater than hL

B, b, hB, hb b is the minimum number of weeks, after a
week-block of B consecutive weeks with a
weekly average of working hours greater
than hB, in which the number of weekly
hours cannot be greater than hb

NS, hS NS is the maximum number of “strong”
weeks, i.e., weeks with a number of working
hours greater than hS

NW, hW NW is the minimum number of “weak”

Amaia Lusa et al.

245

weeks, i.e., weeks with a number of working
hours equal or less than hW

hw1i, hw2i Number of holiday weeks in the first and
second holiday periods respectively for
worker i (∀i∈E)

t1i, t2i First and last week respectively in which
worker i can take holidays in the first
holiday period (∀i∈E)

t3i, t4i First and last week respectively in which
worker i can take holidays in the second
holiday period (∀i∈E)

γk Cost of an hour for tasks of type k performed
by a worker who is not a member of staff (γk
> β2i , ˆˆ

j ki E j C∀ ∈ ∈)

Variables
xit Working hours of employee i in week t

(); 1,...,∀ ∈ =i E t T .
ytjk Working hours of employees in category j

dedicated to tasks of type k in week t
(ˆ; ; 1,...,∀ ∈ ∀ ∈ =kk F j C t T).

dtk Working hours corresponding to tasks of
type k to be supplied in week t by workers
who are not members of staff (∀k∈F;
t=1,…,T).

v1i, v2i Overtime corresponding respectively to
blocks 1 and 2 of employee i (∀i∈E).

vc1it ∈{0,1} Indicates whether employee i starts his
or her first holiday period in week t
(∀i∈E, t=t1i,...,t2i-hw1i+1).

vc2it ∈{0,1} Indicates whether employee i starts his
or her second holiday period in week t
(∀i∈E, t=t3i,...,t4i-hw2i+1).

δiτ ∈ {0,1} Indicates whether the average working
hours of employee i, in a week-block of B
weeks that ends with week τ, is (or is not)
greater than hB hours (∀i∈E; τ=B,…,T-b).

sit ∈ {0,1} Indicates whether employee i has a
planned number of working hours greater
than hS hours for week t (∀i∈E; t=1,…,T).

wit ∈ {0,1} Indicates whether employee i has a
planned number of working hours equal to
or less than hW hours for week t (∀i∈E;
t=1,…,T).

All the non-binary variables are real and non-
negative.

Now, the two models can be formalised.
MODEL 1 (M1)

ˆ1 1

[] 1 1 2 2

β β

γ λ

∈ ∈

∈ = = ∈ ∈

= ⋅ + ⋅ +

⋅ + ⋅ ⋅

∑ ∑

∑∑ ∑∑∑
k

i i i i
i E i E

T T

k tk jk tjk
k F t t k F j C

MIN z v v

d p y
 (1)

1
1 2

=

= + + ∀ ∈∑
T

it i i i
t

x H v v i E (2)

11 α≤ ⋅ ∀ ∈i iv H i E (3)

22 α≤ ⋅ ∀ ∈i iv H i E (4)

ˆ ˆ
 1,..., ;

∈ ∈

= = ∀ ∈∑ ∑
j j

it tjk
i E k F

x y t T j C (5)

ˆ
 1,..., ;ρ

∈

⋅ + ≥ = ∀ ∈∑
k

jk tjk tk tk
j C

y d r t T k F (6)

1
 ,..., ;

τ

τ

τ
= − +

≤ ⋅ = ∀ ∈∑ it L
t L

x L h L T i E (7)

1 1

 ,..., ;

τ τ

τ
τ τ

δ

τ
= − + = − +

⎛ ⎞≤ ⋅ + − ⋅ ⋅⎜ ⎟
⎝ ⎠

= − ∀ ∈

∑ ∑it B it B i
t B t B

x B h hM B h

B T b i E
 (8)

1

· 1,..., ;
τ

τ

τ
= − +

≤ = − + ∀ ∈∑ it B
t B

x B h T b T i E (9)

, , ,()·
 ; ,.... ; 1,...,
i l i l i l b ix hM hM h

i E B T b l b
τ τ τ τδ

τ
+ + +≤ − −

∀ ∈ = − =
 (10)

()· ; 1,...it S it S itx h hM h s i E t T≤ + − ∀ ∈ = (11)

1,...,it it it W itx hM (hM h)·w i E; t T≤ − − ∀ ∈ = (12)

1

T

it S
t

s N i E
=

≤ ∀ ∈∑ (13)

1

T

it W
t

w N i E
=

≥ ∀ ∈∑ (14)

1

1
i i

i

t2 hw1

it
t t1

vc1 i E
− +

=

= ∀ ∈∑ (15)

1

1
i i

i

t4 hw2

it
t t3

vc2 i E
− +

=

= ∀ ∈∑ (16)

[] [](); ,..., ,..., i i i iit it i E t t1 t2 t3 t4x hM ∀ ∈ ∉ ∨≤ (17)

() ; ,..., ,..., it it i E t t1 t2 t3 t4i i i ix hm ∀ ∈ ∉ ∨⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦≥ (18)

()

()min t, 1

max , 1

1

 ; ,...,

i i

i i

t2 hw1

iit it
tt1 hw1

i i

x hM vc1

i E t t1 t2

τ
τ

− +

= − +

⎛ ⎞
≤ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
∀ ∈ =

∑ (19)

()

()min t, 1

max , 1

1

 ; ,...,

i i

i i

t2 hw1

iit it
tt1 hw1

i i

x hm vc1

i E t t1 t2

τ
τ

− +

= − +

⎛ ⎞
≥ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
∀ ∈ =

∑ (20)

()

()min t, 1

max , 1

1

 ; ,...,

i i

i i

t4 hw2

iit it
tt3 hw2

i i

x hM vc2

i E t t3 t4

τ
τ

− +

= − +

⎛ ⎞
≤ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
∀ ∈ =

∑ (21)

()

()min t, 1

max , 1

1

 ; ,...,

i i

i i

t4 hw2

iit it
tt3 hw2

i i

x hm vc2

i E t t3 t4

τ
τ

− +

= − +

⎛ ⎞
≥ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
∀ ∈ =

∑ (22)

{0,1} ; ,...,i i E B T bτδ τ∈ ∀ ∈ = − (23)

246 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

, {0,1} ; 1,...,it its w i E t T∈ ∀ ∈ = (24)

1 {0,1} ; 1 ,..., 2 1 1it i i ivc i E t t t hw∈ ∀ ∈ = − + (25)

2 {0,1} ; 3 ,..., 4 2 1it i i ivc i E t t t hw∈ ∀ ∈ = − + (26)

1 , 2 0 i iv v i E≥ ∀ ∈ (27)

ˆ0 1,..., ; ;tjk ky t T k F j C≥ = ∀ ∈ ∀ ∈ (28)

0 1,..., ;tkd t T k F≥ = ∀ ∈ (29)

(1) is the objective function, which includes the cost
of overtime plus that of employing external workers
and the (weighted) penalties associated with the
assignment of tasks to the types of employees on the
staff; (2) imposes that the total number of worked
hours should be equal to the ordinary annual hours
stipulated plus overtime, if applicable; (3) and (4)
stipulates that the overtime for each of the two blocks
should not exceed their respective upper bounds; (5) is
the balance between the hours provided by specific
types of workers of the staff and the hours assigned to
different types of tasks; (6) expresses that the hours
assigned to a type of task that are to be carried out by
members of staff plus, if applicable, the hours
provided by external workers for that same type of
task must not be less than the number of hours
required; (7) imposes the upper bound on the average
weekly working hours for any subset of L consecutive
weeks; (8) implies that variable δiτ is equal to 1 if the
average number of working hours in a week-block of
B weeks is greater than hB; (9) prevents the average
hours worked from being greater than hB in the last
weeks of the year, when after the week-block of B
weeks there are no longer b weeks to “compensate”;
(10) implies that, if variable δiτ is equal to 1, the upper
bound of the number of working hours is hb; (11)
imposes that, if the number of working hours is greater
than hS, then variable sit is equal to 1; (12) states that, if
the number of working hours is greater than hW, then
variable wit is equal to 0; (13) and (14) stipulate that
the number of “strong” and “weak” weeks cannot be
greater than NS and less than NW respectively; (15) and
(16) establish that the worker must start his or her
holidays in a one and only one week; (17) and (18) set
the lower and upper bounds of the number of weekly
working hours in non-holiday weeks; (19), (20), (21)
and (22) set the lower and upper bounds of the number
of weekly working hours for possible holiday weeks;
(23), (24), (25) and (26) express the binary character
of the corresponding variables; and (27), (28) and (29)
show the non-negative character of the rest of the non-
binary variables.

MODEL 2 (M2)
M2 can be obtained by deleting the variables vc1it

and vc2it and their associated constraints (15, 16 and
19 to 22, 25 and 26) from model M1 and making
several minor modifications to equations (2), (5), (7)-
(14), (17), (18), (23) and (24). First of all, since

holidays are fixed a priori, additional data has to be
defined and the range of some data and variables has
to be redefined to take into account holiday weeks.
Si Set of working weeks for employee i (∀i∈E)
hmit , hMit , xit , sit and wit are defined ∀i∈E; ∀t∈Si
δiτ it is considered now that the constraint only

applies to blocks of B consecutive working
weeks. Thus, this variable is defined ∀i∈E ;
τ=B,…,T-b | [τ-B+1..τ]∈Si

The model is formulated as follows:

ˆ1 1

[] 1 1 2 2

β β

γ λ

∈ ∈

∈ = = ∈ ∈

= ⋅ + ⋅ +

⋅ + ⋅ ⋅

∑ ∑

∑∑ ∑∑∑
k

i i i i
i E i E

T T

k tk jk tjk
k F t t k F j C

MIN z v v

d p y
 (1)

1 2
i

it i i i
t

x H v v i E
S∀ ∈

= + + ∀ ∈∑ (30)

11 α≤ ⋅ ∀ ∈i iv H i E (3)

22 α≤ ⋅ ∀ ∈i iv H i E (4)

ˆ ˆ|

 1,..., ;
j i j

it tjk
i E t S k F

x y t T j C
∈ ∈ ∈

= = ∀ ∈∑ ∑ (31)

ˆ
 1,..., ;ρ

∈

⋅ + ≥ = ∀ ∈∑
k

jk tjk tk tk
j C

y d r t T k F (6)

1

 ; ,..., | [1..]

it L
t L

i

x L h

i E L T L S

τ

τ

τ τ τ
= − +

≤ ⋅

∀ ∈ = − + ∈

∑ (32)

1 1

 ; ,..., | [1..]

it B it B i
t B t B

i

x B h hM B h

i E B T b B S

τ τ

τ
τ τ

δ

τ τ τ
= − + = − +

⎛ ⎞≤ ⋅ + − ⋅ ⋅⎜ ⎟
⎝ ⎠

∀ ∈ = − − + ∈

∑ ∑ (33)

1

·

 ; 1,..., | [1..]

it B
t B

i

x B h

i E T b T B S

τ

τ

τ τ τ
= − +

≤

∀ ∈ = − + − + ∈

∑ (34)

, , ,()· ;
,.... ; 1,..., | [()]

i l i l i l b i

i i

x hM hM h i E
B T b l b lS S

τ τ τ τδ
τ τ τ

+ + +≤ − − ∀ ∈

= − = ∈ ∧ + ∈
 (35)

()· ; iit S it S itx h hM h s i E t S≤ + − ∀ ∈ ∀ ∈ (36)

 ; iit it it W itx hM (hM h)·w i E t S≤ − − ∀ ∈ ∀ ∈ (37)

i

it S
t

s N i E
S∈

≤ ∀ ∈∑ (38)

i

it W
t

w N i E
S∈

≥ ∀ ∈∑ (39)

; iit it i E tx hM S∀ ∈ ∀ ∈≤ (40)

 ; iit itx hm i E t S≥ ∀ ∈ ∀ ∈ (41)

{0,1}
; ,..., | [1..]

i

ii E B T b B S
τδ

τ τ τ
∈
∀ ∈ = − − + ∈

 (42)

, {0,1} ; iit its w i E t S∈ ∀ ∈ ∀ ∈ (43)

1 , 2 0 i iv v i E≥ ∀ ∈ (27)

Amaia Lusa et al.

247

ˆ0 1,..., ; ;tjk ky t T k F j C≥ = ∀ ∈ ∀ ∈ (28)

0 1,..., ;tkd t T k F≥ = ∀ ∈ (29)

III. COMPUTATIONAL EXPERIMENT
A large-scale computational experiment was

performed to evaluate the effectiveness (in terms of
computing time and the quality of the solutions) of
the models. Overall, the results were very
satisfactory.

The basic data used for the experiment are as
follows:
– Two MILP models: M1 and M2.
– 10, 40, 70, 100 and 250 staff workers.
– A time horizon of 52 weeks (46 working weeks

and 6 holiday weeks).
– The holiday weeks for each worker are

distributed into two uninterrupted periods,
including two weeks in winter and four weeks in
summer. In M2, the temporary allocation of
holidays was fixed for each worker at random.

– There are three categories and three types of
tasks. There are two patterns of relative
efficiency (and penalty). Table I and Table II
show the relative efficiency (and the penalty)
values for each pattern.

TABLE I

RELATIVE EFFICIENCY AND PENALTY VALUES, PATTERN 1

 Task 1 Task 2 Task 3
Category 1 1 (1) 0.9 (2) 0
Category 2 0 1 (1) 0.9 (2)
Category 3 0 0 1 (1)

TABLE II

RELATIVE EFFICIENCY AND PENALTY VALUES, PATTERN 2

 Task 1 Task 2 Task 3
Category 1 1 (1) 0 0
Category 2 0.9 (2) 1 (1) 0
Category 3 0.8 (2) 0 1 (1)

– The capacity (in working hours) required over

the year follows three different patterns.
Demand Type 1 corresponds to a non-seasonal
capacity pattern with noise (Figure I). Demand
Type 2 corresponds to a seasonality pattern with
one peak (Figure II), with noise. Demand Type
3 corresponds to a seasonality pattern with two
peaks, with noise (Figure III). In each case, the
total demand is equal to the total capacity
multiplied by 0.99.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 1. Type of demand 1 (no seasonality)

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2

Fig. 2. Type of demand 2 (one peak)

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 3. Type of demand 3 (two peaks)

For every combination of models, number of staff
workers, type of demand and pattern of relative
efficiency (and penalty), 20 instances were
generated (varying demand noise and, in M2,
holiday weeks at random), which gave 1,200
instances.

In spite of the dimension of the models, which
may be considered large (for example, on average,
for 250 workers M1 has 55,377 variables and 90,315
constraints and M2 has 42,689 variables and 56,572
constraints), they were solved to optimality using an
ILOG CPLEX 8.1 optimiser and a Pentium IV PC at
1.8 GHz with 512 Mb of RAM. The absolute and
relative MIP gap tolerances were set to 0.01. The
maximum computing time for all instances was set
to 1,800 seconds.

Feasible solutions were always obtained and most
of these were optimal solutions. Model M2 gave

248 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

always an optimal solution, whilst for M1 optimal
solutions were obtained in a 50.83%, 52.5%,
94.17%, 99.17% and 100% for 10, 40, 70, 100 and
250 workers, respectively.

The maximum computing times are very
reasonable considering the problem to be solved (the
aim of the models is to establish an annual plan) and
its maximum size (two hundred and fifty workers,
which is a large enough number, since we are
supposed to be dealing with a production system of
services or a part of this system). Model M1 was
harder than M2 to solve, as expected, given that this
model include more constraints and binary variables
than M2.

The experiments provided satisfactory results
regarding the quality of the solutions of the models.
The possibility of determining holiday weeks with
model M1, whilst observing a set of legal constraints
or constraints imposed by a collective bargaining
agreement between the management and the workers
(two uninterrupted weeks in winter and four in
summer in this case), provides very good solutions
and an average saving of more than 90% (for all
number of workers). These values also show how
the capacity of the staff can be adapted to demand
by determining the holiday weeks of the staff (this is
also due to the flexibility provided by the
annualisation of working time).

Another computational experiment was performed
with the following new data: total demand is equal
to total capacity multiplied by 1.05; for each
combination, 5 instances were generated (giving 300
new instances).

The results show that if the system is not
adequately sized (total capacity is less than total
demand), the solution is a little more difficult (and
the number of optimal/feasible solutions obtained
decreases); the results, nevertheless, can be
considered very good.

IV. A TOOL FOR A BARGAINING PROCESS
In most countries companies cannot introduce

irregular working hours if workers do not agree, so
the question is whether workers will really accept an
increase in flexibility (and also their holidays being
planned by the company). Besides the convincing
argument of conserving their jobs even in periods of
low demand, companies should offer some kind of
compensation that will lead workers to accept more
or less flexibility. Hence, it is essential to have a tool
to help in the bargaining.

Planning working time under different AH
scenarios provides the company and the workers
with quantitative information that can be very useful
for the bargaining process in order to adopt an
annual hours scheme. These scenarios may be
characterised, for example, by the weekly flexibility
accepted by workers, the total amount of annual

working hours (the company could eventually
reduce the annual working time), the maximum
overtime, the conditions related to the strong and
weak weeks and, of course, the possibility of, some
rules provided, planning the holiday weeks. For
each scenario, the model (M1 if holidays can be
planned and M2 otherwise) would give the cost of
the solution and the company and the workers could
agree to satisfactory conditions for both. Obviously,
doing this implies solving several instances of the
model. Hence, this would be possible only if solving
the model requires a reasonable time, which is the
case of the models presented in this paper.

Table III shows the results of a specific case in
which scenarios are characterised by the total
amount of annual hours (first column) and the
weekly flexibility (first row). For each scenario, the
first and second values correspond to the cost
obtained by M1 –holidays fixed by the model– and
M2 –holidays fixed a priori–, respectively. Note that
K is the cost obtained in a situation without
flexibility, without a reduction in working time and
with holidays fixed a priori. It can be seen how the
cost diminishes when flexibility is high, even when
reducing working time.
Two options for reducing the cost by implementing
annualised hours might be as follows: (1) by
increasing weekly flexibility and reducing working
time as a compensation for the workers; or (2), by
increasing flexibility and not reducing working time
but instead offering financial compensation to the
workers. As it is shown in Table III, in both cases
the cost can be further reduced if workers’ holidays
are planned by the model.

TABLE III
COST OF DIFFERENT SCENARIOS (ANNUAL HOURS, WEEKLY

FLEXIBILITY AND PLANNING HOLIDAYS)

 [40,40] [40, 50] [30, 45] [25, 50]

1,840 0.64·K
K

0.52·K
0.86·K

0.16·K
0.52·K

0
0.21·K

1,748 - - 0.16·K
0.51·K

0
0.21·K

1,610 - - 0.45·K
0.58·K

0
0.21·K

V. CONCLUSIONS
Annualising working hours (AH) is a means of

obtaining flexibility in the use of human resources to
face the seasonal nature of demand. There are few
papers dealing with the problem of planning staff
working hours under an annualised hours
agreement; moreover, most of them include tough
assumptions. For example, in [3], a MILP model is
used to solve the following AH problem: the costs of
overtime and employing temporary workers are

Amaia Lusa et al.

249

minimised. To facilitate the solving of the model,
however, the following is assumed: (i) the holiday
weeks are fixed a priori; and (ii) the workers from
different categories who are able to perform a
specific type of task have the same efficiency.

In this paper, these assumptions are relaxed and a
more general problem is solved: planning the
working hours and holiday weeks of cross-trained
workers who have different relative efficiencies over
the course of a year in the service sector. Our
computational experiment leads us to conclude that
MILP is a technique suited to dealing with the
problem in many real situations and, as is obvious,
that better results are obtained when the holiday
weeks are determined by the model. Finally, it has
been shown how the MILP models could be a useful
tool for helping in the bargaining process carried out
before the adoption of an annual hours scheme.

ACKNOWLEDGEMENTS
Supported by the Spanish MCyT projects

DPI2001-2176 and DPI2004-05797, co-financed by
FEDER.

REFERENCES
[1] Azmat C and Widmer M (2004). A case study of single

shift planning and scheduling under annualized hours: A
simple three step approach. European Journal of
Operational Research 153 (1), 148-175.

[2] Azmat C, Hürlimann T and Widmer M (2004). Mixed
Integer Programming to Schedule a Single-Shift
Workforce under Annualized Hours. Annals of Operation
Research 128, 199-215.

[3] Corominas A, Lusa A and Pastor R (2002). Using MILP to
plan annualised hours. Journal of the Operational
Research Society 53, 1101-1108.

[4] Corominas A, Lusa A and Pastor R (2004). Characteristics
and classification of annualised working hours planning
problems. International Journal of Services Technology
and Management 5/6, 435-447.

[5] Hung R (1999). Scheduling a workforce under annualized
hours. International Journal of Production Research 37
(11), 2419-2427.

[6] Hung R (1999). A multiple-shift workforce scheduling
model under annualized hours. Naval Research Logistic 46
(6), 726-736.

[7] Grabot B and Letouzey A (2000). Short-term manpower
management in manufacturing systems: new requirements
and DSS prototyping. Comp Ind 3 (1), 11-29.

[8] Lynch P (1995). Annual Hours: An idea whose time has
come. Personnel Management November, 46-50.

[9] MacMeeking J (1995). Why Tesco’s new composite
distribution needed annual hours. International Journal
Retail Distribution Management 23 (9), 36-38.

[10] Mazur L (1995). Coming: the annual workweeks. Across
the Board 32 (4), 42-45.

[11] Vila GFE and Astorino JM (2001). Annualized hours as a
capacity planning tool in make-to-order or assemble-to-
order environment: an agricultural implements company
case. Production Planning & Control 12, (4), 388-398.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 251

Soft computing-based aggregation methods for
human resource management

Lourdes Cańos ∗ and Vicente Liern†,
∗Universitat Polit̀ecnica de Val̀encia. Dep. Organización de Empresas, Eco. Fin. y Cont.

Camino de Vera, s/n. 46022-Valencia (Spain)
Email: loucada@omp.upv.es

†Universitat de Val̀encia. Dep. Matem̀atica Ecoǹomica-Empresarial
Av. Tarongers, s/n. 46071-Valencia (Spain)

Email: Vicente.Liern@uv.es

Abstract— The main idea of this paper is to help
managers in their decision making function by providing a
flexible decision support system. In considering personnel
selection, OWA aggregation operators allow us to assign
different weights to different selection criteria to simulate
expert valuation. The flexibility of these techniques allows
us to state a ranking of the applicants for a job. Besides,
we show an aggregation model based on effience analysis
to order the candidates.

Keywords— Personnel selection, Fuzzy sets, OWA oper-
ators, Efficient aggregation.

I. I NTRODUCTION

M AKING right decisions about human resources
policies can determine the success in companies.

Personnel selection is the process for selecting a person
from among a set of applicants. An accurate selection,
taking into account the company circumstances, allows
managers to optimize production costs and to achieve
corporative goals [1]. This process is complicated be-
cause of the human nature, and implies focusing in
some concepts like validity, trust and criteria fixing.
The main goal of managers is to obtain a ranking
of candidates which have been valuated according to
different competences. Therefore, the development of
efficient and flexible information aggregation methods
has become a main issue in information access methods.

Fuzzy set theory considers some elements that are
essential to deal with economic, social and technological
situations: the uncertainty in data, and the modeler or
manager capacity to add any additional information.

Weighted aggregation has been widely used in fuzzy
decision making, where a set of weights is used to
represent the relative importance that the decision maker
gives to different decision criteria [8]. Classical aggre-
gation operators are the arithmetic mean and quasi-
arithmetic means, for instance, the geometric, harmonic

and quadratic means [2], and the well known OWA
operators [15, 17]. Jaquet-Lagrèze and Siskos review in
[10] some useful methods to establish a ranking based in
the importance of every competence [16]. However, in
this paper we analyze the case in which the competences
are not important one by one, but the case in which bad
and good valuations can be compensed.

On the other hand, we can do an aggregation based in
parametric weights. Concretelly, we consider the weights
as functions depending on a parameterα that represents
the satisfaction level. In some cases, an important at-
tribute with a low satisfaction value can be penalized
by means of its weight, to render the given attribute
less significant in the overall evaluation. There are three
main approaches to choose the set of weights [12]:
the indiference trade-off method, the direct weighting
method and the probabilistic equivalence technique.

In this paper we present two personnel selection
models. In Section III we deal with some OWA operators
and we use them to imitate the experts’ opinion in the
selection process. In Section IV, we introduce a paramet-
ric aggregation model whose performance is shown on
a numerical example.

II. FUZZY OPTIMIZATION

A classical set (crisp set) A ⊆ X is defined as a
collection of elementsx ∈ X where each single element
can either belong to or not belong to it. We can express
this by using the characteristic function ofA, i. e.,

χA(x) =

{

1 if x ∈ A
0 if x /∈ A.

(1)

This binary function can be generalized by defining a
characteristic function such thatχA(x) ∈ [0, 1]. For-
mally, we can express this idea by means of the following
definition:

252 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Definition 1 Let X be a universal (crisp) set. A fuzzy
set Ã in X is a set of ordered pairs:

Ã = {(x, µÃ(x)), x ∈ X}, (2)

where µÃ(x) is the membership function or degree of
membership ofx in A.

In this framework, a decision problem can be formu-
lated as [19]:

Definition 2 Assume that we are given a fuzzy goalG̃
and a fuzzy constraint̃C in a space of alternativesX.
ThenG̃ and C̃ combine to form a decisioñD, which is
a fuzzy set resulting from intersection ofG̃ and C̃, i.e.,
D̃ = G̃ ∩ C̃, and

µD̃ = min{µG̃, µC̃}.

Note that the intersection of fuzzy sets is defined
in the possibilistic sense by themin-operator. This
approach makes the problem symmetric, i.e., the degree
of improvement of the goal is considered as important
as the degree of feasibility of the solution. If we want a
final crisp decision, we look for a solution whereµD̃ is
maximum.

III. PERSONNEL SELECTION BY USING ORDERED

WEIGHTED AVERAGE (OWA) OPERATORS

We haven candidates{Pi}
n
i=1 to fill a vacancy. They

have been evaluated inR competences{xj}
R
j=1. Let us

assume that the experts have given a global valuation
independent of previous valuations by using their intu-
ition and experience for{Pi}

L
i=1 candidates (L < n),

see TABLE I. Clearly, the company would be interested
in the experts’ opinion for the remaining candidates
[3]. However, when a personnel selection involves many
candidates, the evaluation process performed by external
experts would be too long and expensive. The OWA
operators can be very useful to our aim.

The Ordered Weighted Average operator was intro-
duced by Yager in 1988 [17]. An OWA operator of
dimensionn is a mappingF : IRn → IR, characterized
by ann-dimensional vector,w = (w1, . . . , wn)T , called
the weighting vector such that

wi ∈ [0, 1], 1 ≤ i ≤ n,

n
∑

i=1

wi = 1.

where

F (x1, x2, . . . , xn) =
n

∑

k=1

wkxjk
,

being xjk
the k-th largest element of the collection

{x1, x2, . . . , xn}.
By construction, a fundamental aspect of an OWA

operator is the re-ordering step. An aggregatexi is not
associated with a particular weightwj , but rather a
weight is associated with a particular ordered position
j of the arguments. In fact, this ordering introduces
the non-linearity into the aggregation process [6]. As
the function valueF = (x1, x2, . . . , xn) determines
the aggregated value of argumentsx1, x2, . . . , xn, in
particular, for the vectors

W 1 = [1, 0, . . . , 0]T ,
W 2 = [0, 1, . . . , 0]T ,
W 3 = [1/n, 1/n, . . . , 1/n]T

we obtain the max, min, and arithmetic mean operators,
respectively [9].

TABLE I

PARTIAL AND GLOBAL VALUATION OF THE CANDIDATES

x1 x2 . . . xR GEV∗

P1 a11 a12 . . . a1R v1

P2 a21 a22 . . . a2R v2

...
...

...
...

...
PL aL1 aL2 . . . aLR vL

PL+1 a(L+1)1 a(L+1)2 . . . a(L+1)R

...
...

...
...

Pn an1 an2 . . . anR

∗ GEV means Global Expert Valuation.

In order to make a decision about the selection pro-
cess, the human resources department should aggregate
all the information about every candidate. The first step
consists in trying to assign, at least approximately, a
global valuation to every candidate. In many situations,
it is unrealistic to assign a fixed weight to every com-
petence because low levels in some competences can be
compensated by high levels in some others, this idea is
assumed when the experts give a global valuation. With
this aim, for each candidate we order their competence
values from major to minor and we express the results
by means of a matrix.

A =

a1j1
a1j2

· · · a1jR

a2j1
a2j2

· · · a2jR

...
...

...
...

aLj1
aLj2

· · · aLjR

a(L+1)j1
a(L+1)j2

· · · a(L+1)jR

...
...

...
...

anj1
anj2

· · · anjR

(3)

where aijk
represents thek-th greatest score of the

candidatePi.

Lourdes Cańos and Vicente Liern 253

To obtain the weights that the experts have ’intuitively’
used, we solve the next quadratic programming problem
[8]:

(Ow) Min
L

∑

i=1

(
R

∑

k=1

aijk
wk − vi)

2

s. t.
R

∑

k=1

wk = 1

wk ≥ 0
k = 1, 2, . . . , R

(4)

The solution of the program (Ow) gives a vector
of weights W = [w∗

1, w
∗

2, . . . , w
∗

R]T that allows the
valuation of all the candidates by using the following
expression:

v∗i =
R

∑

k=1

w∗

kaiji
k

Now, we can sort the candidates by using the values
v∗1, v

∗

2, . . . , v
∗

n, and we have solved our problem. If there
is a draw, we must break the tie with some criteria such
as the arithmetic average or the greatest score in some
specific competences [3].

The procedures involved in the model above can
be performed by using MS Excel. We summarize our
proposal in the following algorithm.

ALGORITHM 1

Inputs:
Global valuation of some candidates:

v1, v2, . . . , vL, L < n
Valuation of every candidate in every competence.

STEP 1: Order valuations from every candidate
in a decreasing way.

A = (aijk
) , 1 ≤ i ≤ n, 1 ≤ k ≤ R

STEP 2: Calculate the weights,w∗

1, w
∗

2, . . . , w
∗

R, of
every competence by using the program-
ming model (Ow).

STEP 3: Calculate the global valuation of each

candidate:

v∗i =
R

∑

k=1

w∗

kaijk
, i = 1, . . . R.

STEP 4: Order the candidates according tov∗i .

Output: Selection.

A. OWA operators and tolerance intervals

In practice is more comfortable and realistic to value
the competences by using tolerance intervals,

Iij = [bij , dij],

because it is closer to the human thinking. In this case,
we express the valuations as in Table II.

TABLE II

PARTIAL AND GLOBAL VALUATION WITH INTERVALS

x1 x2 . . . xR GEV

P1 I11 I12 . . . I1R v1

P2 I21 I22 . . . I2R v2

...
...

...
...

...
PL aL1 aL2 . . . aLR vL

PL+1 I(L+1)1 I(L+1)2 . . . I(L+1)R

...
...

...
...

Pn In1 In2 . . . InR

As we exposed before, a fundamental aspect is the
re-ordering of the valuations. Since the valuations are
expressed as intervals, it is necessary to introduce an
ordering relation in the set of intervals. For this aim, we
can use the next definition [7]:

Definition 3 Let A = [a1, a2], B = [b1, b2] ⊂ IR be two
intervals.A is larger thanB, A ≺ B if and only if
{

k1a1+k2a2

k1+k2

> k1b1+k2b2

k1+k2

, k1a1 + k2a2 6= k1b1 + k2b2

a1 > b1, k1a1 + k2a2 = k1b1 + k2b2

wherek1 andk2 are two positive constants fixed a priori.
Notice that if we changea1 > b1 by a2 > b2 the order

would be less pessimistic.

By applying Definition 3, we construct the matrix of
intervalsA(I).

A(I) =

I1j1
I1j2

· · · I1jR

I2j1
I2j2

· · · I2jR

...
...

...
...

ILj1
ILj2

· · · ILjR

I(L+1)j1
I(L+1)j2

· · · I(L+1)jR

...
...

...
...

Inj1
Inj2

· · · InjR

(5)

where Iijr
, r = 1, . . . R represents ther-th greatest

interval of valuation for the candidatePi.
We can distinguish two cases: that in which we

suppose that any possible increasing or decreasing of
the competences is balanced and that in which we can
not assume this hypothesis. Let us show two methods to
deal with both situations.

254 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

A.1 Assuming trade-off

If we accept that there is a trade-off in the compe-
tences of all candidates, we can write the elements of
matrix A(I) as intervals depending on a parameter:

Iijr
→ bijr

+ (dijr
− bijr

)α, α ∈ [0, 1]. (6)

We denote these intervals as

aijr
(α) = bijr

+ (dijr
− bijr

)α, α ∈ [0, 1] (7)

and we solve the following programming model (see
[5]):

(Ow2) Min
L

∑

i=1

(
R

∑

r=1

aijr
(α)wr − vi)

2

s. t.
R

∑

r=1

wr = 1

α ∈ [0, 1]
wr ≥ 0
r = 1, 2, . . . , R

(8)

(Ow2) provides the results for the weights,w∗

r , and the
parameterα∗ that best fits the external experts’ opinion.
With this information, we evaluate all the candidates by
using the following expression.

v∗i =
R

∑

k=1

w∗

raiji
r
(α∗).

A.2 Without a perfect trade-off

In this case, we can not parametrize the intervals as
before. So, we choose a representant of the elements
of matrix A(I) (see [7]). According to Definition 3, we
calculate

aijr
=

k1bijr
+ k2dijr

k1 + k2
, 1 ≤ i ≤ n, 1 ≤ r ≤ R. (9)

For this aijr
we solve the programming model (Ow)

and, finally, we calculate the global valuation of each
candidate.

Remark 1. By construction,aijr
represents ther-th

greatest defuzzyfied value for the candidatePi.

Remark 2.Taking into account expresion (9), the solution
of case A. 2 is a particular case of A. 1 making

α =
k2

k1 + k2
.

IV. PARAMETRIC AGGREGATION TECHNIQUES

Following Kao and Liu ideas [11] to obtain efficien-
cies depending on a parameter,α, we have designed a
flexible model to calculate intervals in which the weights
of every competence can fluctuate.

Let n be the number of candidates to be evaluated in
R competences. For thei-th candidate we suppose that
the relative importance of thej-th competence is given
by the fuzzy number:

W̃ij =
{

(wij , µW̃ij
(wij)) : wij ∈ Wij

}

, 1 ≤ j ≤ R,

(10)
whereWij is the universal crisp set of thej-th weight
for the i-th candidate andµW̃ij

is the membership

function of W̃ij . On the other hand, we assume that the
competences of thei-th candidate are given by the fuzzy
number:

C̃ij =
{

(cij , µC̃ij
(cij)) : cij ∈ Cij

}

, 1 ≤ j ≤ R,

(11)
whereCij is the universal crisp set of thej-th compe-
tence for thei-th candidate andµC̃ij

is a membership
function.

Similarly to the crisp weighted average, we can define
the fuzzy weighted average as

Ỹi =

R
∑

j=1

w̃j c̃j

R
∑

j=1

w̃j

, 1 ≤ i ≤ n. (12)

This fuzzy quantity is computed for each candidate
and provides us with a global measure of their corre-
sponding adaptation for the vacancy.

According to the extension principle [18], the mem-
bership function ofỸi is:

µỸi
(yi) = sup min

c,w

{

µW̃ij
(wij), µC̃ij

(cij), 1 ≤ j ≤ R
}

,

whereyi =
R

∑

j=1

wijcij/
R

∑

i=1

wij .

In practice, we can obtainµỸi
by solving the next

mathematical programming model:

µỸi
(yi) = Max. z

s. t. z ≤ µC̃ij
(cij), 1 ≤ j ≤ R,

z ≤ µW̃ij
(wij), 1 ≤ j ≤ R,

yi =
R

∑

j=1

wijcij/
R

∑

i=1

wij ,

wij ∈ Wij , cij ∈ Cij , 1 ≤ j ≤ R.

Lourdes Cańos and Vicente Liern 255

We expressα-cuts ofW̃ij and C̃ij as follows:

w̃ij(α) = {wij ∈ Wij : µW̃ij
(wij)) ≥ α}, 1 ≤ j ≤ R

c̃ij(α) = {cij ∈ Cij : µC̃ij
(cij)) ≥ α}, 1 ≤ j ≤ R.

and we assume that allα-cuts are given by the pair of
intervals [11]:

w̃ij(α) = [min
wij

{wij ∈ Wij : µW̃ij
(wij) ≥ α},

max
wij

{wij ∈ Wij : µW̃ij
(wij) ≥ α}]

= [wij(α)L, wij(α)U]

c̃ij(α) = [min
cij

{cij ∈ Cij : µC̃ij
(cij) ≥ α},

max
cij

{cij ∈ Cij : µC̃ij
(cij) ≥ α}]

= [cij(α)L, cij(α)U]

Kao and Liu proposed to solve the following linear
fractional programming problems:

yi(α)L = min yi =

R
∑

j=1

wijcij(α)

R
∑

j=1

wij

s. t. wij(α)L ≤ wij ≤ wij(α)U ,
j = 1, . . . , R,

cij(α)L ≤ cij ≤ cij(α)U ,
j = 1, . . . , R,

(13)

yi(α)U = max yi =

R
∑

j=1

wijcij(α)

R
∑

j=1

wij

s. t. wij(α)L ≤ wij ≤ wij(α)U ,
j = 1, . . . , R,

cij(α)L ≤ cij ≤ cij(α)U ,
j = 1, . . . , R,

(14)
If we make the changetj = 1/

∑R
j=1 wij , vij =

tjwij , j = 1, . . . R, the previous models are trans-
formed in the following linear models:

yi(α)L = min yi =
R

∑

j=1

vijcij(α)

s. t. tjwij(α)L ≤ vij ≤ tjwij(α)U ,
j = 1, . . . , R,

R
∑

j=1

vij = 1,

tj ≥ 0,
(15)

yi(α)U = min yi =
R

∑

j=1

vijcij(α)U

s. t. tjwij(α)L ≤ vij ≤ tjwij(α)U ,
j = 1, . . . , R,

R
∑

j=1

vij = 1,

tj ≥ 0.
(16)

The α-cut of Ỹi is the crisp interval

Ei(α) := [yi(α)L, yi(α)U], (17)

obtained from the previous model. The membership
functionµỸi

can be constructed by enumerating different
α values.

Expressed in an algorithmic form, our proposal is the
following:

ALGORITHM 2

STEP 1: State membership functions for competence
valuations and weights.

STEP 2: Calculate the pointsyj(α)L, yj(α)U for
every candidate and for

α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

α P1 . . . Pn

0 [y1(0)L, y1(0)U] . . . [yn(0)L, yn(0)U]
0.1 [y1(0.1)L, y1(0.1)U] . . . [yn(0.1)L, yn(0.1)U]
0.2 [y1(0.2)L, y1(0.2)U] . . . [yn(0.2)L, yn(0.2)U]
...

...
...

0.9 [y1(0.9)L, y1(0.9)U] . . . [yn(0.9)L, yn(0.9)U]
1 [y1(1)L, y1(1)U] . . . [yn(1)L, yn(1)U]

STEP 3: Order the intervals for every value ofα
Ei(α) = [yi(α)L, yi(α)U]
Ek1

(α),≺ Ek2
(α) ≺ . . . ,≺ Ekn

(α)

STEP 4: SelectEkn
(α).

256 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

V. COMPUTATIONAL RESULTS

Suppose that we have five candidates,P1, . . . , P5 and
we must choose just one of them. For this aim we have
considered six competences,c1, . . . , c6. Let us show how
the proposed models perform.

A. Example 1: OWA techniques.

Let us assume that the valuation of the competences
of every candidate are those appearing in TABLE III.

TABLE III

VALUATION OF THE COMPETENCES OF EACH CANDIDATE

c1 c2 c3 c4

P1 [0.3, 0.7] 0.1 [0.3, 0.6] [0.4, 0.9]
P2 [0.1, 0.3] [0.7, 0.9] 0 [0.6, 0.8]
P3 0.3 [0.6, 0.9] [0.4, 0.7] [0.8, 0.9]
P4 [0.4, 0.6] [0.3, 0.5] [0.4, 0.8] [0.5, 0.7]
P5 [0.2, 0.5] [0.7, 1] [0.4, 0.7] [0.6, 0.9]

c5 c6 GEV
P1 [0.5, 0.8] [0.8, 0.9] 0.6
P2 [0.4, 0.7] 0.8 0.5
P3 [0.3, 0.7] [0.5, 0.7] 0.7
P4 1 [0.3, 0.7]
P5 [0.4, 0.6] 0.8

A. 1 Assuming trade-off

TABLE IV

RESULTS OF(OW2) MODEL

α∗ w∗

1 w∗

2 w∗

3 w∗

4 w∗

5 w∗

6

0.87 0.4277 0 0 0.0866 0.2513 0.2342

If we solve the (Ow2) model by using data from
TABLE III, we obtain the results:

TABLE V

GEV RESULTS

Candidate Valuation
P4 0.7392
P5 0.7205

Therefore, the order of the valuations of the candidates
is

P2 ≺ P1 ≺ P3 ≺ P5 ≺ P4,

and consequently we select the candidateP4.

A. 2 Without trade-off
Firstly, according to expression (9) we choose a rep-

resentant of every interval,

A =

0.53 0.1 0.47 0.69 0.67 0.86
0.22 0.82 0 0.72 0.57 0.8
0.3 0.77 0.57 0.86 0.53 0.62
0.52 0.42 0.63 0.62 1 0.53
0.37 0.87 0.57 0.77 0.52 0.8

The optimal solution of the corresponding quadratic
problem (OW) is

w2 = w3 = w6 = 0, w1 = 0.40, w4 = 0.28, w5 = 0.32

and the optimal value of the objective function is
0.0009259. Then, we can imitate the valuations made
by the experts and evaluate all the candidates, GEV, as
we see in TABLE VI.

TABLE VI

GEV RESULTS

Candidate Valuation
P4 0.7148
P5 0.6766

Finally, we order the valuations of the candidates,

P2 ≺ P1 ≺ P5 ≺ P3 ≺ P4.

We can conclude that candidateP4 is the most prepared
to do the job.

B. Example 2: Parametric weights.

Let us suppose that the fuzzy weights associated
to each competencẽW1, . . . , W̃6 are triangular fuzzy
numbers whoseα-cuts are as follows:

w1 = [−0.25(1 − α), 0.1 + 0.15(1 − α)]
w2 = [−0.3(1 − α), 0.1 + 0.2(1 − α)]
w3 = [−0.1(1 − α), 0.1 + 0.35(1 − α)]
w4 = [0.3 − 0.2(1 − α), 0.8 + 0.1(1 − α)]
w5 = [0.1 − 0.05(1 − α), 0.15 + 0.1(1 − α)]
w6 = [0.1 − 0.1(1 − α), 0.2 + 0.2(1 − α)]

(18)

Besides, if we assume that the membership functions
of the competences are also triangular fuzzy numbers,
according to TABLE II, the parametric valuation of
competences appears in TABLE VII.

We use GAMS or MS Excel to calculate the intervals
that define the objective function depending on the
parameter values from0 to 1.

After choosing a tolerance level, we obtain a set of
intervals, one for each candidate, as we see inTABLE

VIII. In case that we are interested in defuzzifying the

Lourdes Cańos and Vicente Liern 257

TABLE VII

PARAMETRIC VALUATION OF COMPETENCES

c1 c2 c3

P1 [0.3-0.1(1-α), 0.1 [0.3-0.2(1-α),
0.7+0.15(1-α)] 0.6+0.15(1-α)]

P2 [0.1-0.05(1-α), [0.7-0.25(1-α), 0
0.3+0.3(1-α)] 0.9+0.05(1-α)]

P3 0.3 [0.6-0.3(1-α), [0.4-0.2(1-α),
0.9+0.1(1-α)] 0.7+0.2(1-α)]

P4 [0.4-0.05(1-α), [0.3-0.3(1-α), [0.4-0.3(1-α),
0.6+0.2(1-α)] 0.5+0.25(1-α)] 0.8+0.1(1-α)]

P5 [0.2-0.2(1-α), [0.7-0.3(1-α), [0.4-0.1(1-α),
0.5+0.3(1-α)] 1] 0.7+0.2(1-α)]

c4 c5 c6

P1 [0.4-0.15(1-α), [0.5-0.25(1-α), [0.8-0.3(1-α),
0.9+0.1(1-α)] 0.8+0.1(1-α)] 0.9+0.1(1-α)]

P2 [0.6-0.35(1-α), [0.4-0.2(1-α), 0.8
0.8+0.15(1-α)] 0.7+0.1(1-α)]

P3 [0.8-0.1(1-α), [0.3-0.25(1-α), [0.5-0.15(1-α),
0.9+0.1(1-α)] 0.7+0.3(1-α)] 0.7+0.15(1-α)]

P4 [0.5-0.35(1-α), 1 [0.3-0.1(1-α),
0.7+0.25(1-α)] 0.7+0.3(1-α)]

P5 [0.6-0.3(1-α), [0.4-0.3(1-α), 0.8
0.9+0.05(1-α)] 0.6+0.2(1-α)]

TABLE VIII

RESULTS

α P1 P2 P3

0 [0.125, 0.9963] [0.0559, 0.944] [0.2156, 1]
0.1 [0.1478, 0.9858] [0.0805, 0.9297] [0.2524, 0.9879]
0.2 [0.1716, 0.9754] [0.1078, 0.9154] [0.2891, 0.9754]
0.3 [0.1967, 0.9649] [0.1379, 0.9011] [0.3202, 0.9627]
0.4 [0.223, 0.9544] [0.1710, 0.8867] [0.3494, 0.9496]
0.5 [0.2506, 0.9439] [0.2073, 0.8723] [0.3792, 0.9362]
0.6 [0.2766, 0.9333] [0.2468, 0.8579] [0.4097, 0.9224]
0.7 [0.3043, 0.9228] [0.29, 0.8435] [0.4409, 0.9083]
0.8 [0.3339, 0.9122] [0.3368, 0.829] [0.4725, 0.8938]
0.9 [0.3657, 0.9016] [0.3871, 0.8145] [0.503, 0.8789]
1 [0.4, 0.8909] [0.44, 0.8] [0.5353, 0.8636]
α P4 P5

0 [0.1222, 0.9933] [0.075, 0.9667]
0.1 [0.161, 0.9749] [0.1287, 0.9555]
0.2 [0.1995, 0.961] [0.1744, 0.9442]
0.3 [0.2358, 0.9446] [0.2193, 0.9341]
0.4 [0.2669, 0.926] [0.2639, 0.9262]
0.5 [0.2988, 0.9056] [0.308, 0.9181]
0.6 [0.3316, 0.8834] [0.3517, 0.9097]
0.7 [0.364, 0.8598] [0.389, 0.9009]
0.8 [0.3991, 0.8349] [0.4259, 0.8919]
0.9 [0.4319, 0.8091] [0.4651, 0.8825]
1 [0.4667, 0.7846] [0.5067, 0.8727]

results we can compute the midpoints of the intervals,
see TABLE IX for α = 0.5 andα = 1.

The greatest average values correspond to candidate
P3 in both cases. So, he or she is chosen to fill the
vacancy. Although the results are the same, this is not
always true as it depends on the tolerance level.

TABLE IX

RESULTS FOR A GIVEN TOLERANCE LEVEL

α P1 P2 P3 P4 P5

0.5 0.59725 0.5398 0.6577 0.6022 0.61305

1 0.64545 0.62 0.69945 0.62565 0.6897

Notice that by using this model the result can differ
from the one obtained by using OWA operators, de-
scribed in the previous section.

VI. CONCLUSIONS

When mathematical models help decision-making
there are some advantages such as quick and clear
solutions that are easy to understand. On the other hand,
difficulties appear because, in a general way, mathemat-
ical models make magnitudes to become objective and
quantified. To avoid this, we use models developed in
the fuzzy set theory, to add uncertainty and subjectivity
to the problem. Representing a phenomenon that occurs
in real life without any deformation is a difficult task.
Fuzzy logic does not increase the difficulty of traditional
mathematics and it is closer to human thinking. Also, it
allows thinking on future policies to avoid the rigidity re-
quirements that makes the model non-sense and prevents
us from ignoring other solutions that could be useful.

In personnel selection, an inflexible treatment of the
candidate valuations can obstruct the ordering process
because not all the requirements are considered, while
global valuation neutralizes the positive valuation of
competences with the negatives, and is unfair, etc. In this
paper we show a way to simulate the experts valuation
because in a personnel selection that involves many
candidates an evaluation process performed by external
experts would be too long and expensive. The techniques
explained can be used in other scenarios: hiring, training,
promotion, etc., and also can be modelled by means
of fuzzy sets. In this framework, fuzzy mathematical
methods are a powerful tool for the decision-making
process.

OWA operators provide flexibility to model a wide
variety of aggregators because of its definition is based
in a vector of weights and not in a unique parameter.
A different proposal is to assume that the weights are

258 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

functions depending on a parameterα that represents the
satisfaction level. We can calculate intervals associated
with weights for everyα by means of an efficience
analysis. Therefore, in a personnel selection process we
get an order of the candidates to fill a vacancy.

Finally, it is worth remarking that the described
models can be solved easily by using MS Excel, this
is an added advantage because the program is almost
universally available.

ACKNOWLEDGEMENTS

The authors would like to thank the referees for their
comments and suggestions.

This paper has been partially supported by the Minis-
terio de Ciencia y Tecnologı́a of Spain, TIC2002-04242-
C03-03, and Generalitat Valenciana, GV04B-090.

REFERENCES

[1] J.E. Butler, G.R. Ferris and N.K. Napier,Strategy and
Human Resources Management. South Western Publish-
ing CO, 1991.

[2] T. Calvo and R. Mesiar, “Weighted triangular norms-
based aggregation operators”.Fuzzy Sets and Systems,
137, pp. 3-10, 2003.

[3] L. Canós and V. Liern, “Some fuzzy models for human
resource management”.International Journal of Technol-
ogy, Policy and Management, 4, pp. 291-308, 2004.

[4] C.H. Carlsson and R. Fullér, Fuzzy reasoning in decision
making and optimization. Heidelberg: Springer-Verlag,
2002.

[5] C.H. Carlsson and P. Korhonen, “A parametric approach
to fuzzy linear programming”.Fuzzy Sets and Systems,
20, pp. 17-30, 1986.

[6] F. Chiclana, F. Herrera, E. Herrera-Viedma and L.
Mart́ınez, “A note on the reciprocity in the aggregation of
fuzzy preference relations using OWA operators”.Fuzzy
Sets and Systems, 137, pp. 71-83, 2003.

[7] D. Dubois and H. Prade,Fuzzy sets and systems: theory
and applications. Academic Press. San Diego, 1980.

[8] D.P. Filev and R.R. Yager, “On the issue of obtaining
OWA operator weights”.Fuzzy Sets and Systems, 94, pp.
157-169, 1998.

[9] J.C. Fodor, J.L. Marichal and M. Roubens, “Characteriza-
tion of some aggregation functions arising from MCDM
problems” en B. Bouchon-Meunier, R.R. Yager y L.A.
Zadeh (eds.),Fuzzy Logic and Soft Computing. Series:
Advances in Fuzzy Systems-Applications and Theory,
vol. 4 (World Scientific Publishing Singapore), pp. 194-
201, 1995.

[10] E. Jacquet-Lagrèze and Y. Siskos, “Preference disag-
gregation: 20 years of MCDA experience”.European
Journal of Operational Research, 130, pp. 233-245,
2001.

[11] C. Kao and S.T. Liu, “Fraccional programming approach
to fuzzy weighted average”.Fuzzy Sets and Systems, 120,
pp. 435-444, 2001.

[12] U. Kaymak and J.M. Sousa, “Weighted constraint ag-
gregation in fuzzy optimization”.Constraints, 8, (1), pp.
29-46, 2001.

[13] H. Legind Larsen, “Efficient importance weighted aggre-
gation between min and max”.9th International Con-
ference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems(IPMU’ 2002).
Annecy (Francia), 2002.

[14] R.A. Marques Pereira and R. Almeida Ribeiro, “Aggrega-
tion with generalized mixtura operators using weighting
functions”.Fuzzy Sets and Systems, 137, pp. 43-58, 2003.

[15] R. Smoĺıková and M.P. Wachowiak, “Aggregation oper-
ators for selection problems”.Fuzzy Sets and Systems,
131, pp. 23-34, 2002.

[16] A. Spyridakos, Y. Siskos, D. Yannacopoulos and A.
Skouris, “Multicriteria job evaluation for large organiza-
tions”. European Journal of Operational Research, 130,
pp. 375-387, 2001.

[17] R.R. Yager, “On ordered weighted averaging aggrega-
tion operators in multi-criteria decision making”.IEEE
Transactions on Systems, Man and Cybernetics, 18, pp.
183-190, 1988.

[18] L.A. Zadeh, “Fuzzy sets”.Information and Control, 8,
pp. 338-353, 1965.

[19] H.J. Zimmermann,Fuzzy Set Theory and its Applica-
tions. Kluwer Academinc Publishers. Boston, 1996.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 259

Abstract— This paper presents a new procedure for
computing lower bounds for the Capacitated Arc Routing
Problem (CARP). We propose a Set Covering model with
additional constraints whose linear relaxation is solved by
combining column generation with a cutting plane
algorithm. The set of columns is relaxed as to include the
so called q-routes that can be efficiently generated by
means of a dynamic programming algorithm. The
additional constraints and the cutting plane algorithm
have been adapted from the one by Belenguer and
Benavent. This new method outperforms the pure cutting
plane algorithm of Belenguer and Benavent and is
competitive with the best lower bounding procedures for
the CARP.

Keywords— Capacitated Arc Routing Problem,
Column Generation, Cutting Plane.

I. INTRODUCTION.
HE Capacitated Arc Routing Problem
(CARP), introduced by Golden and Wong

[9], can be defined as follows. Let G’=(V’,E) be
an undirected graph with vertex set V and edge
set E. Every edge e∈E has associated a cost ce ≥
0 and a demand qe ≥ 0. We denote by ER the set
of edges with positive demand, which are called
required edges.

Given a vehicle capacity Q, the CARP consists
of finding a set of vehicle routes of minimum
cost, such that every required edge is served by
exactly one vehicle, each route starts and ends at
a depot (assumed to be vertex 1) and the total
demand served by a route does not exceed Q.

The CARP has been used to model many real
situations, including garbage collection, postal

delivery, snow cleaning, routing of electric
meter readers, etc. By this reason, several
heuristics have been proposed for it; see Hertz
and Mittaz [11] for an exhaustive review. The
best solutions have been obtained with
metaheuristic algorithms like the tabu search
proposed by Hertz et al. [10] and the memetic
algorithm proposed by Lacomme et al. [14].

The CARP is NP-hard (see [9]) and it is
considered to be very difficult to solve exactly.
Several lower bounding procedures for the
CARP, based in matching problems, have been
proposed: Golden and Wong [9], Assad et al.
[2], Pearn [17], Benavent et al. [5], Hirabayashi
et al. [12], Amberg and Voβ [1], and Wohlk
[18]. All these procedures are outperformed by
the cutting plane algorithm proposed by
Belenguer and Benavent [4]. The first exact
method proposed was a Branch & Bound
algorithm described in Kiuchi et al. [13] where,
at each node, a lower bound is computed by the
procedure described in [12]. Only small
instances have been solved with this method.
Recently, Longo et al. [15] and Baldacci and
Maniezzo [3] transform the CARP into a
Capacitated Vehicle Routing Problem (CVRP).
Then, [15] solves the transformed instance with
a Branch-and-Cut-and-Price algorithm, while [3]
uses Branch-and-Cut. They are able to solve
instances with up to 98 required edges. The
lower bound obtained in the root node by these
methods outperforms all the above mentioned
lower bounding procedures.

Cutting Plane and Column Generation for the
Capacitated Arc Routing Problem

T

David Gómez–Cabrero *, José Manuel Belenguer† and Enrique Benavent‡

* Departamento de Estadística e Investigación Operativa / Universitat de València
Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

Email: lunacab@yahoo.es
† Departamento de Estadística e Investigación Operativa / Universitat de València

Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
Email: jose.belenguer@uv.es

‡ Departamento de Estadística e Investigación Operativa / Universitat de València
Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

Email: enrique.benavent@uv.es

260 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

See also Dror [6] for an exhaustive review of
the CARP and other arc routing problems.

The approach proposed in this work considers
a Set Covering formulation of the CARP, and
then a column generation approach is used
where routes are generated and added to the
model as needed. The model is strengthened by
adding several classes of valid constraints for the
CARP that are dynamically included in the
model using a cutting plane procedure.

In section II we present the Set Covering
model for the CARP that includes additional
constraints. In the next section we present the
whole algorithm that combines Column and
Cutting Plane Generation. We explain there the
dynamic programming algorithm used to
generate new columns, and the valid constraints
and their corresponding identification
procedures. Afterwards, in section IV, we
present the computational results obtained by
our method. Finally, section V draws some
conclusions and proposes future research.

II. THE SET COVERING MODEL
We use a Set Covering model to formulate the

CARP: if we consider the set of feasible routes for
the vehicles the CARP can be viewed as the
problem of selecting a set of routes with minimum
total cost that serve all the required edges. One
drawback of this model is the huge number of
feasible routes that usually exists, so we use a
column generation approach where routes are
generated and added to the model as needed.
Unfortunately, in order to generate appropriate
routes, an NP-hard problem has to be solved; we
avoid this problem by relaxing the set of routes
and including the so called q-routes, which allows
generating columns more efficiently. Similar
approaches are quite known in other routing
problems like the Vehicle Routing Problem with
Time Windows (VRPTW), see for instance
Desrosiers et al. [7], but have not been applied
successfully to the CARP, up to our knowledge.
What is less usual is the use of additional
constraints that allow to strengthen the model. We
use several classes of valid constraints for the
CARP that are dynamically included in the model
using a cutting plane procedure.

Let V be the subset of vertices that includes the
depot and those vertices which are incident with at
least one required edge. We denote by sij to the
cost of the shortest path cost in G' between

vertices i and j, i,j∈V. Our model works on the
transformed graph G = (V,ER∪H) where H
contains a non required edge e=(i,j) with cost sij
(also denoted se), for each pair of vertices i,j∈V.

We call q-route to a closed walk in G containing
required edges, that are served, and edges from H,
that are just traversed, and satisfying the following
constraints:
• it contains the depot,
• it may serve more than once the same

required edge,
• the total demand it serves is not greater that

Q,
• it cannot traverse two edges from H

consecutively.
It is obvious that the set of q-routes contains all

routes that can be part of an optimal solution to
the CARP. The prohibition of consecutively
traversing two edges of H only eliminates
dominated routes as the costs of these edges
satisfy sij≤sik+skj, for any i,j,k∈V. This prohibition
is justified to avoid q-routes with unbounded
lower cost, which could appear when transformed
costs (to be defined later on) are negative.

 Let Ω denote the set of q-routes. We use the
following decision variables, for any i∈Ω:

⎩
⎨
⎧

=
usednot is route-q if 0
 used is route-q if 1

i
i

xi

We will denote by:
• aie = number of times q-route i∈Ω serves

edge e∈ER,
• bie = number of times q-route i∈Ω

traverses edge e∈H,
• C(i) = total cost of q-route i∈Ω.

As we will see, the CARP can be formulated as
a Set Covering Problem with these variables. On
the other hand, Belenguer and Benavent [4]
introduced a set of valid constraints for the CARP
using the integer variables ze that represent the
number of times that the non required edge e∈H is
traversed by the set of routes. Let us denote by W
the set of valid constraints we want to use in our
model. Given r∈W, we denote by αre the
coefficient of ze, e∈H, in constraint r, and by βr
the corresponding Right-Hand-Side; then
constraint r∈W can be written:

∑
∈

≥
He

rere z βα

 These constraints can be used in the Set
Covering model because:

David Gómez–Cabrero et al. 261

 i
i

iee xbz ∑
Ω∈

= .

 (1)
Then, the CARP can be formulated as the

following Set Covering Problem with additional
constraints:

i
i

xiC∑
Ω∈

)(Min (2)

R
i

iie Eexa ∈∀≥∑
Ω∈

 1 (3)

Wrxb ri
He

reie
i

∈≥∑∑
∈Ω∈

 βα (4)

Ω∈∀≤≤ i 10 ix (5)

Ω∈∀∈ i {0,1}ix (6)
Constraints (3) assure that all the required edges

are served by the selected q-routes. It is easy to
see that there always exists an optimal solution
using only routes that serve all the required edges
exactly once. The additional constraints (4) are
redundant in this program but are very useful in
order to strengthen the linear relaxation of it. The
linear program defined by (2),...,(5) will be called
Master Program (MP) and its optimal cost is a
valid lower bound for the CARP. This problem
contains a huge number of variables (columns)
and constraints (cutting planes), then we use a
combined method that generates columns and
cutting planes only when they are needed thus
keeping the size of the linear program (LP) inside
reasonable limits. We call the Restricted Master
Program (RMP) to the problem that results from
the MP when only a subset of columns and a
subset of constraints (4) are considered.

III. COMBINING COLUMN AND CUTTING
PLANE GENERATION

An initial RMP is built with a subset of columns
and constraints (4). Then, at each iteration, the
RMP is solved using the simplex method and its
optimal dual values are used to define the
Subproblem that consists of generating new
columns (q-routes) with negative reduced cost that
are added to the RMP. If no such q-route is found,
we look for constraints (4) that are violated by the
LP solution (cutting planes) and, if any is found,
they are added to the RMP. If any column or
cutting plane has been added to the RMP, it is
solved again, and so on. The whole procedure
stops when no negative reduced cost q-route and
no cutting plane are found for the current LP
solution (see Figure I). The following subsections

describe with more detail the main components of
the algorithm.

A. Subproblem
Given a set of dual values, the role of the

Subproblem is either to identify a column (or
columns) that have a negative reduced cost or to
prove that no such column exists.

1) Reduced cost of a q-route: Let us denote by
πe the value of the dual variable associated with
constraint (3) corresponding to e∈ER, and let us
denote by γr the value of the dual variable
associated with constraint r in (4) in the
optima

l

Optimal solution of the
linear relaxation:

Lower bound

No

Yes

No

Yes

Initial set of Columns.
Initial set of cuts.

Solution of the
RMP

Subproblem:
Column generation

Identification Problem:
Cutting plane generation

Violated
cuts

found?

Add
columns

to the
RMP

Columns with
negative

reduced cost ?

Add cuts
to the
 RMP

STOP

Figure I. Algorithm.

262 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

solution of the current RMP. The reduced cost of
a q-route i∈Ω will be denoted by C'(i), i.e.:

∑∑∑
∈ ∈∈

−−=
Wr

reie
He

r
Ee

iee baiCiC
R

αγπ)()('

Given that:
,)(ie

He
e

Ee
iee bsaciC

R

∑∑
∈∈

+=

it easily follows:
ie

He
re

Wr
reie

Ee
ee bsaciC

R

∑ ∑∑
∈ ∈∈

−+−=′)()()(αγπ

Let us denote by eĉ e∈ER and eŝ e∈H, the
modified costs:

• Reee Eecc ∈∀−= ˆ π
• Hess

Wr
reree ∈∀−= ∑

∈

 ˆ αγ

Note that the cost of a q-route under these
modified costs is in fact its reduced cost. Note
also that these modified costs can be negative and
the triangular inequality is no longer satisfied by
the modified costs of the non required edges.

2) Minimum cost q-routes: Let us define a q-
chain as an ordered set of vertices and edges
v0e1v1 …etvt where ei∈ER∪H is incident to vi-1 and
vi for i =1,…,t, and at least one of any two
consecutive edges, say ei and ei+1, must be a
required edge. The load of a q-chain is defined as
the sum of the loads of the required edges it
contains. Let us denote by VR the set of vertices
which are incident with at least one required edge.

Given j∈V and an integer q, 0≤ q≤ Q, let u(j,q)
be the cost of the least-cost q-chain from the depot
to vertex j with a total load of q. These costs can
be computed for every vertex j∈V and every load
q=0,…,Q with a dynamic programming algorithm
that is an adaptation of the one described in
Benavent et al. [5]. The interested reader is
referred to this paper for a detailed description of
the algorithm.

The algorithm initializes u(j,0) = ŝ1j for all j∈V.
Then, at iteration q, q=1,...,Q, the algorithm
computes u(j,q) in two steps. In a first step, only
q-chains where the last edge is served are
considered. Their corresponding cost is denoted
by u'(j,q) and is computed as follows for every
j∈VR:

}),(:ˆ),({Min),(Ree Ejiecqqiuqju ∈=∀+−=′

 In a second step the algorithm computes u(j,q)
by considering also a non required edge as the
possible last edge:

}}),(:ˆ),(),,({
),(

Hjisqiuqju
qju

ij ∈∀+′′
=

 Min{ Min

We avoid in this way q-chains traversing two non
required edges consecutively.
Let us denote by q

eu the cost of the least cost q-
route whose last served edge is e=(i,j)∈ER, and
with load q∈{1,..,Q}. These costs can be
computed as follows:

}ˆˆ),(,ˆˆ),({Min 11 ieejee
q
e scqqjuscqqiuu ++−++−=
Given that the minimum cost q-route will serve

at least one edge, its cost will be equal to q
eu for

some e∈ER and q∈{1,...,Q}.
The q-routes obtained by the procedure

described above may serve edge e=(i,j) ∈ER,
while traversing it from i to j and immediately
after, serving once more this edge from j to i. We
denote this behavior as 2-loop. It is possible to
prevent 2-loops, thus improving the method,
without an excessive increment of the
computational cost. The method is also described
in Benavent et al. [5] and we have also made
minimum modifications to allow the use of
negative costs. The resulting q-routes will be
referred to as q-routes-S2B.

B. Cutting plane
We have used the capacity constraints and odd

cutset constraints, that were introduced by
Belenguer and Benavent [4], in order to
strengthen our model. Let us introduce some new
notation. Given a vertex set S⊆V\{1}, H(S) will
represent the set of edges of H with both
endpoints in S, while δ(S) will denote the edge
cutset defined by S, i.e. the set of edges of H with
one endpoint in S and the other not in S. The
corresponding sets for required edges are denoted
by ER(S) and δR(S) respectively. Recall that the
formulation considered in [4] uses a set of
variables ze, e∈H, where ze represents the number
of times that edge e has been traversed by the set
of vehicles. The capacity constraints are:

}, 1 {\ with ,)()(2
)(

VSSSkz R
Se

e ⊆−≥∑
∈

δ
δ

where k(S) is the minimum number of routes
necessary for serving all the required edges of
δR(S)∪ER(S). The idea is that all the routes that

David Gómez–Cabrero et al. 263

will serve all the demand of the edges in
δR(S)∪ER(S) will have to pass through the cutset
δ(S) at least 2k(S) times; then, the cutset will be
traversed using edges of H at least 2k(S)-⏐δR(S)⏐
times.

The odd cutset constraints, also introduced in
[4], are a consequence of the fact that any cutset
will be traversed an even number of times in any
solution to the CARP:

odd with } 1 {\ ,1
)(

(S)δVSz R
Se

e ⊆≥∑
∈δ

Belenguer and Benavent also introduced the
disjoint path constraints but we have not used
them in our method. Note that the number of
capacity and odd cutset inequalities is exponential
in the number of vertices. Instead of including all
of them in the RMP, we use a cutting plane
procedure in which we identify the constraints
that are violated by the LP solution and add them
to the RMP. We have used similar procedures to
those described in [4] to identify violated odd
cutset and capacity constraints. These procedures
are mostly heuristic algorithms that have proved
to be very effective in finding violated
inequalities.

In order to use these identification algorithms,
we have to express the current optimal solution of
the RMP in terms of the variables ze. Thus, for
each edge e∈H, we compute ze as the total number
of times that the q-routes uses the non required
edge e weighted by the corresponding value of
each q-route variable (see (1)).

In our separation procedures we work with two
kinds of solution graphs. Let G(z,ε) be the graph
induced by the edges e∈H with ze > ε, and let
G(ER,z,ε) be the graph induced by the edges e∈ER
and by the edges e∈H with ze > ε plus the depot.

The strategy used here for finding violated
constraints is the following. Firstly, we check for
possible violation of the corresponding capacity
and/or odd cutset constraint using the vertex sets
of the connected components of G(R,z,ε), for
several values of ε = 0, 0.1, 0.2, ..., 1; and,
similarly for G(z,ε), for ε = 0, 1. We use also the
fractional capacity constraint procedure (see [4]
for the details). If one or more violated constraints
are found, they are added to the RMP and we stop
searching new cuts.

When the previous procedures failed, we call
the exact separation procedure of odd cutset
constraints which is a polynomial time algorithm

based on the Odd Minimum Cut algorithm of
Padberg and Rao [16] (see [4] for a detailed
explanation of this procedure).

We have designed a new heuristic that is called
when all the preceding procedures fail. The
algorithm considers sequences of vertex sets for
which the capacity constraint is checked. It is
initialized with one vertex, and, at each step, the
current vertex set, say W, is enlarged by adding a
new vertex which is adjacent to at least one vertex
in W in the graph induced by the required edges
without the depot, until W cannot be enlarged. The
whole procedure is applied starting each time with
a different vertex.

C. Initialization of the algorithm
1) Initial q-routes: We have to define an initial

set of q-routes assuring that the initial RMP will
have a feasible solution. We compute the initial
routes using two simple heuristic algorithms.

The first one builds one route for each required
edge (i,j)∈ER by joining its endpoints to the depot
with the corresponding non required edge (recall
that the costs of these edges are equal to the
shortest path costs).

The second method starts with the routes built
in the first method. Afterwards, it modifies the
routes by serving as many required edges as
possible from those contained in the shortest paths
which have been previously broken down into the
original edges.

2) Initial cuts: The initial RMP contains a
reduced set of constraints (4) that are generated as
follows:

• an odd cut constraint for every vertex v that
is incident with an odd number of required
edges,

• capacity constraints defined by the vertex
sets of the connected components of the
graph induced by ER, that is denoted by
G(ER) and

• capacity and odd cut constraints for a
sequence of vertex sets generated by
starting with the depot, and sequentially
adding to the set all its neighbour vertices
in G(ER).

D. Selection of q-routes
We have developed several methods for

selecting the q-routes to be introduced in the RMP
among those generated by the Subproblem with
negative reduced cost. We have used several

264 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

criteria: to minimize the reduced cost, to
maximize the diversity and to give priority to
valid routes. The following methods combine
these criteria. In all of them, the number of
columns that are finally added to the RMP in each
iteration is not larger than pc |ER|, where 0<pc≤1 is
a parameter.

The first method selects a set of q-routes with
minimum reduced cost. One drawback of this
method is that the selected q-routes are usually
very similar. The second method selects for each
required edge the q-route with minimum reduced
cost among those for which that edge is the last
served edge. We obtain in this way a more
heterogeneous set of q-routes. The third method is
similar, but we give priority to the q-routes that
are valid, i.e. no required edge is served more than
once in the q-route. This third method produce the
worst results in terms of CPU time and number of
iterations in the column generation phase. The
second method provides the best results and it is
the one used in what follows.

After some testing the value of parameter pc was
set to 0.15; larger values of pc have the effect of
reducing the number of iterations of the column
generation phase and the CPU time but increases
considerably the sizes of the LPs to be solved. Our
current implementation does not include the

possibility of removing columns from the RMP,
so we run out of memory when we try to solve the
biggest instances using pc > 0.15.

IV. COMPUTATIONAL RESULTS
The algorithm has been implemented using

Microsoft Visual C++ 6.0 and run on a Pentium
IV at 2 Ghz. Linear problems have been solved
with CPLEX 8.0.

We have tested the algorithm with three
different sets of instances. The first set, denoted
gdb, contains 23 instances generated by Golden et
al. [8]. The second one, denoted val, were
generated by Benavent et al. [5] and contains 34
instances
defined on 10 different graphs with several
vehicle capacities for each one. The third set of
instances, denoted egl, was constructed by
Belenguer and Benavent [4] from data obtained by
Li and Eglese for a study on winter gritting. This
last set contains the biggest instances and,
contrarily to the first two sets of instances, many
of them contain non-required edges and the graph
induced by the required edges is usually non-
connected. The characteristics of each set of
instances are shown in Table I.

The results obtained by our algorithm, using q-
routes, on the three sets of instances are

TABLE I.
 CHARACTERISTICS OF THE INSTANCES.

 Number

of instances.
Number

of vertices

Number of
required
edges.

Number of
non required

edges

Minimum
number of
vehicles.

gdb 23 7-27 11-55 0 3-10
val 34 24-50 34-97 0 2-10
egl 24 77-140 51-190 0-115 5-35

TABLE II.

 RESULTS USING Q-ROUTES.

 dev % N. of Op. It. CG It. CPG CPU Total
gdb 0.10 21 42.3 2.2 0.4
val 0.42 20 168.2 6.9 29.9
egl 2.45 0 267.7 23.6 2412.9

TABLE III.

 RESULTS USING Q-ROUTES S2B.

 dev % N. of Op. It. CG It. CPG CPU Total
gdb 0.07 21 62.2 2.4 0.6
val 0.39 21 342.1 6.5 52.0
egl 2.36 0 399.2 18.3 2562.0

David Gómez–Cabrero et al. 265

summarized in Table II; all the entries show the
average results in each set of instances. 'dev %' is
a measure of the quality of the lower bound (LB)
obtained by this method and it is computed as:
dev%=100*(UB-LB)/UB, where UB represents
the best upper bound known of the corresponding
instance. 'N. of Op.' is the number of instances
where the lower bound matches the upper bound,
i.e. the optimality is proved. 'It. CG.' denotes the
total number iterations of the Column Generation
Algorithm (number of times that the Subproblem
was solved), 'It. CPG' denotes the number of
iterations of the Cutting Plane Algorithm (number
of times that the identification procedures were
called), and 'CPU Total' denotes the CPU time in
seconds.

The results obtained by the algorithm that usues
q-routes-S2B are shown in Table III while Table
IV shows the percentage of decrease in the
deviation 'dev %', and the percentage of increase
in the total CPU time when using q-routes-S2B
instead of q-routes.

Note that using q-route without 2-loops we get a
slight improvement in the lower bound that in
some cases (like in gdb instances) may imply a
substantial decrease in the percentage deviation
from the upper bound, with a moderate increase in
the CPU time.

Table V compares our results with some
outstanding methods in the literature. All the
entries in that table show the average percentage

deviation of the lower bound obtained with
different methods, to the best upper bound known.
'q-routes S2B' denotes our algorithm using q-
routes-S2B, 'q-routes S2B(CG)' denotes the same
algorithm but without inserting any constraints
(4). Next two columns show the results of the
cutting plane algorithm of Belenguer and
Benavent [4], using only the capacity and odd set
constraints (CP1) and using also the disjoint path
constraints (CP2); finally, 'TNR' denotes the
method by Longo et al. [15] (the method of
Baldacci and Maniezzo [3] is very similar).

The first conclusion is that a dramatic
improvement is achieved by the addition of the
capacity and odd cutset inequalities to the pure
Column Generation procedure. We can see also
that our algorithm outperforms the cutting plane
algorithm of Belenguer and Benavent [4]; it is
even better than CP2, despite of the fact that our
present algorithm does not include the disjoint
path inequalities.

Nevertheless TNR produces better results than
our algorithm on val instances and, specially, in
the egl instances (the authors did not run their
algorithm on the gdb instances). TNR is based on
transforming the CRP into a CVRP that is then
solved with a method that combines also column
generation and the addition of cutting planes. This
method gets benefit from the large number of
classes of valid inequalities that are known for the
CVRP, a problem that has been much more
studied than the CARP. We hope that the use of
the disjoint path constraints and the development
of new classes of valid constraints will benefit our
method.

V. CONCLUSIONS.
We have presented a new algorithm that uses

column generation and cutting plane procedures
for computing lower bounds for the Capacitated
Arc Routing Problem. The algorithm finds
competitive lower bounds improving the ones
computed by the cutting plane algorithm of
Belenguer and Benavent [4], although they are
worse than the ones computed by Longo et al.
[15] and Baldacci and Maniezzo [3] that use a
transformation of the CARP into a Capacitated
Vehicle Routing Problem. We plan to include in
the near future the disjoint path inequalities from
[4] and other new valid inequalities for the
CARP in order to strengthen the method.

TABLE IV.
COMPARISON BETWEEN Q-ROUTES

 AND Q-ROUTES-S2B.

 dev % CPU Total
gdb -30% +33.3%
val -7.14% +44.2%
egl -3.67% +5.82%

TABLE V.
COMPARISON WITH OTHER LOWER

BOUNDING PROCEDURES.

 q-routes
S2B

q-routes
S2B(CG) CP1 CP2 TNR

gdb 0.07 4.92 0.13 0.13 *
val 0.39 7.21 0.66 0.41 0.32
egl 2.36 * 2.69 2.39 1.45

266 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

We have also tested several methods for
selecting the new columns to insert in the RMP.
The conclusion is that increasing the number of
q-routes inserted at each iteration results in a
decreasing of the time necessary to compute the
lower bound. On the other hand, this causes that
the number of columns becomes excessive in the
biggest instances. We propose, for a future
research, inserting at each iteration a larger
number of new columns, and eliminating
periodically from the RMP the columns that
have not been used in several consecutive
iterations, thus keeping the current number of
columns to a reasonable limit.

ACKNOWLEDGEMENTS
The contribution by J.M. Belenguer, E.

Benavent and D. Gómez-Cabrero has been
partially supported by the AVCiT of the
Generalitat Valenciana (Ref: GRUPOS03/174).
The contribution by E. Benavent has been
partially supported by the Ministerio de Ciencia
y Tecnología of Spain through project TIC2003-
05982-C05-01.

REFERENCES.

[1] A. Amberg and S. Voβ, “A hierarchical relaxations

lower bound for the capacitated arc routing problem”, in
Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, 2002.

[2] A.A. Assad, W.L. Pearn and B.L. Golden, “The
Capacitated Chinese Postman Problem: Lower Bounds
and Solvable Cases”, American Journal of
Mathematical and Management Sciences 7, pp. 63—88,
1987.

[3] R. Baldacci and V. Maniezzo, "Exact methods based on
node routing formulations for Arc Routing Problems",
Technical report UBLCS-2004-10, University of
Bolonia, 2004.

[4] J.M. Belenguer and E. Benavent, “Cutting Plane
Algorithm for the Capacitated Arc Routing Problem”,
Computers and Operations Research 30(6), pp. 705-
728, 2003.

[5] E. Benavent, V. Campos. A. Corberán and E. Mota,
“The Capacitated Chinese Postman Problem: Lower
Bounds”. Networks 22, pp. 669-690, 1992.

[6] M. Dror, “Arc Routing. Theory, solutions and
applications”. Boston: Kluwer Academic Publishers,
2000

[7] J. Desrosiers, F. Soumis and M. Desrochers, “Routing
with Time Windows by Column Generation”. Networks
14, pp. 545-565, 1984.

[8] B.L. Golden, J.S. DeArmon and E.K. Baker,
“Computational Experiments with Algorithms for a
Class of Routing Problems”. Computers and Operations
Research 10 (2), pp. 47-59, 1983.

[9] B.L. Golden and R. Wong, “Capacitated Arc Routing
Problems”. Networks 11, pp. 305-315, 1981.

[10] A. Hertz, G. Laporte and M. Mittaz, “A Tabu Search
Heuristic for the Capacitated Arc Routing Problem”.
Operations Research 48 (2), pp. 129-135, 2000.

[11] A. Hertz and M. Mittaz,"Heuristic algorithms", in Arc
Routing. Theory, solutions and applications M. Dror,
Ed., Boston: Kluwer Academic Publishers, pp. 327-386,
2000.

[12] R. Hirabayashi, Y. Saruwatari and N. Nishida, “Tour
Construction Algorithm for the Capacitated Arc Routing
Problem”. Asia-Pacific Journal of Operational
Research 9 (3), pp. 155-175, 1992.

[13] M. Kiuchi, Y. Shinano, R. Hirabayashi and Y.
Saruwatari, "An exact algorithm for the Capacitated Arc
Routing Problem using parallel Branch and Bound
method", Abstracts of the 1995 Spring National
Conference of the Operational Research Society of
Japan, pp. 28-29, 1995.

[14] P. Lacomme, C. Prins and W. Ramdane-Chérif,
“Competitive memetic algorithms for arc routing
problems”, Annals of Operations Research, 131, pp.
159-185, 2004.

[15] H. Longo, M. Poggi de Aragão and E. Uchoa. “Solving
Capacitated Arc Routing Problems using a
transformation to the CVRP”, Technical Report PUC-
RioInf.MCC10/04, Pontificia Universidade Catolica do
Rio de Janeiro, 2004.

[16] MW Padberg and MR Rao, “Odd minimum cut-sets and
b-matching”, Mathematics of Operation Research 7; pp.
67-80, 1982.

[17] W.L. Pearn, “New lower Bounds for the Capacitated
Arc Routing Problem”. Networks, 18, pp. 181-191,
1988.

[18] S. Wohlk “New Lower Bound for the Capacitated Arc
Routing Problem”. Preprint PP-2003-15, University of
Southern Denmark, IMADA – Department of
Mathematics and Computer Science, 2003.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 267

GRASP and Path Relinking for Project Scheduling
under Partially Renewable Resources

F. Villa∗, R. Alvarez-Valdes†, E. Crespo‡ and J.M. Tamarit†
∗Florida Universitaria, Valencia, Spain

Email: fvilla@florida-uni.es
†Department of Statistics and Operations Research

University of Valencia, Spain
Email: ramon.alvarez@uv.es, jose.tamarit@uv.es

†Department of Mathematics for Economics and Business
University of Valencia, Spain

Email: enric.crespo@uv.es

Abstract— Recently, in the field of project scheduling
problems the concept of partially renewable resources has
been introduced. Theoretically, it is a generalization of both
renewable and non-renewable resources. From an applied
point of view, partially renewable resources allow us to
model a large variety of situations that do not fit in classical
models, but can be found in real problems in timetabling
and labor scheduling. In this paper we develop some
preprocessing techniques and several heuristic algorithms
for the problem. Preprocessing significantly reduces the
dimension of the problems, therefore improving the effi-
ciency of solution procedures. Heuristic algorithms based
on GRASP and Path relinking are then developed and
tested on existing test instances, obtaining excellent results.

Keywords— Project management and scheduling; Par-
tially renewable resources; Heuristics; GRASP; Path re-
linking

I. I NTRODUCTION

PROJECT scheduling consists of allocating scarce
resources to the set of activities in a project over

time. Project scheduling has been the object of a great
deal of research since the first methods, CPM [7] and
PERT [15], were developed in the 1950’s. These initial
methods were able to manage large projects and were
considered a useful tool in the planning process. How-
ever, they assumed unlimited resources, an assumption
severely reducing their application to most real prob-
lems. Therefore, many researchers started to study the
resource-constrained case (RCPSP). Up to now, many
exact and heuristic algorithms have been developed
(see the book by Demeulemeester and Herroelen [4]
for an excellent state-of-the -art description). The now
classic RCPSP basically includes renewable resources,
in which the availability of each resource is renewed at

each period of the planning interval. The case of non-
renewable resources, whose availability is given once
for the whole project and are consumed throughout the
process of the activities requiring them, has also been
extensively studied.

However, in recent years new types of resources have
been proposed to allow the model to include new types
of constraints. An example is allocatable resources [9],
[14], in which the units of the resource required by a
given operationi remain occupied from the start of a
given allocating activity up to the completion of activity
i. This type of resource is useful to model situations in
which the units of a resource are not indistinguishable.
For instance, if the resource corresponds to workers of a
given type, the person performing an activity consisting
of a direct service to clients must carry out some other
activity involving the same clients and cannot be changed
for another worker of the same type.

Another example of new resources is cumulative re-
sources [10], [11]. In this case, the amount of a resource
decreases when it is used by some activities, but it
can increase as the result of the process of some other
activities, as is the case in some industries involving
chemical products.

Another new type of resource is partially renewable
resources. The availability of the resource is associated
to a subset of periods of the planning horizon and the
activities requiring the resource only consume it if they
are processed in these periods. Although these resources
may seem strange at first glance, they can be a powerful
tool for solving project scheduling problems. On the
one hand, from a theoretical point of view, they include
renewable and non-renewable resources as particular
cases. In fact, a renewable resource can be considered a
partially renewable resource with an associated subset of

268 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

periods consisting of exactly one period. Non-renewable
resources are partially renewable resources where the
associated subset is the whole planning horizon. On
the other hand, partially renewable resources make it
possible to model complicated labor regulations and
timetabling constraints, therefore allowing us to ap-
proach many labor scheduling and timetabling problems
as special cases of project scheduling problems.

As an example, let us consider a project involving
human resources. We can find some contractual condi-
tions like that ofworking at most 2 weekend days out
of every 3 consecutive weeks. This condition cannot be
modelled as a renewable resource, because this type of
resource considers each period separately. It cannot be
modelled as a non-renewable resource because this type
of resource considers the whole planning horizon. We
model this condition as a partially renewable resource
with a set of periods{6, 7, 13, 14, 20, 21} for the first
three weekends and a total availability of 2 units. Each
task consumes 1 unit of this resource for each weekend
day in which it is processed. In Figure 1 we see three
activities A, B, and C scheduled within the timescale
depicted above. Activity A is in process at periods 6 and
7 and then it consumes 2 units of the resource. Activity B
does not consume the resource and activity C consumes
1 unit in period 20. If these 3 activities had to be done by
the same worker, the solution in the figure would not be
possible because it would exceed resource availability.

Partially renewable resources were first introduced
by Böttcher et al. [1] in 1999. They proposed an
integer formulation and developed exact and heuristic
algorithms. Schirmer [13] studied these new type of
resources thoroughly in his book on project scheduling
problems. He presented many examples of special condi-
tions which can be suitably modelled using partially re-
newable resources. He also proposed several families of
approximate algorithms for solving the problem, which
is denoted by RCPSP/π.

In this paper we develop some preprocessing tech-
niques and several heuristic algorithms for project
scheduling under partially renewable resources. Prepro-
cessing reduces the dimension of the problems in terms
of resources and possible finishing times for the activities
in the project, therefore improving the efficiency of the
algorithms. Some heuristic algorithms, based on GRASP
and Path Relinking, are then developed and tested on
existing test instances. In Section 2 the elements of the
problem are defined and an integer formulation provided.
Section 3 contains the preprocessing routines. In Section
4 we develop the heuristic algorithms. Section 5 is
devoted to the computational experience and Section 6
to conclusions and future lines of research.

II. FORMULATION OF THE PROBLEM

The RCPSP/π can be defined as follows: LetJ be
the set ofn = |J | activities, numbered from 1 ton,
where activity 1 and activityn are dummy activities
representing the beginning and end of the project. LetPj

be the set of activities which are immediate predecessors
of activity j and P ′

j the set of all predecessors ofj.
Each activity j has a duration ofdj and cannot be
interrupted. LetR be the set of partially renewable
resources. Each resourcer ∈ R has a total availability
Kr and an associated set of periodsΠr. An activity j
requiring resourcer will consumekjr units of it at each
period t ∈ Πr in which it is processed. Finally, letT
be the planning horizon in which all the activities must
be processed. For each activityj we obtain the earliest
and latest finishing times,EFTj , LFTj , by critical path
analysis. We denoteEj = {EFTj ,, LFTj}, the set
of possible finishing times, andQjt = {t, ..., t+dj −1}.

The RCPSP/π consists of sequencing the activities so
that the precedence and resource constraints are satisfied
and the makespan is minimized.

If we define the variables:

xjt =

{

1 if activity j finishes at timet

0 otherwise.

the problem can be formulated as follows:

Min
∑

t∈En

txnt (1)

s.t.
∑

t∈Ej

xjt = 1 j ∈ J (2)

∑

t∈Ei

txit ≤
∑

t∈Ej

(t− dj)xjt j ∈ J, i ∈ Pj (3)

∑

j∈J

kjr

∑

t∈Πr

∑

q∈Qjt

⋂

Ej

xjq ≤ Kr r ∈ R (4)

xjt ∈ {0, 1} j ∈ J, t ∈ Ej (5)

The objective function (1) minimizes the finishing
time of the last activity and hence the makespan of
the project. According to constraints (2) each activity
must finish once. Constraints (3) are the precedence
constraints and constraints (4) the resource constraints.
Note that in this problem there is only one global
constraint for each resourcer ∈ R. Another special
characteristic of this problem is that all the activities
must finish inside a closed intervalEj , because sets
Πr are defined with respect to the planning horizon

F. Villa et al. 269

6 7 13 14 20 21

BA C

Fig. 1. Example of partially renewable resource

T . Therefore, the existence of feasible solutions is not
guaranteed. In fact, Schirmer [13] has shown that the
feasibility variant of the RCPSP/π is NP-complete in the
strong sense.

The above formulation is called the normalized for-
mulation by B̈ottcher et al. [1] and Schirmer [13].
Alternative formulations are considered in their papers,
but they finally adopt the normalized formulation due to
its simplicity.

III. PREPROCESSING

Preprocessing has two objectives. First, to decide
whether a given instance is unfeasible or if it has
feasible solutions. If the latter is the case, a second
objective is to reduce the number of possible finishing
times of the activities and the number of resources.
If these two objectives are satisfactorily achieved, the
solution procedures will not waste time trying to solve
unfeasible problems and will concentrate their efforts on
the relevant elements of the problem.

Preprocessing consists of several phases:

1) Reducing the planning horizonT
For each instance, we are given a planning

horizon T . This value plays an important role in
the problem formulation. In fact, late finishing
times of the activities,LFTj are calculated starting
from T in a backward recursion. Therefore, the
lower the valueT , the fewer variables the problem
will have. In order to reduceT , we try to build a
feasible solution for the given instance, using the
GRASP algorithm which will be described later.
The GRASP iterative process stops as soon as a
feasible solution is obtained or after 200 iterations.
The new valueT is updated to the makespan
of the feasible solution obtained. Otherwise,T is
unchanged.

If the makespan of the solution equals the
length of the critical path in the precedence graph,
the solution is optimal and the process stops and
returns the solution.

2) Eliminating idle resources

Each resourcer ∈ R is consumed only if
the activities requiring it are processed in periods
t ∈ Πr. Each activity can only be processed in
a finite interval. It is therefore possible that no
activity requiring the resource can be processed
in any period ofΠr. In this case, the resource is
idle and can be eliminated. More precisely, if we
denote the possible processing times of activityj
by PPTj = {EFTj−dj+1, .., EFTj ,, LFTj},
and ∀j ∈ J | krj > 0 : Πr

⋂

PPTj = ∅, the
resourcer ∈ R is idle and can be eliminated.

3) Eliminating non-scarce resources
Schirmer [13] distinguishes between scarce

and non-scarce resources. He considers a resource
r ∈ R as scarce if

∑

j∈J kjrdj > Kr, that
is, if an upper bound on the maximum resource
consumption exceeds resource availability. In this
case, the upper bound is computed by supposing
that all the activities requiring the resource are
processed completely insideΠr.

We have refined this idea by taking into
account the precedence constraints. Specifically,
we calculate an upper bound on the maximal con-
sumption of resourcer by solving the following
linear problem:

Max
∑

j∈J

kjr

∑

t∈Πr

∑

q∈Qjt

⋂

Ej

xjq (6)

s.t.
∑

t∈Ej

xjt = 1 j ∈ J (7)

T
∑

m=t

xim +

t+dj−1
∑

s=1

xjs ≤ 1, j ∈ J, i ∈ Pj , t ≤ T

(8)
xjt ≥ 0 j ∈ J , t ∈ Ej (9)

The objective function (6) maximizes the re-
source consumption over the whole project. Con-
straints (7) ensure that each activity finishes once.
Constraints (8) are the precedence constraints. We
use this expression, introduced by Christofides et
al. [3], because it is more efficient than the usual

270 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

precedence constraint. In fact, this linear problem
has the integrality condition and its optimal so-
lution is always integer [2]. If the solution value
is not greater than the resource availability, this
resource will not cause any conflict and can be
skipped in the solution process.

4) A filter for variables based on resources
For each activityj and each possible finishing

time t ∈ Ej we perform the following test to
decide if this timet is not feasible for activityj to
finish in.Q′

jrt = {t−dj+1, t−dj+2, ..., t}
⋂

Πr is
the set of processing times ofj which lie insideΠr

if it finishes at timet, andmjrt = |Q′

jrt| denotes
the corresponding number of periods.

• For each predecessori ∈ P ′

j , let ERit be the
reduced set of possible finishing times ofi if
j finishes at timet.

• For each successorl (j ∈ P ′

l), let ERlt be the
reduced set of finishing times ofl if j finishes
at time t.

• Let Uj be the set of activities not related toj
by precedence constraints.

• Consider the resourcesr ∈ R, one at a time,
and compute the minimal consumption of the
resource if activityj finishes at timet:
MCr = mjrtkjr +

∑

i∈P ′

j

mins∈ERit
{mirskir} +

(predecessors ofj)
∑

l|j∈P ′

l

mins∈ERlt
{mlrsklr} +

(successors ofj)
∑

h∈Uj

mins∈Eh
{mhrs|khr}

(remaining activities)
• If MCr > Kr, time t is not feasible for

activity j to finish in and the corresponding
variablexjt = 0.
When this filter is applied to an activityj some

of its possible finishing times can be eliminated.
From then on, the set of possible finishing times
is no longerEj . We denote byPFTj the set of
finishing times passing the filter.

This filter is applied iteratively. After a first run
on every activity and every finishing time, if some
of the variables are eliminated the process starts
again but this time computingMCr on the sets
PFTj , PFTi, PFTl, PFTs instead of the original
Ej , Ei, El, Es. As the minima are calculated over
restricted subsets, it is possible that new finishing
times fail the test and are eliminated. The process
is repeated until no finishing time is eliminated in
a complete run.

5) Consistency test for finishing times
When the above filter eliminates a finishing

time of an activityj, it is possible that some of the
finishing times of its predecessors and successors
are no longer feasible. For instance, suppose an
activity j with PFTj = {9, 10, 11, 12, 13, 14, 15}
and durationdj = 3 and an activityi ∈ Pj with
PFTi = {6, 7, 8, 9, 10, 11, 12}. If the resource
filter eliminatest = 15 from PFTj , then t = 12
is not possible for activityi because ifi finishes at
time 12,j must necessarily finish at time 15, which
is unfeasible. Therefore, time 12 for activityi is
eliminated.

In general, for an activityj let us denote by
τj = max{t | t ∈ PFTj}. Then, for eachi ∈ Pj

the finishing timest ∈ PFTi such thatt > τj −dj

can be eliminated. Analogously, if for activityj,
γj = min{t | t ∈ PFTj}, for eachi | j ∈ Pi the
finishing timest ∈ PFTi such thatt < γj + di

can be eliminated.
This test is also applied iteratively until no

more finishing times are eliminated. If, after apply-
ing these two procedures for reducing variables, an
activity j hasPFTj = ∅, the problem is unfeasible
and the procedure stops, returning the unfeasibility
status of the given instance.

6) Constructing a trial solution
In the first step of the preprocessing procedure

we tried to build a feasible solution. If the feasible
solution was obtained, we checked if its makespan
was equal to the length of the critical path. If
this was the case, the solution was optimal. After
the elimination of variables, we then check if the
makespan of that solution equals the minimum
time in PFTn. If this is the case, the solution is
optimal.

Otherwise, we build a trial solution by assign-
ing a finishing timetj = min{t | t ∈ PFTj} to
each activityj. Obviously this solution satisfies the
precedence constraints. If it satisfies the resource
constraints as well, it is the optimal solution.

IV. GRASPALGORITHM

GRASP, greedy randomized adaptive search pro-
cedure, is an iterative process combining a construc-
tive phase and an improvement phase. The construction
phase builds a solution step by step, adding elements
to a partial solution. The element to add is selected
according to a greedy function which is dynamically
adapted as the solution is built. However, the selection
is not deterministic, but subjected to a randomization
process. Hence, when we repeat the process we can

F. Villa et al. 271

obtain different solutions. When a feasible solution has
been built, its neighborhood is explored in a local search
phase until a local optimum is found. Resende and
Ribeiro [12] present a comprehensive review of GRASP
and an extensive survey of GRASP literature can be
found in Festa and Resende [6].

A. The constructive phase

A deterministic constructive algorithm
We have adapted the Serial Scheduling Scheme

(SSS) proposed by Schirmer [13], which in turn
is an adaptation of the Serial Scheduling Scheme
commonly used for the classical RCPSP. We de-
note byFTj the finishing time assigned to activity
j. At each stage of the iterative procedure an
activity is scheduled by choosing from among the
current set of decisions, pairs(j, t) of an activity
j and a possible finishing timet ∈ PFTj . The
selection is based on a priority rule. The algorithm
is described in Figure 2.

At Step 1, the construction ofDs could
have included the feasibility test of Step 3, as
in Schirmer’s [13] original scheme. However, we
have preferred not to check the resource availabil-
ity of every decision and only check the decision
already chosen. In problems with a large number
of possible finishing times for the activities, this
strategy is more efficient.

We keep the set of possible scarce resources
SRs updated because some priority rules based
on resource consumption only take this type of
resources into account.

Priority rules
We have tested the 32 priority rules used by

Schirmer [13]. The first 8 are based on the network
structure, including classical rules such as EFT,
LFT, SPT or MINSLK. The other 24 rules are
based on resource utilization. 12 of them use all
the resources and the other 12 only the scarce re-
sources. A preliminary computational experience,
which will be fully described in Section 6, allowed
us to choose the most promising rules and use them
in the next phases of the algorithm’s development.
These preliminary results also showed that even
with the best performing rules the deterministic
constructive algorithm failed to obtain a feasi-
ble solution for many instances of 10 activities
generated by B̈ottcher et al. [1]. Therefore, the
objective of the randomization procedures which
were included in the algorithm was not only to
produce diverse solutions but to ensure that for

most of the problems the algorithm would obtain
a feasible solution.

Randomization strategies
We introduce randomization procedures for

selecting the decision at Step 2 of the constructive
algorithm. Letsjt be the score of decision(j, t)
on the priority rule we are using andsmax =
max{sjt|(j, t) ∈ Ds}, and letδ be a parameter to
be determined (0 < δ < 1). We have considered
three alternatives:

a) Random selection on the Restricted Candi-
date List,S
Select decision(j∗, t∗) at random in set

S = {(j, t) | sjt ≥ δsmax}
b) Biased selection on the Restricted Candidate

List, S
We build the Restricted Candidate List as
in alternative (a), but instead of choosing
at random from among its elements, the
decisions involving the same activityj are
given a weight which is inversely propor-
tional to the order of their finishing times.
For instance, if in S we have decisions
(2, 4), (2, 5), (2, 7), (2, 8) involving activity 2
and ordered by increasing finishing times,
then decision(2, 4) will have a weight of
1, decision(2, 5) weight 1/2, decision(2, 7)
weight 1/3 and decision(2, 8) weight 1/4.
The same procedure is applied to the deci-
sions corresponding to the other activities.
Therefore, the decisions inS corresponding
to the lowest finishing times of the involved
activities will be equally likely and the ran-
domized selection process will favor them.

c) Biased selection on the set of decisionsDn

We have also implemented the Modi-
fied Regret-Based Biased Random Sampling
(MRBRS/δ) proposed by Schirmer [13], in
which the decision(j, t) is chosen from
among the whole setDn but with its prob-
ability proportional to its regret value. The
regret value is a measure of the worst possible
consequence that might result from selecting
another decision.

A repairing mechanism
The randomization strategies described above

significantly improve the ability of the constructive
algorithm to find feasible solutions for tightly
constrained instances. However, a limited com-
putational experience showed that not even with
the best priority rule and the best randomization

272 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Step 0. Initialization
s = 1 (counter of stage)
FT1 = 0 (sequencing dummy activity 1)
S1 = {1} (partial schedule at stage 1)
∀r ∈ R : RKr1 = Kr (remaining capacity of resourcer at stage 1)

TDr1 =
∑

j∈J

kjrdj (maximum possible demand forr at stage 1)

SR1 = {r ∈ R | TDr1 > RKr1} (set of possible scarce resources)
EL1= set of eligible activities, those for which activity 1 is the only predecessor

Step 1. Constructing the set of decisions
Ds = {(j, t) | j ∈ ELs , t ∈ PFTj}

Step 2. Choosing the decision
Select the best decision(j∗, t∗) in Ds, according to a priority rule

Step 3. Feasibility test
If (j∗, t∗) is resource-feasible, go to Step 4.
Else

Ds = Ds \ {(j
∗, t∗)}

If Ds = ∅, STOP. The algorithm does not find feasible solution.
Else, go to Step 2.

Step 4. Update
s = s + 1
FTj∗ = t∗

Ss = Ss−1 ∪ {j∗}
ELs = (ELs−1 \ {j

∗}) ∪ {j ∈ J |Pj ⊆ Ss}
∀l ∈ J | j ∈ Pl : PFTl = PFTl \ {τ | t∗ + dl > τ}
∀r ∈ R : RKrs = RKr,s−1 − kj∗rmj∗rt∗

TDrs = TDr,s−1 − kj∗rdj∗

If TDrs ≤ RKrs , thenSRs = SRs−1 \ {r}
If s = n, STOP. The sequence is completed.
Else, go to Step 2.

Fig. 2. Constructive algorithm

procedure could the constructive algorithm obtain
feasible solutions for all the instances of 10 activ-
ities generated by B̈ottcher et al. [1]. Therefore,
we felt that the algorithm was not well-prepared
for solving larger problems and we decided to in-
clude a repairing mechanism for unfeasible partial
schedules.

In the construction process, if at Step 3 all
decisions inDn fail the feasibility test and finally
Dn becomes empty, instead of stopping the process
and starting a new iteration, we try to re-assign
some of the already sequenced activities to other
finishing times in order to free some resources that
could be used for the first of the unscheduled ac-
tivities to be processed. If this procedure succeeds,
the constructive process continues. Otherwise, it
stops. A detailed description of the repairing mech-
anism is not provided because it is very similar to
the double move described in the next subsection.

B. The improvement phase

Given a feasible solution obtained in the construc-
tive phase, the improvement phase basically consists of
two steps. First, identifying the activities whose finishing
times must be reduced in order to have a new solution
with the shortest makespan. These activities are labelled
as critical. Second, moving critical activities in such a
way that the resulting sequence is feasible according to
precedence and resource constraints. We have designed
two types of moves: simple and double. In a simple
move, only a critical activity is moved, leaving the
remaining activities unchanged. In a double move, non-
critical activities are moved to make the move of a
critical activity possible.

The procedure for buildingM , the set of critical
activities, appears in Figure 3. At Step 1, the condition
for including an activity inM simply says that ifj has
to be moved to the left, reducing its finishing time, a
predecessori which is processed immediately before

F. Villa et al. 273

j must also be moved to the left in order to leave
room for movingj. This condition can be refined if we
take into account that the preprocessing filters may have
eliminated some possible finishing times of the activities.
If t′j = max{t ∈ PFTj | t

′

j < FTj}, the condition of
Step 1 can be written as: IfFTi + dj > t′j , then i is
critical.

For instance, suppose we have activity4 ∈ M with
FT4 = 14, d4 = 5, PFT4 = {10, 11, 12, 14}, and
activity 2 is a predecessor of 4 withFT2 = 8. If activity
4 has to be moved to the left, its new finishing time will
be 12 at most and thereforeFT2 can no longer be 8.
Activity 2 must be moved to the left and hence2 ∈ M .
In this example,t′4 = 12 andFT2 + d4 = 13.

The simple move is described in Figure 4. We try to
move every activityj ∈ M to the left, in topological
order, to a new finishing time satisfying the precedence
and resource constraints. If an activity cannot be moved,
the procedure stops. If for an activity there are several
possible new finishing times, that with minimum global
resource consumption is chosen.

A description of the double move appears in Figure
5. In Step 2, the new finishing time which is being
considered for activityj ∈ M may be resource-feasible
and no other activity needs to be moved. If this is not
the case, in Step 3 other activities are considered for
moving. An activity i is moved to a new provisional
finishing time if this move offsets the resource violation
provoked by movingj or, at least, reduces the deficit.
Therefore, throughout the search inJ , a provisional list
of changesLC is built until the solution is repaired or
J is exhausted. If the solution is repaired with the list
of changes inLC, those moves are made and a new
j ∈ M is considered. Otherwise, the procedure stops
without improving the solution.

The double move can be enhanced in the following
way. If we arrive at Step 6 without completely covering
the deficit created by movingj, but this deficit is partially
reduced, we can go back to Step 3 and searchJ again
from the beginning, trying to further reduce or eliminate
the remaining deficit. The procedure is more complex but
sometimes offers feasible moves for critical activities.

The three procedures of the improvement phase are
run iteratively:

S= current solution
improve = false
do{

Build setM of critical activities
improve=SimpleMove(S, M)
if improve = false

improve=DoubleMove(S, M)
} while (improve = true)

C. An aggressive procedure

The standard version of our heuristic algorithm
starts by applying the preprocessing procedure of Section
3. The reduced problem then goes through the itera-
tive GRASP algorithm described above, combining a
constructive phase and an improvement phase at each
iteration, until the stopping criterion, here a fixed number
of iterations, is met.

An enhanced version of the heuristic algorithm com-
bines preprocessing and GRASP procedures in a more
aggressiveway. After a given number of iterations (stop-
ping criterion), we check if the best known solution has
improved. If this is the case, we run the preprocessing
procedures again, setting the planning horizonT to the
makespan of the best known solution and running the
filters for variable reduction. The GRASP algorithm is
then applied on the reduced problem. Obtaining feasible
solutions is now harder, but if the procedure succeeds we
will get high quality solutions. A scheme of the modified
algorithm appears in Figure 6.

D. Path Relinking

If throughout the iterative procedures described
above we keep a set of the best solutions, usually denoted
as elite solutions, we can perform a Path Relinking
procedure. Starting from one of these elite solutions,
called theinitiating solution, we build a path towards
another elite solution, called theguiding solution. To
the intermediate solutions in the path we progressively
impose the attributes of the guiding solution, so these
intermediate solutions evolve from the initiating solution
until they reach the guiding solution. Hopefully, along
these paths we will find solutions which are better than
both extremes, the initiating and the guiding solutions.

We keep the 10 best solutions obtained in the GRASP
procedure. We consider one of them in turn as the
initiating solution and another as the guiding solution.
We build a path from the initiating to the final solution
with n − 1 intermediate solutions. Thejth solution will
have the finishing times of the firstj activities taken from
the guiding solution, while the remainingn−j finishing
times will still correspond to those of the initiating solu-
tion. Therefore, along the path, the intermediate solutions
will be progressively more similar to the guiding solution
and more different from the initiating one. In some cases
these intermediate solutions will not be feasible. If this is
the case, a repairing mechanism similar to that described
in Section 4 is applied. We proceed from activity 1 to
activity n, checking for each activityj if the partial
solution from 1 toj is feasible. If it is not, we first try
to find a feasible finishing time for activityj, keeping

274 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Step 0. Initialization
M = {n} (the last activity of the projectn is always critical)
sn = 1 (activity n has not yet been studied for enlargingM).

Step 1. Adding activities toM
While(∃j ∈ M | sj = 1) {

Take the largestj ∈ M with sj = 1. Setsj = 0
∀i ∈ Pj :

If FTi + dj = FTj (there is no slack betweeni and j)
M = M ∪ {i}
si = 1 }

Fig. 3. Building the critical set

Step 0. Initialization
RKr, ∀r ∈ R, are the resources not used in the current sequence
uj = 1, ∀j ∈ M (activity still to be moved)
possible = true (the move is still possible)

Step 1. Moving activities inM
While(∃j ∈ M |uj = 1)
{

Take the minimumj ∈ M with uj = 1
Setuj = 0
MINFTj = max {FTi + dj | i ∈ Pj}
tbest = FTj

maxexcess = 0
∀t ∈ PFTj | MINFTj ≤ t < FTj

{ ∀r ∈ R : RKr = RKr + kjrmjrFTj
− kjrmjrt

If RKr ≥ 0,∀r ∈ R (possible move)
excess =

∑

r∈R

RKr

If maxexcess < excess
maxexcess = excess
tbest = t

Recover previousRKr }
If tbest = FTj (no change)

Recover the originalFTj ,∀j ∈ J and returnfalse
Else,FTj = tbest

}
Step 2.

Returntrue and the modified solution

Fig. 4. Simple move

previous activities unchanged. If that is not possible,
we try to re-assign some of the previous activities to
other finishing times in order to obtain some resources
which are necessary for processing activityj at one of
its possible finishing times. If this procedure succeeds,
we consider activityj + 1. Otherwise, the solution
is discarded and we proceed to the next intermediate
solution. If we obtain a complete intermediate solution
which is feasible, we apply to it the improvement phase
described in the GRASP algorithm.

V. COMPUTATIONAL RESULTS

A. Test instances

Böttcher et al. [1] generated a first set of test
instances. Taking as their starting point PROGEN 2
[8], an instance generator for the classical RCPSP with
renewable resources, they modified and enlarged the set
of parameters and generated a set of 2160 instances
with 10 non-dummy activities, 10 replications for each
one of the 216 combinations of parameter values. As

F. Villa et al. 275

Step 0. Initialization
RKr, ∀r ∈ R, are the resources not used in the current sequence
uj = 1, ∀j ∈ M (activity still to be moved)
possible = true (the move is still possible)

While(∃j ∈ M | sj = 1)
{
Step 1. Selecting an activityj ∈ M to be moved

Take the minimumj ∈ M , with uj = 1. Setuj = 0.
MINFTj = max {FTi + dj | i ∈ Pj}

Step 2. Considering a new finishing time for j
∀t ∈ PFTj | MINFTj ≤ t < FTj

{ repaired = true
∀r ∈ R : RKr = RKr + kjrmjrFTj

− kjrmjrt

If RKr ≥ 0, ∀r ∈ R
FTj = t. Go to Step 1, to move another critical activity.

Else
Step 3. Moving other activitiesi ∈ J

LC = ∅ , list of possible changes
∀i ∈ J | i 6= j
{ MINFTi = max {FTl + di | l ∈ Pi}, MAXFTi = min {FTk − dk | i ∈ Pk}

tbest = FTi. bestviol = 0
Step 4. New finishing times for activity i

∀u ∈ PFTi | MINFTi ≤ u ≤ MAXFTi

{ newviol = 0
{ ∀r ∈ R : changer = kirmiru − kirmirFTi

If RKr > 0 andRKr − changer < 0
newviol = newviol + (changer − RKr)
repaired = false

If RKr < 0
If changer < 0

newviol = newviol − min{−RKr,−changer}
Else,newviol = newviol + changer

If RKr < changer

repaired = false }
If repaired = true

tbest = u. Go to Step 5.
If bestviol > newviol

bestviol = newviol tbest = u
} (end of Step 4)

Step 5. Add to the list of possible changes
If tbest 6= FTi

LC = LC ∪ {(i, tbest)}. UpdateRKr andFTi.
If repaired = true : Go to Step 6

} (end of Step 3)
Step 6. Make changes associated to activity j

If repaired = true
FTj = t. Make changes inLC and updateFTi, RKr.

Else, returnfalse
} (end of Step 2)

} (end of main While)
Step 7.

Returntrue and the modified solution

Fig. 5. Double move

276 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Pre-processing

Constructive phase
(Randomized)

Improvement phase
(Local search)

Stopping condition? NOYESBest solution
improved?

NO

Return best solution found

Pre-processing

YES

Fig. 6. Scheme of Aggressive GRASP

most of the problems were unfeasible, they restricted the
parameter values to the 25 most promising combinations
and generated 250 instances of sizes 15, 20, 25, 30 and
60 of non-dummy activities, always keeping the number
of resources to 30.

More recently, Schirmer [13] has developed PROGEN
3, an extension of PROGEN 2, and has generated some
new test instances. He has generated 960 instances of
sizes 10, 20, 30 and 40, with 30 resources. Most of
them have a feasible solution, while a few of them are
unfeasible and some of them are labelled as undecided
because a time-limited run of the branch and bound
algorithm by B̈ottcher et al. [1] failed to obtain a feasible
solution. Table 1 shows the status of Schirmer’s problems
as reported in [13].

B. Preprocessing results

The preprocessing procedures in Section 3 have
been applied to the B̈ottcher et al. [1] problems of 10, 15,
20, 25 and 30 (non-dummy) activities which are available
upon request from the authors. Different aspects of the
results appear in Tables 2, 3 and 4. Table 2 shows the
performance of preprocessing in determining problem
status.

The last line of Table 2 shows the status we have been
able to determine for the problems left undecided by the

preprocessing procedures. We have tried to solve these
instances with CPLEX, using an integer programming
formulation of the problem adapted from that appearing
in Section 2, though for 2 instances of size 20 and 3
instances of size 30 long time runs of this powerful
code failed to obtain even a feasible integer solution. In
summary, we can say that our preprocessing procedures
are very efficient in determining the actual status of a
given instance.

Table 3 shows the optimal solutions that the prepro-
cessing obtains either by proving that the initial feasible
solution is optimal, or by building a trial solution in
which each activity is assigned to its minimum finishing
time after the reduction filters have been applied. For
more than 70 % of the instances the optimal solutions
are found.

Table 4 presents the reduction in the number of
resources and variables for the problems not solved in
preprocessing, for which some other algorithm has to be
applied. The fast preprocessing techniques significantly
reduce the number of resources to be taken into account
and, more importantly, the number of possible values of
the decision variables.

Similar results have been obtained for the test prob-
lems generated by Schirmer [13]. Table 5 shows the
performance of preprocessing, first determining the sta-
tus of all of the problems and then providing optimal

F. Villa et al. 277

Instance Non-optimally Optimally Feasibly Undecided ProvenTotal

Set solved solved solved infeasible

J10 39 901 940 11 9 960

J20 203 734 937 23 0 960

J30 181 757 938 22 0 960

J40 183 743 926 34 0 960

Total 606 3135 3741 90 9 3840

TABLE I

Test problems generated by Schirmer

n=10 n=15 n=20 n=25 n=30
Problems 2160 250 250 250 250
Detected as impossible 1205 16 17 12 8
Detected as possible 879 233 231 236 239
Undecided 76 1 2 2 3
Actual status Impossible Possible Undecided Impossible Undecided

TABLE II

Böttcher et al. problems - Determining the status

n=10 n=15 n=20 n=25 n=30
Problems 2160 250 250 250 250
Feasible problems 879 234 233 236 242
Solved to optimality by pre-processing 646 165 177 190 193
Remaining problems 233 67 56 46 49

TABLE III

Böttcher et al. problems - Optimal solutions identified in thepreprocessing

n=10 n=15 n=20 n=25 n=30
Problems 233 67 56 46 49
Initial resources 30 30 30 30 30
Remaining resources (on average) 18 18 23 25 25
Initial variables (on average) 90 268 565 874 1314
Remaining variables (on average) 51 130 348 611 906

TABLE IV

Böttcher et al. problems - Reductions of resources and variables

278 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

solutions for many of them. Note that the status of all
problems left undecided in Schirmer’s book [13] have
been determined. In fact, all of them have been proven to
be feasible, except for five instances of size 10 which are
impossible. For more than 75 % of the feasible problems,
the preprocessing procedures are able to provide a proven
optimal solution.

A characteristic of PROGEN 3 is that it tends to
produce large values of the planning horizonT . On the
one hand, that favors the existence of feasible solutions.
On the other hand, as the number of possible finishing
times of activities depends directly onT , a very large
number of variables are initially defined. Therefore,
for this set of problems the reduction ofT described
in Section 3 is especially useful. Table 6 shows the
reduction ofT obtained by that procedure on the non-
optimally solved problems.

The reductions of the planning horizonT , together
with the procedures for reducing possible finishing times
for the activities, produce dramatic decreases in the
final number of variables to be used by solution pro-
cedures. Table 7 presents the reductions in the number
of resources and variables obtained by the preprocessing
strategies.

C. Computational results of constructive algorithms

The 32 priority rules described by Schirmer [13]
were coded and embedded in the constructive algorithm
of Section 4.1. These rules were tested on the 879
feasible instances of size 10 generated by Böttcher et
al. [1]. Table 8 shows the results obtained by the 6
best performing rules. The first 3 rules are based on the
network structure of the problems. The last 3 rules are
based on resource consumption. In them,ES indicates
that the rules require the use of only scarce resources,
indexed byr. Rkrs is the remaining capacity of resource
r at stages, as defined in Section 4.1.RDjrt is the
relevant demand, defined asRDjrt = kjr|Qjt ∩ Πr|.
MDEjrt is the minimum relevant demand entailed for
resourcer by all successors of activityj when started
at period t. The most important feature of Table 8
is that even the best rules fail to produce a feasible
solution for 20% of these small instances of size 10.
Therefore, we need randomizing strategies and repairing
mechanisms to significantly increase the probability of
finding feasible solutions in the constructive phase of the
GRASP algorithm.

Table 9 presents the improvement in the number of
feasible and optimal solutions obtained by the construc-
tive algorithm when one of the randomizing strategies
are included in Step 2. As in Table 8, the test problems

are the size 10 instances of Böttcher et al. [1]. Only
two rules have been kept for this second test,LFT ,
which is the best rule among those based on network
structure andDRC/ES, the best rule based on resource
usage. Table 9 shows that the randomization procedures
allow us to get an important increase in the number of
feasible solutions. However, not all these small problems
can be solved. That is the reason for the development of
a repairing mechanism to help the constructive algorithm
to find feasible solutions for the more tightly constrained
problems.

Table 10 shows the final results of the complete con-
structive algorithm, including the repairing mechanism.
From Table 9 we have keptRandom 3because it obtains
the highest number of feasible solutions andRandom
2 because it obtains the highest number of optimal
solutions. The results show that the constructive algo-
rithm now seems to be well-prepared for solving larger
problems. The priority ruleLFT produces many more
optimal solutions thanDRC/ES. This rule, based on
the use of resources, is more orientated to attaining feasi-
bility by choosing times with low resource requirements
than to get optimality by processing activities as early as
possible. However, as the feasibility of the solutions is
guaranteed by the joint effort of a randomizing strategy
and the repairing mechanism, ruleLFT will be chosen
for the GRASP algorithm.

D. Computational results of GRASP algorithms

Tables 11 and 12 show the results of the GRASP
algorithms on the problems of Böttcher et al. [1] and
Schirmer [13] respectively. Four versions of the al-
gorithm have been tested:GRASP, the basic GRASP
algorithm,GR+PR, in which the best solutions obtained
in the GRASP iterations go through the Path Relinking
phase described in Section 4.4,AG-GR, the modified
GRASP procedure described in Section 4.3, andAG-
GR+PR, combining modified GRASP and Path Relink-
ing. The GRASP algorithms use priority ruleLFT and
the second randomization procedure withδ = 0.85. For
each problem size the Tables show the number of non-
optimal solutions, the average distance to optimum and
the maximal distance to optimum. However, not all the
optimal solutions are known. In fact, in Table 11 for 1
instance of size 20, 7 instances of size 25 and 7 instances
of size 30 the optimal solution is unknown. Analogously,
in Table 12 the optimal solution is not known for 1
instance of size 30 and 5 instances of size 40. In these
cases, which are marked (*), the comparison is made
with the best-known solution, obtained by a time-limited
run of the CPLEX integer code or by heuristic methods.

F. Villa et al. 279

n=10 n=20 n=30 n=40
Problems 951 960 960 960
Feasible problems 946 960 960 960
Solved to optimality by pre-processing 609 727 796 793
Remaining problems 337 233 164 137

TABLE V

Schirmer problems - Optimal solutions identified in the preprocessing

n=10 n=20 n=30 n=40
337 problems 233 problems 164 problems 137 problems

Average initialT 43 82 120 158
Average reduction 9 (21%) 31 (38%) 52 (43%) 80 (50%)
Maximal reduction 30 (70%) 61 (76%) 100 (84%) 134 (85%)

TABLE VI

Schirmer problems - Reductions of planning horizonT

n=10 n=20 n=30 n=40
337 problems 233 problems 164 problems 137 problems

Initial resources 30 30 30 30
Remaining resources (average) 15 (50%) 15 (50%) 18 (60%) 16 (53%)
Initial variables (average) 210 965 2287 4255
Remaining variables (average) 101 (48%) 332 (34%) 720 (31%)1062 (25%)

TABLE VII

Schirmer problems - Reductions of resources and variables

Rule Definition Feasible solutions (%) Optimal solutions (%)
LFT Min{LFTj} 80.09 64.28
MTS Max{|{i|j ∈ P

′

i
}|} 79.64 69.98

SLK Min{LSTj − EFTj} 76.22 61.66
DRC/ES Max{

∑

r
(RKrs − RDjrt)} 81.57 27.08

DRS/ES Min{
∑

r
(RKrs/RDjrt)} 79.29 27.53

TRS/ES Min{
∑

r
(RDjrt + MDEjrt)} 79.41 28.56

TABLE VIII

Results of priority rules

Rule Randomizing strategy Feasible solutions (%) Optimal solutions (%)
LFT Deterministic 80.09 64.28

Random 1 97.95 61.89
Random 2 97.61 93.83
Random 3 98.41 61.66

DRC/ES Deterministic 81.57 27.08
Random 1 96.25 72.81
Random 2 95.56 76.11
Random 3 98.41 54.38

TABLE IX

Results of randomizing strategies

280 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Rule Strategy Iterations Feasible solutions (%) Optimal solutions (%)
LFT Random 2 1000 99.89 99.09

Random 2 2000 100 99.43
Random 3 1000 100 93.63
Random 3 2000 100 96.36

DRC/ES Random 2 1000 99.66 89.31
Random 2 2000 99.66 89.31
Random 3 1000 100 81.91
Random 3 2000 100 84.41

TABLE X

Results of the complete constructive algorithm

Problem Feasible
size instances GRASP GR + PR AG − GR AG − GR + PR
10 879 Non-optimal 1 1 2 2

Mean dist. (%) 0.006 0.006 0.15 0.15
Max dist. (%) 5.6 5.6 7.7 7.7

15 234 Non-optimal 4 4 3 3
Mean dist. (%) 0.13 0.13 0.09 0.09
Max dist. (%) 17.9 17.9 17.9 17.9

20 231 Non-optimal* 8 8 8 8
Mean dist. (%) 0.41 0.41 0.33 0.33
Max dist. (%) 24.2 24.2 27.3 27.3

25 236 Non-optimal* 7 6 8 7
Mean dist. (%) 0.20 0.19 0.24 0.23
Max dist. (%) 21.7 21.7 21.7 21.7

30 239 Non-optimal* 5 5 5 4
Mean dist. (%) 0.10 0.10 0.06 0.05
Max dist. (%) 11.5 5.8 3.9 3.9

TABLE XI

Results of GRASP algorithms on Böttcher et al. problems

Problem Feasible
size instances GRASP GR + PR AG − GR AG − GR + PR
10 946 Non-optimal 1 1 2 2

Mean dist. (%) 0.003 0.003 0.007 0.007
Max dist. (%) 2.9 2.9 3.4 3.4

20 960 Non-optimal 33 22 20 19
Mean dist. (%) 0.12 0.08 0.07 0.06
Max dist. (%) 13.0 13.0 13.0 13.0

30 960 Non-optimal* 58 55 34 34
Mean dist. (%) 0.22 0.20 0.12 0.11
Max dist. (%) 12.1 12.1 13.6 13.6

40 960 Non-optimal* 79 76 56 50
Mean dist. (%) 0.48 0.42 0.25 0.22
Max dist. (%) 32.0 32.0 20.5 20.5

TABLE XII

Results of GRASP algorithms on Schirmer problems

F. Villa et al. 281

The results in Table 11 show that only a few very
difficult problems of every size are not optimally solved.
However, these problems are so hard that almost no
difference between algorithms can be observed. The
maximum distance to optimum can be relatively very
high. For instance, problemP2408 of size 15 has an
optimal solution of 28 while the heuristic solution is 33.
However, due to the special type of resources involved, it
is possible that no feasible solutions of length 29, 30, 31
and 32 exist. If that were the case, only one possibility of
improving is left, though the high value of the maximum
distance would seem to suggest the opposite.

The results in Table 12 allow us to observe the differ-
ent performance of the four algorithms more clearly. The
aggressive GRASP procedure does not guarantee a better
solution than the basic GRASP algorithm, as can be seen
in the first row of the Table, but for larger problems
it tends to produce better results. The Path Relinking
algorithm adds little improvement to the good results
obtained by GRASP procedures.

Tables 13 and 14 complement the information in
previous Tables by providing the running times of the
algorithms on both sets of problems. In all cases prepro-
cessing is included as a part of the solution procedure.
The algorithms have been coded inC++ and run on
a Pentium IV at 2.8 Ghz. The basic GRASP algorithm
stops after 2000 iterations, while the stopping criterion
of the aggressive GRASP is set to 500 iterations. The
average running times are very short, though some
problems would require quite long times. Adding the
Path Relinking procedure increases the running times
very slightly and therefore it seems convenient to keep it
in the final implementation. If we compare the running
times of the basic and the aggressive GRASP procedures,
we do not see large differences, except in the last line of
Table 14. However, that is the case in which the results
of the aggressive GRASP are more clearly superior to
the basic algorithm and the larger computing time is
efficiently used to obtain better results. Therefore, the
aggressive GRASP algorithm with Path Relinking seems
to be the best option for an efficient heuristic algorithm.

VI. CONCLUSIONS

We have studied a generalization of the classical
resource constrained project scheduling problem. A new
type of resource is considered, the partially renewable
resource in which the availability of the resource is
associated to a given set of periods and the activities only
consume it when they are processed in these periods.
These resources can be seen as a generalization of
renewable and non-renewable resources, but their main
interest comes from their usefulness to model complex

situations appearing in timetabling and labor scheduling
problems, which can be approached as project schedul-
ing problems.

We have developed several preprocessing techniques
which help to determine the existence of feasible so-
lutions and to reduce the number of variables and con-
straints. We have also designed and implemented heuris-
tic algorithms based on GRASP and Path Relinking.
Preprocessing procedures and heuristic algorithms have
been tested on two sets of instances previously proposed
in the literature. They have been able to determine
the feasibility status of many instances which up to
now were undecided and to solve most of the feasible
instances optimally.

We are convinced that the preprocessing techniques
developed here should be used by any solution proce-
dure, exact or heuristic, applied to this problem. Our
heuristic algorithms are also very efficient and can be
considered a useful tool for obtaining high quality solu-
tions for the problem.

Future lines of research will be the development of
an exact algorithm and the design of new heuristic
algorithms for problems in which partially renewable re-
sources are combined with classical renewable resources,
as happens in real situations.

Acknowledgements

This work has been partially supported by the Spanish
Ministry of Science and Technology DPI2002-02553,
and the Valencian Science and Technology Agency,
GRUPOS03/174.

REFERENCES

[1] J. Böttcher, A. Drexl, R. Kolish, F. Salewski, Project Scheduling
Under Partially Renewable Resource Constraints, Management
Science 45 (1999) 544-559.

[2] S. Chaudhuri, R.A. Walker, J.E. Mitchell, Analyzing and ex-
ploiting the structure of the constraints in the ILP approach to
the scheduling problem, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 2 (1994) 456-471.

[3] N. Christofides, R. Alvarez-Valdes, J.M. Tamarit, Project
scheduling with resource constraints: a branch and bound ap-
proach, European Journal of Operational Research 29 (1987)
262-273.

[4] E.L. Demeulemeester, W.S. Herroelen, Project Scheduling: A
Research Handbook, Kluwer Academic Publishers, Boston,
2002.

[5] A. Drexl, R. Nissen, J.H. Patterson, F. Salewski, ProGen/πx -
An instance generator for resource-constrained project schedul-
ing problems with partially renewable resources and further
extensions, European Journal of Operational Research 125
(2000) 59-72.

282 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Problem
size GRASP GR + PR AG − GR AG − GR + PR
10 Average time 0.41 0.41 0.21 0.21

Maximum time 30.4 30.5 45.8 45.9
15 Average time 1.34 1.35 1.25 1.25

Maximum time 51.0 51.1 93.0 93.1
20 Average time 4.91 4.97 2.98 3.02

Maximum time 180.8 186.6 154.9 155.2
25 Average time 8.85 8.91 6.73 6.76

Maximum time 316.5 316.6 299.2 299.5
30 Average time 8.11 8.12 8.99 9.00

Maximum time 455.6 455.6 457.7 457.8

TABLE XIII

Running times of GRASP algorithms on Böttcher et al. problems

Problem
size GRASP GR + PR AG − GR AG − GR + PR
10 Average time 0.89 0.90 1.05 1.05

Maximum time 41.9 42.2 33.1 33.3
20 Average time 0.95 0.97 0.70 0.71

Maximum time 162.4 163.0 53.0 53.1
30 Average time 2.03 2.10 2.04 2.11

Maximum time 135.0 143.7 144.5 144.7
40 Average time 3.96 4.05 4.32 4.40

Maximum time 155.6 155.8 507.5 519.8

TABLE XIV

Running times of GRASP algorithms on Schirmer problems

[6] P. Festa, M.G.C. Resende, GRASP: An annotated bibliography,
in: M.G.C. Resende, P. Hansen (Eds.), Essays and Surveys in
Metaheuristics, Kluwer Academic Press, Boston, 2001, pp. 325-
367.

[7] J.E. Kelley, Critical path planning and scheduling: Mathematical
basis, Operations Research 9 (1961) 296-320.

[8] R.Kolish, A. Sprecher, A. Drexl, Characterization and genera-
tion of a general class of resource-constrained project schedul-
ing problems, Management Science 41 (1995) 1693-1703.

[9] C. Mellentien, C. Schwindt, N. Trautmann, Scheduling the
factory pick-up of new cars, OR Spectrum (2004), in press.

[10] K. Neumann, C. Schwindt, N. Trautmann, Advanced production
scheduling for batch plants in process industries, OR Spectrum
24 (2002) 251-279.

[11] K. Neumann, C. Schwindt, N. Trautmann, Scheduling of contin-
uous and discontinuous material flows with intermediate storage
restrictions, European Journal of Operational Research (2004),
in press.

[12] M.G.C. Resende, C.C. Ribeiro, Greedy Randomized Adaptive
Search Procedures, in: F. Glover, G. Kochenberger (Eds.), State-
of-the-art Handbook in Meteheuristics, Kluwer Academic Press,
Boston, 2001, pp. 219-250.

[13] A. Schirmer, Project Scheduling with Scarce Resources, Verlag
Dr. Kovac, Hamburg, 2000.

[14] C. Schwindt, N. Trautmann, Scheduling the production of
rolling ingots: industrial context, model and solution method,
International Transactions in Operations Research 10 (2000)

547-563.
[15] J.D. Wiest, F.K. Levy, A management guide to PERT/CPM,

Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 283

Abstract—Hierarchical Production Planning (HPP) is a
philosophy that has been applied to several productive
systems, however little literature exists on tile sector. Tile
companies are multi-stage systems characterised by high
sequence dependent setup times and high inventory levels.
The existing research simplifies the problem considering
the productive environment as constitute by a unique
stage (usually the bottleneck one). However this approach
introduces excessive simplifications. In this paper tile
companies are identified as composed by several hybrid
flow-shops. Then, a four level hierarchical production
planning model is proposed for multiple hybrid flow-
shops with high setup times. Hierarchical decomposition
is evaluated for different coordination mechanisms for a
tile company and results are reported.

Keywords—Hierarchical production planning,
coordination mechanisms, hybrid flow shops, high setup
times and tile companies.

I. INTRODUCTION
IERARCHICAL Production Planning (HPP)
constitutes a classical approach to handle the
decision-making process associated with the

production planning of companies. HPP partitions
the production planning problem into
subproblems and assigned them to the different
levels of the hierarchical organisation of the
company. Each level of the hierarchy presents its
own characteristics about planning time horizons
and periods. HPP also aggregates and
disaggregates the information through the various
hierarchical levels. Coordination between levels
must be established in order to ensure consistent
decisions [40].

[3] introduces the concept of HPP. Examples of

following theoretical works on this field are [5],
[7], [8], [9], [13], [15], [25], [30] and [35].

But not only theoretical work has been
developed around this topic, various HPP
applications are reported in the literature such as:
steel manufacturing ([10],[21],[22],[23]), metal
can manufacturing ([28]), metal parts fabrication
([16]), shoe production ([11]), motor industry
([40]), detergent manufacturing company ([6]),
milk powder manufacturing ([33]), furniture
company ([18]), batch size production ([38]),
multi-machine environment ([1997]), food
production system ([39]), flexible automation
workshops ([42]), supply chain management
([37]), and hierarchical production planning with
demand constraints ([43]).

Though HPP has been applied to several
productive systems, little literature exists on tile
sector. One of the pioneering applications has
been made by [20]. [27] deal with the issue of
solving the capacitated and loading problem when
parallel machines exist. [29] extend this later work
taking into account the activation/deactivation of
firings in a tile company.

These entire investigations simplify the problem
considering the productive environment as
constitute by a unique stage (the bottleneck stage,

Evaluation of a hierarchical production planning
and scheduling model for a tile company under

different coordination mechanisms

H

Mª del Mar Alemany*, Eduardo Vicens†, Carlos Andrés‡ and Andrés Boza§
*Universidad Politécnica de Valencia/Organización de Empresas

Camino de Vera s/n
Email: mareva@omp.upv.es (corresponding author)

†Universidad Politécnica de Valencia/Organización de Empresas
Camino de Vera s/n

Email: evicens@omp.upv.es
‡Universidad Politécnica de Valencia/Organización de Empresas

Camino de Vera s/n
Email: candres@omp.upv.es

§Universidad Politécnica de Valencia/Organización de Empresas
Camino de Vera s/n

Email: aboza@omp.upv.es

284 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

usually the firing section). However this approach
introduces excessive simplifications for certain
productive systems that require a multi-stage
treatment. For instance, one of the most important
problems in tile sector is a high inventory level
not only of final product but work-in-process. To
control this two kinds of inventory it is necessary
the inclusion of the multi-stage case.

On the other hand, due to the high
personalization of final products to produce a
great variety of products in the same line is
required. This feature leads to a high numerous of
setups to occur. Setup times are very important in
tile industry (for example, setup times of around
20 hours exist). Therefore, to model the system as
a multi-stage one, allows a major real estimation
of the capacity consumption in every stage of the
productive system as a consequence of setups.
This fact receives a greater importance if, in
addition, it is tried to determine normal and extra
capacity of each stage ([1]).

The paper is organized as follows. First a tile
company description is made and then it is
identified as composed by several hybrid flow
shops. A decisional problem classification is made
and main contributions of the proposed model are
outlined. A description of the proposed hierarchy
to solve the problem is made as well as a
description of the proposed models at each level.
Then, different coordination mechanisms between
levels are exposed. The proposed hierarchy is
experimentally tested and results are reported.
Finally, a set of considerations about obtained
results are made.

II. TILE COMPANY DESCRIPTION
Production of tiles is made from clay. Once clay is
atomized it can follow two different production
processes: single firing or double firing process.
As a summary, in the single firing process the
atomized clay is pressed forming pieces that are
passed to glazing lines where it is come to the
piece decoration through different applications.
Then pieces are dried and taking into kills to be
cooked. Between the glazing lines section and the
kills section there are intermediate warehouses
due to the different rate of production in each
section. Once product is cooked it will be
classified in different qualities by means of

sophisticated machines (sorters and packaged
machines). At the same time, a worker analyzes
the surface defects. The own sorters makes the
cardboard boxes in which the product is packaged.
A robot gathers these boxes and it stores them in
pallets that are transported to the finished product
warehouse. The product is ready already for its
expedition. The double firing process would be
almost the same unlike pressed pieces are cooked
twice: before and later being processed by glazing
lines. So the use of a process or another one
mainly corresponds to the size of the format. Thus
formats superior to 20x31 are processed by means
of double firing line with the objective of give
them a greater resistance before being processed
in glazing lines.

Productive system layout of this company for
single firing process is composed by four presses,
four glazing lines, two kilns and three sorters. For
double firing process it is composed by one press,
one kiln, one glazing line, another kiln, and two
sorters and packaged machines. There are two
intermediate warehouses (buffers) and a
warehouse for final products (figure 1).

P Line 1

P Line 2

P Line 3

P Line 4

P Kiln 3

Warehouse

Line 1

Line 2
IB IB

Kiln 1

Kiln 2

Sorter 5
Sorter 4
Sorter 3
Sorter 2
Sorter 1

Kiln 4

P Line 1

P Line 2

P Line 3

P Line 4

P Kiln 3

Warehouse

Line 1

Line 2
IB IB

Kiln 1

Kiln 2

Sorter 5
Sorter 4
Sorter 3
Sorter 2
Sorter 1

Kiln 4

SINGLE FIRING PROCESS

DOUBLE FIRING PROCESS

P Line 1

P Line 2

P Line 3

P Line 4

P Kiln 3

Warehouse

Line 1

Line 2
IB IB

Kiln 1

Kiln 2

Sorter 5
Sorter 4
Sorter 3
Sorter 2
Sorter 1

Kiln 4

P Line 1

P Line 2

P Line 3

P Line 4

P Kiln 3

Warehouse

Line 1

Line 2
IB IB

Kiln 1

Kiln 2

Sorter 5
Sorter 4
Sorter 3
Sorter 2
Sorter 1

Kiln 4

SINGLE FIRING PROCESS

DOUBLE FIRING PROCESS

Figure 1. Productive system layout of tile company

In this company, two kinds of workforce can be
distinguished: that dedicated to productive process
and that dedicated to setups. With respect to the
first class, due to the high automatization of tile
companies a worker must manage several
machines in the same section. Furthermore,
workforce is polyvalent in such a manner that a
worker can be transferred from one section to
another. With respect to the second class, there is
a maintenance team that attends setups of
machines and maintenance work.

Mª del Mar Alemany et al. 285

Some stages of the productive process work on

shifts (presses and glazing lines, sorters and
packages) but others work on a continuous basis
(maximum number of shifts) or simply they are or
not in operation (kilns).

When a change of model in one facility is
performed, a maintenance team executes all setup
operations. Six men compose it and each team
will only work at one facility at a time. By
watching setup operations, a setup time can be
defined. It includes the time to:

1. Set presses. It consists of putting a new
matrix, when changes in the tile size and
shape are required.

2. Set the glazing lines. A glazing line is a
conveyor where a set of machines is
distributed in accordance with the product
characteristics. The change consists of
placing new machines, modifying their
distribution if it is required, and adjusting
them.

3. Prepare the kiln conditions. Modifying the
distribution of heat and adjusting the
carriers and conveyors.

4. Prepare the sorter conditions. Modifying
the conveyor with.

Initially, when the catalogue of the tile

companies was not very extensive, the productive
system was very efficient since in the same line
one or two models were made. Nevertheless,
nowadays in a same glazing line (and due to its
great automatization and cost), a great product
diversity are made. To do this, it is necessary to
change and fit the machines along the entire
process. These setup times can be very important
reaching an order of 20 hours. It is for that reason,
that a suitable management becomes necessary to
diminish the impact of setup times on capacity
consumption of the productive system. A suitable
management of setups would obtain advantages
like: diminution of the number of setups and as a
result of the costs associated to such including
those of personnel, saving of run time of the
master plan and, therefore, giving more operation
flexibility.

Due to uncontrollable aspects of the productive
process, the final product can present certain

deviations with respect to nominal dimension
(calibre) as well as certain variability in colours
(tone problem). This leads to a production of
minimum lot sizes. This fact allows making
necessary adjustments of controllable variables to
correct possible defects and ensure product
reaches the final section to be classified. On the
other hand, due to the difficulty of obtaining a
uniform final product of first quality, lot sizes are
increased to avoid losses due to quality defects.
These two aspects contribute to final product
inventory increases.

The proposed hierarchical model of the

following sections pretends to cover all this
aspects, but at the same time, to be as general as
possible. For this reason, the tile company is
identified as composed by several hybrid flow-
shops and the hierarchical model is formulated in
terms of several hybrid flow-shops. With this
approach we intend to extend the obtained results
to productive systems with similar characteristics.

III. IDENTIFICATION OF A TILE COMPANY AS
COMPOSED BY TWO HYBRID FLOW-SHOPS

In order to identify the productive system layout
of figure 1 as composed by several hybrid flow-
shops the following assumption is made: those
resources between there is no possibility of
altering the sequence will be considered as a
unique resource ([4]). This is the case for presses
and glazing lines because they are connected by a
conveyor. The same is valid for sorter and
package machines. [32] define a hybrid flow shop
as a configuration of m machines organized in r
sections or stages where they process a series of n
pieces. Each piece receives at most r operations
(one in each stage or section). A section contains a
set of mr resources (machines) susceptible to
execute the same operation. These are equivalent
as far as its operation although they can not be it
in its efficiency because the duration of an
operation can depend on the resource chosen
within a section. The resources can process an
only piece simultaneously and each piece receives
an only operation by stage. Between each stage
there are buffers with finite capacity that can be
common to several stages. The flow of the work is
unidirectional from stage 1 to the stage r.

Stages share buffers (figure 1), but if one makes

286 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

as many copies of the shared buffers as stages
make use of them, the logical flow of products can
be represented as in figure 2. Productive system
layout can be schematised as two hybrid flow-
shops: the first one corresponds to the single firing
process and it can be considered as a three stage
hybrid flow-shop with four facilities at the first
stage (press +glazing line), an intermediate buffer
(b=1), two facilities at the second stage (kilns) and
three facilities at the third stage (sorter and
packaged machines) and a warehouse of final
products (b=3). The second one corresponds to the
double firing process and it is composed by four
stages with one facility at the first stage (press and
kiln), an intermediate buffer (b=2), two facilities
at the second stage (glazing lines), an intermediate
buffer (b=2), one facility at the third stage (kiln),
an intermediate buffer (b=1), two facilities at the
fourth stage (sorter and packaged machines) a
warehouse of final products (b=3). Furthermore,
these hybrid flow-shops share common elements
as workforce to make setups (maintenance
equipment) and buffers. For this particular case,
decisions about capacity for stages 2, 4, and 6 (set
EA) is reduced to activate or deactivate the kilns,
meanwhile for the rest of stages (set NEA) the
number of shifts (normal capacity) and extra
capacity must to be established.

M11

M13

M14

M12 M21

M22

M31

M33

M32

M41
M51

M52
M61

M71

M72

b=1 b=1 b=3

b=2 b=2 b=1 b=3

STAGE 4 STAGE 5 STAGE 6 STAGE 7

STAGE 1 STAGE 2 STAGE 3

Z=2 (DOUBLE FIRING PROCESS)

Z=1 (SINGLE FIRING PROCESS)

M11

M13

M14

M12 M21

M22

M31

M33

M32

M41
M51

M52
M61

M71

M72

b=1b=1 b=1b=1 b=3b=3

b=2b=2 b=2b=2 b=1b=1 b=3b=3

STAGE 4 STAGE 5 STAGE 6 STAGE 7

STAGE 1 STAGE 2 STAGE 3

Z=2 (DOUBLE FIRING PROCESS)

Z=1 (SINGLE FIRING PROCESS)

Figure 2. Identification of the tile company as
composed by two hybrid flow-shops.

IV. DECISIONAL PROBLEM CLASSIFICATION AND
CONTRIBUTIONS

A hierarchical model for the mid-term planning of
manufacturing systems composed by several
hybrid flow shops with high sequence dependent
setup times is presented. For these systems to
completely ignore setup times at aggregate level
can lead to several problems related to feasibility

and performance of detailed plans, even more
when capacity dimension of the productive system
has to be made for tactical planning. In order to
represent more accurately important setup times in
a parallel processor environment it seems to be
adequately to make mid term lot sizing decisions
and short term loading decisions simultaneously.
Then, the problem of concern to us consists of
determining which products are produced by each
machine (loading) of each stage and flow shop
and their production quantity (lot sizing) to satisfy
dynamic demand over a planning horizon. This
problem belongs to the Capacitated Lot-Sizing
and Loading Problem class (CLSLP). Several
works dealing with the CLSLP for a unique
hybrid flow shop exist ([2],[12],[27],[29]).
However the modelization of the proposed
problem introduces some new aspects:

1. There are several hybrid flow shops.
Independently treatment of each flow
shop is not possible, in principle, due to
the existence of common elements
(workers, buffers, etc.).

2. Setups have a very important capacity
consumption of two resources classes:
those dedicated to production and those
dedicated to setups.

3. Lot sizes should be assigned within
available capacity limits. Another new
aspect is the treatment of the available
capacity of production resources. The way
of dimensioning production resources
capacity depends on the productive stage:

o There are stages where capacity
decisions are restricted to active
or deactivate a machine in a
period. That is, once activated it
will be active continuously. This
leads to the bin packing problem
([17]). These stages belong to the
set named EA.

o Capacity decisions of the rest
stages include determination of
number of shifts (normal capacity
dimension) and extra capacity.
These stages belong to the set
named NEA.

4. There is also a possibility of
subcontracting final products (an
unlimited source).

5. Stages are decoupled by capacity finite

Mª del Mar Alemany et al. 287

buffers which can be shared by several
stages.

6. Minimum lot sizes are considered.
7. Lot sizes augment is modelled because of

uncertainty in faulty pieces.

Model supposes high sequence dependent setup
times, but at the detail level considered sequence
it is not kwon. In order to do not overestimate
available capacity in making plans that can result
infeasible at plant level, an estimation of
independent sequence setup times is proposed.
The methodology to do this presupposes a certain
sequence through the definition of a four level
hierarchical structure: items are aggregated into
families, families into types which in turn are
aggregated into lines of products. Furthermore, it
is assumed that in a certain time period all
products lot sizes belonging to the same family
that are assigned to a given machine are jointly
processed. The same is valid for all families
belonging to the same type. Therefore, this
especial treatment of setups is also considered a
differentiating aspect.

Modelization of the above problem in one step
results in a monolithic model belonging to the
CLSLP class and that can be seen in [1].
Furthermore model formulation includes types,
families and products jointly, in order to allow
properly modelling of sequence dependent setups
in a model that does not take into account the
product sequence. To reflect this fact the model
has been named as Hierarchical Capacitated
Multilevel Multi-flowshop Lot Sizing and
Loading Problem (HCMMLSLP). Mathematical
formulation of the monolithic model is made in
order to compare solution obtained by this model
with its hierarchical decomposition (as it is
proposed in the methodology of [41]).

V. HIERARCHICAL DESIGN AND TYPES OF
AGGREGATION

Hierarchical decomposition of detailed model
establishes the existence of four levels: lines,
types, families and products. The type of
aggregation existing between two consecutive
levels of the proposed hierarchy includes items,
resources and time (figure 3).

HORIZON

LINE LEVEL

TYPE LEVEL

FAMILY
LEVEL

PRODUCT
LEVEL

TYPE OF
AGGREGATION

ITEMS

RESOURCES
TIME

ITEMS

ITEMS

ITEMSLEVELS RESOURCES TIME

LINES

TYPES

FAMILIES

PRODUCTS

STAGES

MACHINES

MACHINES

MACHINES

HORIZON

ELEMENTARY
PERIOD

AGGREGATE
PERIOD

LINE LEVEL

TYPE LEVEL

FAMILY
LEVEL

PRODUCT
LEVEL

TYPE OF
AGGREGATION

ITEMS

RESOURCES
TIME

ITEMS

ITEMS

ITEMSLEVELS RESOURCES TIME

LINES

TYPES

FAMILIES

PRODUCTS

STAGES

MACHINES

MACHINES

MACHINES

HORIZON

ELEMENTARY
PERIOD

AGGREGATE
PERIOD

Figure 3. Type of aggregation between hierarchical
levels.

In relation to the hierarchical product structure
four levels are defined: lines of products, types,
families and products. Criteria used to define the
product hierarchical structure is based on two
aspects: the productive process followed by a
product and the necessary setups of machines for
processing a product. Based on this, it is possible
to define:

1. Lines of products: group of products that
are processed by the same hybrid flow
shop. For the tile company under study it is
possible to establish the existence of two
lines of products; those belonging to single
firing process and those belonging to
double firing process.

2. Types: group of articles belonging to the
same line of products that share a common
independent sequence setup of some
machines. For the tile company, types
correspond with formats and the common
sequence independent setup takes place at
presses, kilns, sorters and packages.

3. Families: group of articles that belonging to
the same type share a similar sequence
dependent setup of some machines. For this
particular case, families correspond with
models that share a similar sequence
dependent setup at the glazing lines.

4. Products: different articles provided to the
customers. In this case, products correspond
with the different existing models in the tile
company.

For the tile company under study there are two

lines of products (single firing process and double
firing process). The first line is composed by three
types (formats with different size) and the second
one is integrated by six types. As it can be

288 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

observed as well as lines as types definition
corresponds to a physical differentiation (process
type and size, respectively). However, what
products belong to which family is something that
must be determined. This research supposes that
aggregation process has been made and therefore
families have been determined and it is based on
research developed by [4].

Resource aggregation presents two levels:

1. Machine: resource able to process a set of
items

2. Stage: set of machines able to make the
same operation on the same set of items
(perhaps with different processing and
setup times).

For time aggregation, analysis of periodicity of

decisions establishes two possible magnitudes for
time periods:

1. Elementary period: it represents the time
unity for the hierarchical system

2. Aggregate period: integer number of
detailed periods that present a similar
level of capacity consumption.

Usually definition of aggregate periods does not

require none similarity measure. But this
definition intends to avoid infeasibilities at lower
levels during disaggregation process that lead to
unfulfilled demand.

VI. PROPOSED MODELS AT EACH LEVEL
As it has been mentioned before, planning
hierarchy is composed by four levels (line, type,
family and product). Decision making at each
level is based on mathematical models. Only one
mathematical model is associated at line and type
level. However, at family level there are so many
submodels as types exist. In the same way, at
product level there are so many submodels as
families exist. These independent submodels
make more easily the solution process (one of the
advantages of hierarchical philosophy).

Decisions at each level are not making
simultaneously. Decisions based on line level are
made at t0, those of type level at t1, and those of
family and product level at t2 (being t0<t1<t2),
therefore information about demand can not be the

same one. This is the reason why consistency
conditions are not referred to production
quantities but to planning inventory levels
determined by upper levels. In contrast to
traditional HPP, there is not so important planning
aggregate production quantity as capacity
decisions that must be making by upper levels.

Characteristics of different models are shown at
Table I and Table II in the appendix.

VII. COORDINATION MECHANISMS BETWEEN
LEVELS

In the most general case, levels integrating a
hierarchical system are connected by a top-down
and a bottom-up influence ([37]). In case two
level exist, the top-down influence is called
instruction IN which is a function of the top-
decision (aT): IN= IN(aT). The bottom-up
influence is more complicated. It is, in principle,
the anticipation of the base-level behavior which
has to be taking into account by the top-level. If
this anticipation does not depend on the
instruction, it is called non-reactive. In the
reactive case, however, the anticipation depends
on IN and gives rise to the anticipation function
AF=AF(IN). The anticipation function describes
the possible optimal reaction of the base-level. It
can be viewed as an optimal anticipated (not
necessarily realized) response to an impulse IN.

Based on the kind of coordination, four types
on anticipation can be defined:

1. Pure top-down hierarchy: the top-level is
assumed not to take into account any
feature of the base-level.

2. Non-reactive anticipation: in contrast to
the pure top-down hierarchy, the non-
reactive anticipation accounts for
important features of the base level’s
model. A reaction (to the instruction),
however, is again not taking into account.

3. Reactive anticipation: The anticipation
function is obtained by the top-level in
anticipating and optimizing the entire
base-level. The anticipated base-level
model is simply obtained by the producer
in replacing unknown parameters by their
estimates.

4. Ideal model: for the ideal situation top-
level and base-level are considered as one

Mª del Mar Alemany et al. 289

decision maker.

(T))aIN(Fˆ

(T))IN(aT

(T))aIN(Aˆ

(F))IN(aF

(A))aIN(A

Productive Process

Nivel de Tipos

Nivel Anticipado de Familias

Nivel Anticipado de Artículos

Nivel de Familias

Nivel de Artículos

ALGORITMO JERÁRQUICO
(NIVEL DE TIPOS)

(t1)

(t2)

(T))aIN(Fˆ

(T))IN(aT

(T))aIN(Aˆ

(F))IN(aF

(A))aIN(A

Productive Process

Nivel de Tipos

Nivel Anticipado de Familias

Nivel Anticipado de Artículos

Nivel de Familias

Nivel de Artículos

ALGORITMO JERÁRQUICO
(NIVEL DE TIPOS)

(t1)

(t2)

(L))IN(aL

(L))aIN(Fˆ

(L))aIN(Aˆ

(L))aIN(Tˆ

Nivel de Líneas de Producto

Nivel Anticipado de Tipos

Nivel Anticipado de Familias

Nivel Anticipado de Artículos

ALGORITMO JERÁRQUICO
(NIVEL DE LINEAS)

(t0)

(L))(aIN L**

(L)aL

(L)aTˆ

(L)aFˆ

(L)

(L))IN(aL

(L))aIN(Fˆ

(L))aIN(Aˆ

(L))aIN(Tˆ

Nivel de Líneas de Producto

Nivel Anticipado de Tipos

Nivel Anticipado de Familias

Nivel Anticipado de Artículos

ALGORITMO JERÁRQUICO
(NIVEL DE LINEAS)

(t0)

(L))(aIN L**

(L)aL

(L)aTˆ

(L)aFˆ

(L)aAˆ

(T)aT

(T)aFˆ

(T)aAˆ

(F)aF

(T))(aIN T**

(A))(aIN A**

(A)aA

ALGORITMO JERÁRQUICO
(NIVEL FAMILIAS/ARTICULOS)

aAˆ

(T)aT

(T)aFˆ

(T)aAˆ

(F)aF

(T))(aIN T**

(A))(aIN A**

(A)aA

ALGORITMO JERÁRQUICO
(NIVEL FAMILIAS/ARTICULOS)

(T))aIN(Fˆ (T))aIN(Fˆ

(T))IN(aT (T))IN(aT

(T))aIN(

(T))aIN(Fˆ (T))aIN(Fˆ

(T))IN(aT (T))IN(aT

(T))aIN(Aˆ (T))aIN(Aˆ

(F))IN(aF (F))IN(aF

(A))aIN(A(A))aIN(A

Type Level

Anticipated Family Level

Anticipated Product Level

Family Level

Product Level

HIERARCHICAL ALGORITHM
(TYPE LEVEL)

(t1)

(t2)

Aˆ (T))aIN(Aˆ

(F))IN(aF (F))IN(aF

(A))aIN(A(A))aIN(A

Type Level

Anticipated Family Level

Anticipated Product Level

Family Level

Product Level

HIERARCHICAL ALGORITHM
(TYPE LEVEL)

(t1)

(t2)

(L))IN(aL(L))IN(aL

(L))aIN(Fˆ (L))aIN(Fˆ

(L))aIN(Aˆ (L))aIN(Aˆ

(L))aIN(Tˆ (L))aIN(Tˆ

Line Product Level

Anticipated Type Level

Anticipated Family Level

Anticipated Product Level

HIERARCHICAL ALGORITHM
(LINE LEVEL)

(t0)

(L))(aIN L** (L))(aIN L**

(L)aL(L)aL

(L)aTˆ (L)aTˆ

(L))IN(aL(L))IN(aL

(L))aIN(Fˆ (L))aIN(Fˆ

(L))aIN(Aˆ (L))aIN(Aˆ

(L))aIN(Tˆ (L))aIN(Tˆ

Line Product Level

Anticipated Type Level

Anticipated Family Level

Anticipated Product Level

HIERARCHICAL ALGORITHM
(LINE LEVEL)

(t0)

(L))(aIN L** (L))(aIN L**

(L)aL(L)aL

(L)aTˆ (L)aTˆ

(L)aFˆ (L)aFˆ

(L)aAˆ (L)aAˆ

(T)aT (T)aT

(T)aFˆ (T)aFˆ

(T)aAˆ (T)aAˆ

(F)aF (F)aF

(T))(aIN T** (T))(aIN T**

(A))(aIN A** (A))(aIN A**

(A)aA (A)aA

HIERARCHICAL ALGORITHM
(FAMILY & PRODUCT LEVEL)

Figure 4. Hierarchical algorithms at each level for a
reactive anticipation.

Traditionally, two of the main problems of the

hierarchical systems have been to ensure
feasibility of the detailed decisions and their
optimality. To reduce these problems the non-
reactive anticipation is replaced by the reactive
one. In this kind of anticipation, the top-level
before passing its decision take into account the
lower level’s behavior (base-level anticipation).
To obtain an anticipated version of the lower
levels, the top-level replaces their respective
models by an estimation of them based on
aggregate parameters and orders forecasting at the
top-level decision instant. The anticipated version
of lower levels is solved in order to anticipate
possible infeasibilities. Solution of the lower
levels is used to update aggregate parameters with
the aim of give solutions nearer to the optimal
one. This process is repeated until a stop criterion
is achieved. This process is implemented for each
hierarchical level giving as a result what is called
hierarchical algorithm (Figure 4). It is necessary
to define a hierarchical algorithm for a given set
of levels in case the decisions are made in
different points of time and/or by different
decision-makers. This is the reason because an
unique hierarchical algorithm is defined for the

family and product level.

VIII. HIERARCHY EVALUATION
In order to evaluate the quality of the proposed
hierarchy a computational study has been
developed following the methodology of [41].

A. Experimental Design
In order to have a performance measure of the
planning hierarchy a computational study has
been developed. The methodology followed is
composed by the following stages:

1.-Objective definition
2.-Selection of performance measures and
experimental factors
3.-Design and execution
4.-Results analysis and conclusions

1) Objective definition

Though an optimal solution of monolithic
model was possible, a hierarchal approach is
preferable because it reduces the computational
complexity, the needed of required information
and its associated uncertainty and furthermore it
presents a parallelism with the organizational
structure. However, the following analysis of
computational results pretends to evaluate the
quality of solutions obtained from the hierarchical
decomposition in contrast to those obtained from
the monolithic model. Therefore, it is supposed
that mathematical formulation of monolithic
model has been developed and solved [1].

2) Selection of performance measures and
experimental factors

Performance measures

Feasibility

A first stage to measure the quality of solutions
obtained through the planning hierarchy is to
verify the feasibility of the solutions. Then
feasibility is the first performance measure. A
solution of the hierarchy is considered feasible if
it respects all the restrictions of the monolithic
model. Infeasibilities that can arise during
hierarchical process are of two kinds:

♦ First type infeasibilities: those that

290 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

appear during the disaggregation process
due to the impossibility of solving some
of the hierarchical models. In this case a
detailed solution cannot be obtained.

♦ Second type infeasibilities: though a
detailed solution is obtained from the
execution of the planning hierarchy, it is
not feasible at plant level. That is, the
solution does not respect some of the
monolithic model restrictions.

As much if infeasibility of first type like of

second type exists the value of feasibility
performance measure will be one. A value of cero
for feasibility means that the solution is feasible.

Percentage Deviation

The following performance measure pretends to

taking into account not only quality of solutions
but computational effort through the definition of
execution times of models. Definition of original
percentage deviation is the following:

100*
)'(

)'()(
tFOmon

tFOmontFODPO −
=

 (1)

where:

t → execution time of the planning hierarchy
t’ → execution time of the monolithic model.
FO(t) → objective function value of monolithic
model obtained through the substitution of the
values of detailed decision variables from the
hierarchical model (executed during a time t).
FOmon(t’) → objective function value of
monolithic model obtained through the monolithic
model (executed during a time t’).

Execution times are the result of a calibration
process that considers the difficulty of solving
optimally monolithic model (even the difficulty of
obtaining a feasible solution) and some
hierarchical levels (in particular type level). To
ensure at least one solution to the monolithic
model the following condition is established:
t’>>t.

Calculation process of performance measures:
Feasibility and Percentage Deviation (DP)

Mathematical models of the planning hierarchy
and monolithic model have been translated to
MPL language and have been solved by CPLEX
package. Once randomly generated detailed data
has been aggregated, hierarchy is executed (figure
5). If there is not a first type infeasibility
disaggregate decision variable values obtained
from the hierarchy solution are replaced in
monolithic model. Its resulting objective function
value will be FO(t). Though there was a second
type infeasibility (that is, some monolithic
restrictions are violated) an objective function
value is obtained. However, as it will be seeing
later a penalization must be introduced). On the
other hand, the same detailed input data is
transferred to monolithic model which is solved
during t’ obtaining FOmon(t’). At this point it is
possible to calculate DPO performance measure.

Model of Line
Level

Model of Type
Level

Model of
Family Level

Model of
Product Level

DISAGGREGATE
DECISION VARIABLE

VALUES

Monolithic Model≅

First type
infeasibility

NO

Feasibility=1Feasibility=1
YES

DPODPO

CteCte>=1>=1

Second type
infeasibility

Feasibility=1Feasibility=1

YES

CteCte>=1>=1

NO

Faeasibility=0Faeasibility=0

Cte=1Cte=1

DP=DP=

=Cte*DPO=Cte*DPO

Model of Line
Level

Model of Type
Level

Model of
Family Level

Model of
Product Level

DISAGGREGATE
DECISION VARIABLE

VALUES

Monolithic Model≅

First type
infeasibility

NO

Feasibility=1Feasibility=1
YES

DPODPO

CteCte>=1>=1

Second type
infeasibility

Feasibility=1Feasibility=1

YES

CteCte>=1>=1

NO

Faeasibility=0Faeasibility=0

Cte=1Cte=1

DP=DP=

=Cte*DPO=Cte*DPO

Figure 5. Calculation process of performance measures

Two cases can occur:

1.- Second type infeasibility does not exist: then
“feasibility” is equal to 0 and “percentage
deviation” (DP) is equal to “original percentage
deviation” (DPO), because a penalization is not
required.
2.- Second type infeasibility exists: then
“feasibility” is equal to 1 and “percentage
deviation” (DP) is equal to “original percentage
deviation” (DPO) multiplied by a factor (Cte)
major than one to penalize this fact. In this study
Cte=10.

But during the resolution process it is also
possible that first type feasibility appears when
solving some hierarchical level. In this case more

Mª del Mar Alemany et al. 291

capacity is reserved at upper levels to restore
feasibility and planning hierarchy is solved again
until a disaggregate decision variable values are
obtained. The remaining of the process will be
identical but in this case “feasibility” is equal to 1
and “percentage deviation” (DP) is equal to
“original percentage deviation” (DPO) multiplied
by a factor (Cte) major than one to penalize this
fact. In this study Cte=10.

3) Experimental factors

Hierarchical evaluation is based on problems
randomly generated. Computational design factors
can be seen at figure 6. Each factor has two levels.

Factors Levels Level Values

Simple (see figure) Hierarchical complexity of
references Complex (see figure)

No reactive anticipation Type of coordination
mechanism Reactive anticipation

Low Level [L.I.(pr), 1.1* L.I.(pr)] Process time dispersion High Level [L.I.(pr), 2 * L.I.(pr)]
Low Level [L.I.(s), 1.1* L.I.(s)] Setup time dispersion High Level [L.I.(s), 2 * L.I.(s)]
Low Level [L.I.(cs), 1.1* L.I.(cs)] Setup cost dispersion
High Level [L.I.(cs), 2 * L.I.(cs)]
Low Level [L.I. (c), 1.1* L.I.(c)] Other reference cost

dispersion High Level [L.I.(c), 2 * L.I.(c)]
Low Level 70% of maximum lines capacity Capacity demand
High Level 120% of maximum lines capacity

Figure 6. Factors and levels of the computational study

Factor “hierarchical complexity of references”
has two levels. The “simple” hierarchy supposes
that there is not any reference type aggregation
because each reference group of a level is
composed by a unique reference of the lower
level. However, “complex” hierarchy includes
reference aggregation at all levels (figure 7).

i1 i2 i3 i4 i5 i6 i7 i8 i9 i11 i12

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

k1 k2 k3 k4 k5

z1 z2

i10 i13 i14 i15 i16 i17 i18i1 i2 i3 i4 i5 i6 i7 i8 i9 i11 i12

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

k1 k2 k3 k4 k5

z1 z2

i10 i13 i14 i15 i16 i17 i18

j1 j2

k1 k2

z1

i1 i2

z2

j1 j2

k1 k2

z1

i1 i2

z2
Line

Levels

Type

Family

Product

Complex
Hierarchy

Simple
Hierarchy

i1 i2 i3 i4 i5 i6 i7 i8 i9 i11 i12

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

k1 k2 k3 k4 k5

z1 z2

i10 i13 i14 i15 i16 i17 i18i1 i2 i3 i4 i5 i6 i7 i8 i9 i11 i12

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

k1 k2 k3 k4 k5

z1 z2

i10 i13 i14 i15 i16 i17 i18

j1 j2

k1 k2

z1

i1 i2

z2

j1 j2

k1 k2

z1

i1 i2

z2
Line

Levels

Type

Family

Product

Complex
Hierarchy

Simple
Hierarchy

Figure 7. Values of each level of factor “Hierarchical
complexity of references”

Factor “type of coordination mechanism” has
two levels that evaluate interdependence between
levels based on a non reactive anticipation and
based on a reactive one.

Following factors (except “capacity demand”)
has two levels that measure the dispersion degree
of detailed data to be aggregated. “Low” level
generates detailed data between a lower limit for
the considered factor and an upper limit equal to
1.1 per lower one. That is, the dispersion of data is
reduced. However, “high” level generates detailed
data between the same lower limit for the
considered factor as the “low” level and an upper
limit equal to 2 per lower one. That is, the
dispersion of data is ample.

Finally, low level for “capacity demand”
supposes the necessary capacity to be 70% from
the maximum available one. High level supposes
the necessary capacity to be 120% from the
maximum available one (in this last case a feasible
solution is possible because external capacity is
unlimited).

4) Design and execution

To evaluate planning hierarchy several
problems with different detailed data based on real
case of a tile company have been generated. For
these problems there are fixed data, for example
productive layout (figure 1), but other input data
(experimental factors) vary from one problem to
another. This way there are generated 27 problem
types. Each combination of factors has been three
times repeated.

The computational experiments were conducted
on a PC with an AMD 1300 processor with a 512
MB memory. Models have been translated to a
MPL language and solved with CPLEX package.
Application developed has been programmed in
Delphi 5.0

B. Result analysis and conclusions

To design and analyse computational results the
statistic package Statgraphics ® 5.0 has been
used. From the variance analysis for “feasibility”
(figure 8) can be deducted that only “type of
coordination mechanisms” and “setup time
dispersion” are statistically meaningful (a P-value
lower than 0.05).

From the figure 9 it can be deducted that to
implement a reactive anticipation between levels

292 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

highly reduce the infeasibilities (not only during
the disaggregation process but at plant level). On
the other hand (figure 10), more feasible solutions
are obtained when the “setup time dispersion” is
at low level. This fact shows the relevance of
properly estimating capacity due to setups in a
production environment with high setup times and
of grouping references with similar setups of
machines (low setup time dispersion).

Figure 8. Analysis of variance for feasibility

no reactiva reactiva

Means and 95,0 Percent LSD Intervals

anticipación

-0,03

0,01

0,05

0,09

0,13

0,17

Fa
ct

ib
ili

da
d

Fe
as

ib
ili

ty

Type of hierarchical coordination
Non reactive reactive

Figure 9. Fisher’s test for type of hierarchical
coordination (Feasibility)

0 1.0

Means and 95,0 Percent LSD Intervals

tsetup

-0,01

0,03

0,07

0,11

0,15

Fa
ct

ib
ili

da
d

Fe
as

ib
ili

ty

Setup time
Figure 10. Fisher’s test for setup time (Feasibility).

Only the double interaction “type of
coordination mechanisms”/“setup time

dispersion” is statically meaningful. Implementing
a reactive anticipation not only minimize
infeasibilities to appear but leads the “setup time
dispersion” to be irrelevant.

Interaction Plot for Factibilidad

Fa
ct

ib
ili

da
d

anticipación
no reactiva reactiva

tsetup=0
tsetup=0

tsetup=1.0

tsetup=1.00

0,04

0,08

0,12

0,16

0,2

0,24

Fe
as

ib
ili

ty

Type of hierarchical coordination

Non reactive reactive

Interaction Plot for Feasibililty

Figure 11. Graphic of double interaction between type
of hierarchical coordination and setup time.

In case of “percentage deviation” variance
analysis shows (figure 12) that only four of the
seven factors and five double interactions are
statistical meaningful.

Figure 12. Analysis of variance for percentage
deviation.

no reactiva reactiva

Means and 95,0 Percent LSD Intervals

anticipación

0

5

10

15

20

25

30

de
sv

 p
or

c
Pe

rc
en

ta
ge

D
ev

ia
to

n

Type of hierarchical coordination
Non reactive reactive

Figure 13. Fisher’s test for type of hierarchical

Mª del Mar Alemany et al. 293

coordination (DPO).

Results for “percentage deviation” are better
when a reactive anticipation (Figure 13) is
implemented and level of factors “process time
dispersion” (Figure 14) and “setup time
dispersion” (Figure 15) are low. These results are
in concordance with traditional hierarchical
approach of aggregate elements with similar
characteristics. On the other hand, better results
are obtained when capacity is at low level, that is,
there is a surplus of available capacity in
comparison with the needed one.

0 1.0

Means and 95,0 Percent LSD Intervals

tproc

9

12

15

18

21

24

de
sv

 p
or

c
Pe

rc
en

ta
ge

D
ev

ia
to

n

Process time
Figure 14. Fisher’s test for process time (DPO).

0 1.0

Means and 95,0 Percent LSD Intervals

tsetup

7

10

13

16

19

22

25

de
sv

 p
or

c
Pe

rc
en

ta
ge

D
ev

ia
to

n

Setup time

Figure 15. Fisher’s test for setup time (DPO).

As it can be seen (Figure 16), exact estimation
of capacity is crucial for obtaining better results
from the hierarchical decomposition more when
capacity is lean. In fact, there is not an influence
of other factors like costs.

0 1.0

Means and 95,0 Percent LSD Intervals

capacidad

11

13

15

17

19

21

de
sv

 p
or

c
Pe

rc
en

ta
ge

D
ev

ia
to

n

Capacity demand

Figure 16. Fisher’s test for capacity demana (DPO).

There are five double interactions. From the
analysis of the three following interactions:

• type of coordination mechanisms/process

time dispersion
• type of coordination mechanisms/setup time

dispersion
• type of coordination mechanisms/capacity

demand

From the figure 17, figure 18 and figure 19, it
can be deducted that the reactive anticipation not
only improve the results with respect to non-
reactive one but reduce the difference between a
high and low dispersion degree of the process
time dispersion, setup time dispersions and high
and low capacity demand. Therefore, when a
reactive anticipation exists between levels the
relevance of grouping entities with similar
attributes is lower. This feature extends the real
applicability of hierarchical systems because it is
not necessary that the strict requirements for
aggregation are accomplished.

Interaction Plot for desv porc

de
sv

 p
or

c

anticipación
no reactiva reactiva

tproc=0

tproc=0

tproc=1.0

tproc=1.0

0

10

20

30

40

Interaction Plot for Percentage Deviation

Pe
rc

en
ta

ge
D

ev
ia

to
n

Type of hierarchical coordination
Non reactive reactive

Figure 17. Graphic of double interaction between type
of hierarchical coordination and process time.

294 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Interaction Plot for desv porc
de

sv
 p

or
c

anticipación
no reactiva reactiva

tsetup=0

tsetup=0

tsetup=1.0

tsetup=1.0

0

10

20

30

40

Interaction Plot for Percentage Deviation
Pe

rc
en

ta
ge

D
ev

ia
to

n

Type of hierarchical coordination
Non reactive reactive

Figure 18. Graphic of double interaction between type
of hierarchical coordination and setup time.

Interaction Plot for desv porc

de
sv

 p
or

c

anticipación
no reactiva reactiva

capacidad=0

capacidad=0

capacidad=1.0

capacidad=1.0

0

10

20

30

40

Interaction Plot for Percentage Deviation

Pe
rc

en
ta

ge
D

ev
ia

to
n

Type of hierarchical coordination
Non reactive reactive

Figure 19. Graphic of double interaction between type
of hierarchical coordination and capacity demand.

For the double interaction “setup time
dispersion” and “setup cost dispersion” (Figure
20) results are better when “setup time dispersion”
is low. For the two levels of “setup time
dispersion” better results are obtained when levels
of “setup time dispersion” and “setup cost
dispersion” are opposed. This seems to be logic
because loading and lot sizing decisions are easily
if a group of references with similar setup time
have very different setup costs and vice versa.

Interaction Plot for desv porc

de
sv

 p
or

c

tsetup
0 1.0

csetup=0

csetup=0

csetup=1.0

csetup=1.0

7

10

13

16

19

22

25

Pe
rc

en
ta

ge
D

ev
ia

to
n

Interaction Plot for Percentage Deviation

Setup time

Figure 20. Graphic of double interaction between setup
time and setup cost.

Finally, for double interaction between
“hierarchical complexity of references” and
“capacity demand” (Figure 21) best results are
obtained when capacity demand level is low and

hierarchical complexity of references is simple.

Interaction Plot for desv porc

de
sv

 p
or

c

jerarquia
sencilla compleja

capacidad=0

capacidad=0

capacidad=1.0

capacidad=1.0

11

13

15

17

19

21

Pe
rc

en
ta

ge
D

ev
ia

to
n

Interaction Plot for Percentage Deviation

Hierarchical complexity

simplex complex

Figure 21. Graphic of double interaction between
hierarchical complexity and capacity demand.

IX. FINAL CONSIDERATIONS
A hierarchical production planning model has
been proposed for supporting decision making on
loading and lot sizing for hybrid flow shops with
high sequence dependent setup times. A suitable
management of setup capacity consumption in
these types of production environments is crucial
for the performance and feasibility of detailed
plans. Computational experiments have been
conducted in order to analyse the influence of
different factors in the feasibility and quality of
solutions obtained by the hierarchical
decomposition. To do this, it has been necessary
to establish performance measures and a process
to evaluate the hierarchy.

Results show that reactive anticipation reduce
the possibility of obtaining infeasible solutions
and improves the quality of solutions.
Furthermore, though better results are obtained
when low dispersion of factors exists, the reactive
anticipation considerably reduce the difference
with respect feasibility and optimality of solutions
obtained in case the data dispersion was high.
This fact increases the applicability of hierarchical
systems to real cases where the accomplishment
of certain requirements for a traditional suitable
aggregation (conditions for perfect aggregation)
results very difficult.

Results also show that the properly anticipation
of capacity consumption due to high setup times is
crucial for properly working of hierarchy. In this
case, to implement a reactive anticipation and to
group products with similar setup times
considerably improve the results obtained.

Mª del Mar Alemany et al. 295

APPENDIX

TABLE I
OBJECTIVES AND DECISIONS AT EACH LEVEL

TABLE II
NUMBER OF PROBLEMS AND CONSISTENCY CONDITIONS

AT EACH LEVEL

t Level Number of
problems Consistency Conditions

T0 Line One

T1 Type One

• mid term capacity decisions of line
level:

o Number of shifts
o Aggregated extra capacity

• Subcontracted capacity
• aggregate inventory level of line

products
• Erschler et al. (1986) rule.

T2 Family So many as
types

• Capacity constraints: total capacity
consumption of all families belonging
to each type must be less or equal than
the capacity assigned to each type.
• Subcontracted capacity
• Aggregate inventory level of types

So many as
families

• Total production quantity of family j
for time horizon of product level

T2 Product

So many as
families

• Aggregate inventory level of families
at each stage

• Demand fulfilment of products
• Planning number of setups belonging

to each family
• EROT quantity (from step 1) for each

product.

REFERENCES
[1] M.M.E. Alemany, “Metodología y Modelos para el

Diseño y Operación de los Sistemas de Planificación
Jerárquica de la Producción”, PhD, dissertation,
Polytechnical University of Valencia, 2003.

[2] E.H. Aghezzaf, and A. Artiba, “Aggregate Planning in
Hybrid Flowshops”, International Journal of
Production Research, vol. 36, nº 9, pp. 2463-2477,
1998.

[3] Anthony, “Planning and Control Systems: A Framework
for Analysis”, Harvard University, Graduate School of
Business Administration, Division of Research, Boston,
Massachusetts, 1965.

[4] C. Andrés, “Programación de la Producción en Talleres
de Flujo Híbridos con Tiempos de Cambio de Partida
dependientes de la secuencia. Modelo, Métodos y
Algoritmos de Resolución. Aplicación a Empresas del
Sector Cerámico”, PhD, dissertation, Polytechnical
University of Valencia, 2001.

[5] S. Axsäter, and H. Jönsson, “Aggregation and
disaggregation in hierarchical production planning”,
European Journal of Operational Research, vol. 17, pp.
338-350, 1984.

[6] G. Barbarosoglu, “Hierarchical Production Planning”, in
R.M. Burton y B. Obel, eds., Design Models for
Hierarchical Organizations: Computation, Information
and Decentralization, Kluwer Academic Publishers, pp.
181-206, 1995.

[7] G.R. Bitran, E.A. Haas and A. C. Hax, “Hierarchical
production planning: A single stage system”, Operations
Research, vol. 29, nº 4, pp. 717-743, 1981.

[8] G.R. Bitran, E.A. Haas and A. C. Hax, “Hierarchical
production planning: A two stage system”, Operations
Research, vol.30, nº 2, pp.232-251, 1982.

[9] G.R. Bitran, and A.C. Hax, “Disaggregation and
resource allocation using convex knapsack problems
with bounded variables”, Management Science, vol. 27,
pp. 431-441, 1981.

[10] M.R. Bowers, and J.P. Jarvis, “A Hierarchical
Production Planning and Scheduling Model”, Decision
Sciences, vol. 23, pp. 144-159, 1992.

[11] M.A. Caravilla, and J.P. De Sousa, “Hierarchical
Production Planning in a Make-to-Order Company: A
Case Study”, European Journal of Operational
Research, vol. 86, pp. 43-56, 1995.

[12] A. Dumoulin, and C. Vercellis, 2000, “Tactical Models
for Hierarchical Capacitated Lot-Sizing Problems with
Set-ups and Changovers”, International Journal of
Production Research, vol. 38, nº 1, pp. 51-67, 2000.

[13] J. Erschler, C. Fontan, and C. Merce, “Consistency of
the disaggregation process in hierarchical planning”,
Operations Research, vol. 34, nº 3, pp. 464-469, 1986.

[14] A.C. Hax, and D. Candea, “Hierarchical Integration of
Production Planning and Scheduling”, in: Studies in the
Management Sciences, M. A. Geisler, eds., Logistics,
North Holland, American Elsevier, 1975.

[15] A.C. Hax, and D. Candea, Production and Inventory
Management, Prentice Hall, Englewood Cliffs N.j.,
1984

[16] E. Iakovou, K. Malik, and A. Muckstadt, “A
hierarchical approach for metal parts fabrication”,
International Journal of Production Research, vol. 33,
nº 5, pp. 1257-1274, 1995.

t Level Objectives Decisions

T0 Line

Minimization of:
• Production costs
• Subcontracting costs
• Holding costs
• Extra and Regular

capacity costs
• Shift costs

• aggregated inventory level of line products at each stage
• planned production quantities of line products at each

stage
• planned subcontracted quantities of line products
• Shift number of stages do not belonging to EA.
• Extra capacity of stages do not belonging to EA.

T1 Type

Minimization of:
• Holding costs
• Setup costs of types
• Activation/deactivatio

n costs of machines
belonging to EA

• costs to maintain
actives machines
belonging to EA

• aggregated inventory level of types at each stage
• planned production quantities of types at each stage
• planned subcontracted quantities of types
• lot sizing and loading of types to machines
• number of type setups
• planned number of product setups of each type.
• disaggregated extra capacity of machines do not

belonging to EA
• activation/deactivation of machines belonging to EA

T2 Family

Minimization of:
• Holding costs
• Setup costs of families

(including products)

• lot sizing and loading of families to machines
• planned subcontracted quantities of each family
• number of family setups
• planned number of product setups of each family

STEP1
• Equalizing run out

times

STEP1
• Quantity produce internally of final products for time

horizon of product level (EROT quantities)

T2 Product STEP 2
• Minimization of

unfavourable
deviations of upper
level decisions

STEP 2
• lot sizes of products
• loading of product lot sizes on individual machines
• inventory of work in process and final products
• number of product setups

296 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

[17] D. S. Johnson, “Fast Algorithms for Bin Packing”,
Journal of Computer and System Sciences, vol. 8, pp.
272-314, 1974.

[18] F.C. Lario, E. Vicens and L.R. McDonnell, “Application
of an MRP matrix-based hierarchical planning model to
a furniture company”, Production Planning & Control,
vol. 5, nº 6, pp. 562-574, 1994.

[19] R. Leisten, “An LP-Aggregation view on aggregation in
multi-level production planning”, Annals of Operations
Research, vol. 82, pp. 413-434, 1998.

[20] M.J. Liberatore, and T. Miller, “A Hierarchical
Production Planning System”, Interfaces, vol. 15, pp. 1-
11, 1985.

[21] W. Lin. and C.L. Moodie, “Hierarchical Production
Planning for a Modern Steel Manufacturing System”,
International Journal of Production Research, vol.27,
nº4, pp. 613-628, 1989.

[22] G.T. Makulak, C.L. Moodie, and T.J. Williams, 1980,
“Computerized Hierarchical Production Control in Steel
Manufacturing”, International Journal of Production
Research, vol. 18, pp. 455-465, 1980.

[23] B.D. Neureuther, G.G. Polak, and N.R. Sanders, “A
hierarchical production plan for a make-to-order steel
fabrication plant”, Production Planning & Control, vol.
15, nº3, pp. 324-335, 2004.

[24] E. Nowiki, and C. Smutnicki, “The flow shop with
parallel machines: A tabu search approach”, European
Journal of Operational Research, vol. 106, pp. 226-253,
1998.

[25] L. Özdamar, A.Ö. Atli, and M.A. Bozyel, “Heuristic
family disaggregation techniques for hierarchical
production planning systems”, International Journal of
Production Research, vol. 34, nº 9, pp. 2613-2628,
1996.

[26] L. Özdamar, and S.I. Birbil, “Hybrid Heuristics for the
capacitated lot sizing and loading problem with setup
times and overtime decisions”, European Journal of
Operational Research, vol. 110, pp. 525-547, 1998.

[27] L. Özdamar, and A. Bozyel, “Simultaneous lot sizing
and loading of product families on parallel facilities of
different classes”, International Journal of Production
Research, vol. 36, nº 5, pp. 1305-1324, 1998.

[28] L. Özdamar, N. Yetis, and A. Ö. Atli, “A modified
hierarchical production planning system integrated with
MRP : a case study”, Production Planning & Control,
vol. 8, nº 1, pp. 72-87, 1997.

[29] L. Özdamar, and S.I. Birbil, “A hierarchical planning
system for energy intensive production environments”,
International Journal of Production Economics, vol. 58,
pp. 115-129,1999.

[30] K. Pienkosz, and E. Tockzylowski, “On aggregation of
items in single-stage production systems with limited
inventory levels”, Operations Research, vol. 41, nº2, pp.
419-427, 1993.

[31] M.M. Qiu, and E.E. Burch, “Hierarchical Production
Planning and Scheduling in a Multi-product, Multi-
machine Environment”, International Journal of
Production Research, vol. 35, nº11, pp. 3023-3042,
1997.

[32] F. Riane, A. Artiba, and S.E. Elmaghraby, “A hybrid
three-stage flowshop problem: efficient heuristics to
minimize makespan”, European Journal of Operational
Research, vol. 109, pp. 321-329, 1998.

[33] W.G.M.M Rutten, “Hierarchical Mathematical
Programming for Operational Planning in a Process

Industry”, European Journal of Operational Research,
vol. 64, pp. 363-369, 1993.

[34] M. Salomon, “Deterministic Lot-Sizing Models for
Production Planning”, in Lecture Notes in Economics
and Mathematical Systems, Heidelberg: Springer-
Verlag, 1991

[35] C. Schneeweiss, “Hierarchical Planning in
Organizations: Elements of a general theory”,
International Journal of Production Economics, vol. 56-
57, pp. 547-556, 1998.

[36] C. Schneeweiss, in Hierarchies in Distributed Decision
Making, Ed. Springer-Verlag, Berlin-Heidelberg, 1999.

[37] C. Schneeweiss, and K. Zimmer, “Hierarchical
coordination mechanisms within the supply chain”,
European Journal of Operational Research, vol. 153,
pp. 687-703, 2004.

[38] V. Söhner, and C. Schneeweiss, “Hierarchically
Integrated Lot Size Optimization”, European Journal of
Operational Research, vol. 86, pp. 73-90, 1995.

[39] C.a. Soman, D.P. Van Donk, G. Gaalman, “Combined
make-to-order and make-to-stock in a food production
system”, International Journal of Production
Economics, in press.

[40] H. Tsubone, and M. Sugawara, “A hierarchical
production planning system in the motor industry”,
OMEGA, vol. 15, pp. 113-120, 1987.

[41] E. Vicens, M.M.E. Alemany, C. Andrés, and J.J.
Guarch, “A design and application methodology for
hierarchical production planning decision support
systems in an enterprise integration context”,
International Journal of Production Economics, vol. 74,
pp. 5-20, 2001.

[42] H. Yan, “Hierarchical stochastic production planning for
flexible automation workshops”, Computers and
Industrial Engineering, vol. 38, pp. 435-455, 2000.

[43] H. Yan, X.D. Zhang and J.A. Min, “Hierarchical
production planning with demand constraints”,
Computers & Industrial Engineering, vol. 46, nº 3, pp.
533-551, 2004.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 297

A Restricted Median Location Model for Stop
Location Design in Public Transportation Networks

Dwi Retnani Poetranto∗
∗Department of Mathematics, University of Kaiserslautern

67653 Kaiserslautern, Germany
Email: dwire@mathematik.uni-kl.de

Abstract— We consider the location of stops along the
edges of an already existing public transportation network.
This can be the location of bus stops along some given
routes or railway stations along the tracks in a railway
network. The goal is to minimize the total distance between
demand points to their closest stops, with respect to
the rectangular metric. The problem will be treated as
a restricted location problem, where the restriction is
given by the fact, that optimal locations have to lie on
the transportation network. Two cases are of interest,
completely redesigning the stops and opening additional
stops. Using a reduction from the rectangularp-median
problem, we show that this problem isNP-hard. However,
it is shown that if we want to establish only one stop then it
is solvable in polynomial time. This result is used to develop
a heuristic algorithm to solve the general problem where
we want to establish more than one stop. Two heuristic
strategies are proposed and computational results with
randomly generated test problems are presented.

Keywords— facility location, rectangular metric, p-
median problem, public transportation

I. I NTRODUCTION

T HE planning process in a public transportation
company starts by designing and building a trans-

portation network. This includes to establish stops or sta-
tions and bus routes or train tracks. As a result we obtain
a public transportation network(PTN). Throughout this
paper, we will use the following definition for the PTN.

Definition 1.1: (Public Transportation Network)
[23] The Public Transportation Network (PTN) is a graph
PTN = (V, E), given by a set of stops or stationsV and
a setE of direct connections between them. We assume
that the PTN is an undirected graph.

This paper deals with the problem of placing
stops/stations along the edges of an already existing
public transportation network, based on the previous
result presented in [22].

Installing new stops in a network of public transport
has both positive and negative effects. On one hand, it
could improve the coverage of residential areas, give

more convenient access to public transportation, and
shorten access times. But on the other hand, it causes
costs for establishing new stops and longer travelling
time (“stop & go”).

The trade-off between the positive and negative effects
of stops was discussed in [11] as a part of a project with
the largest German rail company (Deutsche Bahn). The
negative effect for the travelling time is subtracted from
the positive effect for the access time, and the goal is to
find a location of stops that maximizes this difference.

Recently, another model representing this trade-off
was developed in [24]. In this paper, the problem is
treated as a bicriteria problem, where the goal is to find
a location of stops that achieve a maximal covering of
given demand points with a minimal number of stops.

As we see from the references mentioned above, the
question ofwhere to establish the new stops is very
important in planning a transportation network. In the
current paper we also put emphasize on this question.
This is where location planning enters the picture. The
search for a set of vertices in the PTN that are optimal
for establishing new stops under appropriately quantified
objective functions is a typical task in mathematical
location planning. Many references can be found e.g.
in [1]–[4], [9], [15], [20], [21], [27] and the references
therein.

Our goal is to establish stops/stations that serve a
given set of demand areas (which might represent e.g.
settlement areas, shopping centers, schools, etc.) such
that the total distance from the demand areas to their
closest stops is minimal, with respect to the rectangular
metric. For simplicity, we assume that demand areas are
represented by points in the plane. We do not assume a
given finite candidate set, but allow a continuous set of
possible locations for the stops given by the current bus
routes or railway tracks.

This problem, we call itN -stops location problem(N -
SLP), is a variant of the continuous stop location problem
defined in [25]. In this paper, Schöbel et al discussed the
problem to locate stops in an already existing PTN to

298 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

cover all customers with a minimal amount of additional
travelling time, where covering is defined with respect
to an arbitrary norm (or even a gauge). For this they
assume that the traffic load for each bus route or railway
track is given. Assuming equal weights for all tracks, the
goal reduces to minimizing the number of stops.

In this paper, they proved that the problem of opening
additional stations is equivalent to the new planning of
all stations. This is not the case for our model and we
will consider both of them. However, there is a special
case where these two problems are identical.

It will be shown that the continuous set of possible
stops is reducible to one, where only a finite candidate set
needs to be considered. We develop a heuristic algorithm
based on a polynomial algorithm for solving a special
case in which we want to establish only one stop (1-
SLP).

The remainder of this paper is structured as follows. In
the next section we present a mathematical description
for our stop location model. A solution approach for 1-
SLP using the construction line algorithm as proposed
in [4], [9], [21] is discussed in Section III. Section IV
discusses the model for general problems (N -SLP). Fur-
thermore we prove theNP-hardness of the problem. In
Section V we propose two heuristic algorithms to solve
N -SLP. Some results of our computational experience
are reported in Section VI. Finally we conclude the
paper by briefly introducing some possible extensions
for further research in Section VII.

II. PROBLEM DESCRIPTION

Let PTN = (V, E) be a given public transporta-
tion network and letP = {p1, . . . , pM} ⊂ R

2 be a
given finite set of demand points. Denote the index set
{1, . . . , M} by M. Each demand pointpm ∈ P and
each existing stop/station in PTNvi ∈ V is represented
by their coordinates in the plane,pm = (pm1, pm2),
vi = (vi1, vi2). The tracks are assumed to be a piecewise
linear set in the plane.

Let S be the set of potential new stops. Since we allow
a continuous set of possible locations,S can be derived
as

S :=
⋃

e∈E

e.

We want to determine the location of at mostN stops
which is represented by a set of pointsS∗ ⊂ S.

Two problems are considered, completely redesigning
all stops and opening additional stops.

In the first problem, we assume that the customers
will be served only by the new stops. The location of
the existing stops does not effect our decision, we only

consider the existing routes where we are allowed to
build the new stops.

We look for S∗ ⊂ S, |S∗| ≤ N that minimizes the
objective function:

min f1(S) =
∑

m∈M

l1(pm, S) (1)

In the second model, the customers can go to both the
existing and the new stops, whichever closer to them. For
this model, the objective function is:

min f2(S) =
∑

m∈M

l1(pm, V ∪ S) (2)

The distance between one demand pointpm to a set
S is defined as the distance betweenpm to its closest
point s ∈ S.

Definition 2.1: (Cover) Let P be a set of demand
points andS be a set of feasible stops. Thecover of
s̃ ∈ S is

covers̃,S =

{

pm ∈ P : s̃ = argmin
s∈S

l1(pm, s)

}

and demand pointpm ∈ P is said to be covered bỹs.

If it is clear that the covering is defined with respect
to the setS, we drop the indexS and denotecovers̃,S

only by covers̃.
It can happen that the closest stop to a demand point is

not unique. In this case, the question which station covers
the corresponding demand point has to be answered by a
tie breaking rule. We define our tie breaking as follows:
customers always go to the first closest station found.
This meanscovers, s ∈ S, is a partition of the set of
demand pointsP.

III. 1-STOP LOCATION PROBLEM

In this section we will discuss a solution approach for
the special case where we want to establish only one new
stop. We denote the new planning problem by 1-SLP1
and the additional stop problem by 1-SLP2. If we refer
to the general problem, we use 1-SLP.

A. New Planning of All Stops

Within this setting, the problem turns out to be a
classical restricted 1-facility location problem.

min f1(s) =
∑

m∈M

l1(pm, s)

=
∑

m∈M

|pm1 − s1| + |pm2 − s2| (3)

Dwi Retnani Poetranto 299

We sort the first and second coordinates frompm in
non-decreasing order,

pm11 ≤ pm21 ≤ . . . ≤ pmM1

pn12 ≤ pn22 ≤ . . . ≤ pnM2

In the case wherepmi1 = pmi+11 = . . . = pmj1 we
ommitpmi+11, . . . , pmj1. The list of first coordinates then
becomep̃11, . . . , p̃P1 (P ≤ M) where p̃11 < . . . < p̃P1.
Define a weightvi1 := |{pm1 : pm1 = p̃i1}| for p̃i1, i =
1, . . . , P .

The list p̃12 < . . . < p̃Q2 and weight
v12, . . . , vQ2, (Q ≤ M) with respect to the second
coordinates ofpm are defined analogously.

Additionally we define p̃01 = p̃02 = −∞ and
p̃P+1,1 = p̃Q+1,2 = ∞.

Now we get the decomposition ofR2 into rectangles

< i, j >:= {(x1, x2) : p̃i1 ≤ x1 ≤ p̃i+1,1,

p̃j2 ≤ x2 ≤ p̃j+1,2}

for i ∈ P0 := {0, 1, . . . , P} and j ∈ Q0 :=
{0, 1, . . . , Q}.

Definition 3.1: (Construction lines) The lines deter-
mining the rectangles< i, j >,

K1 := {x1 = p̃m1 : m ∈ {1, . . . , P}} ∪

{x2 = p̃n2 : n ∈ {1, . . . , Q}}

are calledconstruction lines.
It can be shown now that it is sufficient to consider a

finite set of candidates, in which we know that it contains
an optimal solutions∗.

Definition 3.2: (Candidate Set) Scand1 := V ∪
{S ∩ K1} (see Figure 1)

Construction lines

Demand points

Existing stops/breakpoints

Tracks

Candidates

Fig. 1. Set of candidates along the tracks for 1-SLP1

Theorem 3.3:∃ s∗ ∈ Scand1 such that ∀ s ∈
S

∑

m∈M
l1(pm, s) ≥

∑

m∈M
l1(pm, s∗).

Proof: As mentioned in Section II, we assume that
our tracks are piecewise linear in a plane. Thus,s =
(s1, s2) ∈ e ∈ S satisfies the linear equation

s2 = as1 + b

for somea, b ∈ R.
Along the tracke ∈ S, for s ∈< i, j >, we can rewrite

(3) as:

f1(s) =
i

∑

m=1

vm1(s1 − p̃m1) +

P
∑

m=i+1

vm1(p̃m1 − s1) +

j
∑

n=1

vn2(as1 + b − p̃n2) +

Q
∑

n=j+1

vn2(p̃n2 − as1 − b) (4)

This is a piecewise linear function with breakpoints at
s1 = p̃m1, m ∈ {1, . . . , P} and atas1 + b = s2 =
p̃n2, n ∈ {1, . . . , Q}, i.e. on construction linesK1.
Sincef1(s) is a convex function (see e.g. [15]), from the
piecewise linearity it follows that its minimal value will
be achieved either at breakpoints, i.e. ats∗ ∈ S ∩ K1,
or at s∗ ∈ {v1, v2} if f1(s) is defined in the interval
[v1, v2]. Notice thatv1, v2 are elements ofV .

Unfortunately, it may happen that|S ∩ K1| = ∞, i.e.
there is a construction linẽk which coincides with̃e ∈ S
in infinitely many points. Using the structure of level
curves, we will show in the following that in this case
we do not need to considerk̃ for the corresponding track
ẽ.

The level curves off1(s) are polygons, that are linear
in rectangle< i, j >. Let Opt∗ be the optimal single
facility in the unrestricted problem. Furthermore, we
denote the level curve that goes throughs ∈< i, j >,
s /∈ Opt∗ with L=(f1(s)). The gradient of level curves
can be shown as in Figure 2 (see e.g. [4] or [9] for
details).

inf

0+

−

−

Opt*

+0

inf

Fig. 2. Gradient of level curves

If s∗ is an optimal solution for 1-SLP1, it is clear
that L=(f1(s

∗)) will never cross the set of tracksS,

300 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

but it will only touch S at certain points. In particular,
L=(f1(s

∗)) will touch S only at s∗ itself, or in cases∗

is not a unique optimal solution,L=(f1(s
∗)) touchesS

at the set of optimal solutionsS∗. This statement holds
because the level setL≤(f1(s

∗)) is convex. Therefore if
there exists somẽs, s̃ /∈ S∗ so thats̃ ∈ L=(f1(s

∗))∩S,
then there would exist̂s ∈ S, i.e. ŝ feasible, such that
the L=(f1(ŝ)) is insideL=(f1(s

∗)), or with other word
f1(ŝ) < f1(s

∗). This contradicts the fact thats∗ is an
optimal solution. Illustration for this is shown in Figure
3.

Fig. 3. Level curves throughs ∈ e ∈ E

This fact, combined with the fact that the gradient of
a level curve changes only at construction lines, can be
used to prove our claim before. This will be stated in
the following lemma.

Lemma 3.4:If track ẽ = [ṽi, ṽj] ∈ S coincides with
some construction linẽk, then it is not necessary to
considerk̃ for the corresponding track̃e.

Before we prove this, we will first give the interpreta-
tion of Lemma 3.4. The lemma says that it is sufficient
to consider̃vi, ṽj and intersection points of̃e with other
construction lines rather thañk (as “normal” definition
of candidate set). See Figure 4 for an illustration.

Proof: Let us takes̃ ∈ ẽ, s̃ 6= ṽi, s̃ 6= ṽj and s̃ /∈
ẽ ∩ {K1 \ k̃}. Since ẽ coincide with construction line
k̃, the gradient of level curveL=(f1(s̃)) will change at
s̃. But thenL=(f1(s̃)) would crossẽ, thus s̃ can not be
optimal.

After establishing thatScand1 is, indeed a finite set,
and moreover there exists somes∗ ∈ Scand1 which is
an optimal solution for 1-SLP1, we get the following
algorithm :

Fig. 4. Candidate set for a 1-SLP1 where a track lies upon a
construction line

Alg.1 : Construction Line Algorithm for 1-SLP1

Input : PTN = (V, E), demand pointsP =
{p1, ..., pM} ⊂ R

2.
Output : s∗ optimal single stop for 1-SLP1.

Step 1 : Compute construction linesK1.
Step 2 : Determine the set of candidatesScand1 =

V ∪ {S ∩ K1} = {s1, ..., sL}.
Step 3 : Let s∗ = argmin {f1(s1), ..., f1(sL)}

Step 4 : Output: s∗

Notice that the construction line algorithm to solve 1-
SLP1 is an algorithm with polynomial time complexity.
If S is the number of existing stops andR is the
number of tracks/rails in our PTN1, then the candidates
s1, ..., sL can be determined inO(S + MR). The effort
to compute objective value for each candidates isO(M)
and sinceL ≤ S + 2MR we need to make at most
S + 2MR − 1 comparison to find the minimum. Thus
the overall complexity of the algorithm isO(M2R).

B. Opening Additional Stations

In this setting, we consider both the existing stops and
the new one. We will see later that several results of the
previous model, with some modifications, can be carried
over to this model.

We start by explaining our solution idea graphically,
which is shown in Figure 5.

For each demand pointpm, m ∈ M, we can determine
the existing stop that coverpm. Let us denote this cover
by vm and the distance between them bydm.

vm := argmin
v∈V

l1(pm, v)

dm := l1(pm, vm)

1S = |V | , R = |E|, whereV is the set of vertices andE is the
set of edges inPTN = (V, E)

Dwi Retnani Poetranto 301

p_3

p_1

p_2

v_3v_1

p_4

v_2, v_4

Fig. 5. Graphical solution idea

For s ∈ R
2, we have to decide whetherpm is closer

to s or to the original covervm. This is easily done with
the help of a rectilinear circle aboutpm with radiusdm.
If s lies inside of the circle thenpm will be covered by
s, otherwise it is covered byvm and the objective value
is not improved. Therefore, we only need to consider the
points that lie inside of at least one circle.

Remark 3.5:Notice that

f2(v) =
∑

m∈M

dm,∀ v ∈ V.

Moreover,

f2(s) ≤ f2(v),∀ s ∈ R
2.

Equality holds ifs ∈ ∅ or s /∈ D, where

D :=
⋃

m∈M

Dm,

Dm :=
{

s ∈ R
2 : l1(pm, s) < dm

}

, m ∈ M.

From Remark 3.5, we see that the level curveL=(z) =
∅ for z > f2(v) andL=(f2(v)) = R

2 \D. Furthermore,
the level setL≤(f2(v)) = R

2. The level setL≤(f2(s))
is in general not convex. As a consequent, the objective
function f2(s) is not convex either. However, it will be
shown later thatf2(s), like f1(s), is a piecewise linear
function along the trackse ∈ S. This fact can be used
to establish a finite candidate set that contains a global
optimal solution for 1-SLP2.

Let us introduce some other notations that we will use
throughout this paper.

Ms := {m ∈ M : s ∈ Dm} ⊆ M.

For eachpm ∈ P, define the open line segments:

km1 := {(x1, x2) ∈ R
2 : x1 = pm1, |pm2 − x2| < dm}

km2 := {(x1, x2) ∈ R
2 : |pm1 − x1| < dm, x2 = pm2}.

Definition 3.6: (Construction lines) Construction
lines for 1-SLP2 are defined as follows:

K2 = {km1 : m ∈ M} ∪ {km2 : m ∈ M}

These lines are basically the same lines as in Definition
3.2, but they are only “active” inDm.

The construction lineskm1 and km2 decomposeDm

into four quadrants:

Dm1 := {(x1, x2) ∈ Dm : x1 ≥ pm1, x2 ≥ pm2}

Dm2 := {(x1, x2) ∈ Dm : x1 < pm1, x2 ≥ pm2}

Dm3 := {(x1, x2) ∈ Dm : x1 < pm1, x2 < pm2}

Dm4 := {(x1, x2) ∈ Dm : x1 ≥ pm1, x2 < pm2}

Using these notations, we can rewrite the objective
function (2) as:

f2(s) =
∑

m∈M

l1(pm, V ∪ {s}) (5)

=
∑

m∈M

min {dm, l1(pm, s)} (6)

=
∑

m∈M\Ms

dm +
∑

m∈Ms

l1(pm, s) (7)

=
∑

m∈M\Ms

dm +

∑

m:s∈Dm1

((s1 − pm1) + (s2 − pm2)) +

∑

m:s∈Dm2

((pm1 − s1) + (s2 − pm2)) +

∑

m:s∈Dm3

((pm1 − s1) + (pm2 − s2)) +

∑

m:s∈Dm4

((s1 − pm1) + (s2 − pm2)) (8)

From (8), we see thatf2(s) are linear in each
Dmi, m ∈ M, i = 1, . . . , 4.

Definition 3.7: (Candidate Set) Scand2 := S ∩ K2

(see Figure 6).
Theorem 3.8:The optimal solution for 1-SLP2 is con-

tained inScand2.
Proof: Since the tracks are assumed to be linear

in the plane,f2(s) are piecewise linear along the tracks
with breakpoints at construction lines,K2, and at the
boundaries ofDm, ∂Dm. A piecewise linear function
attains its minimal value either at a breakpoint or at the
boundary of the interval on which the function is defined.

302 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Construction lines

Demand points

Existing stops/breakpoints

Tracks

Candidates

Fig. 6. Set of candidates along the tracks for 1-SLP2

Along a track e ∈ E, f2(s) is defined on the in-
terval [v1, v2], v1, v2 ∈ V . But we know thatf2(s) ≤
f2(v),∀ v ∈ V, s ∈ R

2, therefore we do not need to
considerv ∈ V as the candidates.

It will be shown in the following lemma thatf2(s) will
not achieve the minimum at a points̃ ∈ ∂(Dm), m ∈ M,
eventhough it may a breakpoint off2(s).

Thus, we only need to consider the breakpointss ∈
Scand2 = S ∩ K2.

Lemma 3.9:f2(s) can not achieve the minimum at
any points ∈ ∂(Dm), m ∈ M.

Proof: Denote the gradient left and gradient right
of f2(s) by f−

2 (s) andf+
2 (s) respectively. Takẽs ∈ S ∩

∂(Dm̃), for somem̃ ∈ M. If S is “entering”Dm̃, f−

2 (s̃)
does not depend onpm̃. Sincel1(pm̃, s′) < dm̃, for s′ ∈
S ∩Dm̃, whereas the other demand pointspm, m ∈ M\
{m̃} does not change the gradient asS enteringDm̃,
the gradient is decreasing, i.e.,f−

2 (s̃) > f+
2 (s̃). In a

similar way, we can show that gradient off2(s) is also
decreasing whenS is “leaving” Dm̃. Thus,f2(s) does
not attain its minimum at the boundary ofDm,∀m ∈
M.

Figure 7 illustrates how the gradient changes along a
track e ∈ S.

If a construction linekm̃i lies upon a track̃e ∈ S, pm̃

must lie onẽ. It is easy to see that in this case we only
need to considerpm̃ in our candidate set. It follows that
the candidate set is finite.

It can happen thatScand2
= ∅. It means, there does not

exist any point on the tracks that improves the objective
value f2(v), v ∈ V . Thus, in such a situation it is not
reasonable to add any station to our PTN.

The following algorithm summarizes the above
discussion to find an optimal stop location for 1-SLP2.

f_2(s)

s_1

Fig. 7. f2(s) along one track

Fig. 8. Candidate set for a 1-SLP2 where a track lies on a
construction line

Fig. 9. An example where the existing PTN can not be improved

Dwi Retnani Poetranto 303

Alg.2 : Construction Line Algorithm for 1-SLP2

Input : PTN = (V, E), demand pointsP =
{p1, ..., pM} ⊂ R

2.
Output : s∗ optimal single stop for 1-SLP2.

Step 1 : For all pm, m ∈ M, evaluatevm, dm, and
Dm.

Step 2 : Compute construction linesK2.
Step 3 : Determine the set of candidatesScand2 =

{S ∩ K2} = {s1, ..., sL}.
Step 4 : If Scand2 = ∅, STOP. Output: s∗ ∈ ∅

Step 5 : Let s∗ = argmin {f2(s1), ..., f2(sL)}

Step 6 : Output: s∗

Computation ofvm, dm, andDm needsO(MS) time.
The candidatess1, ..., sL can be determined inO(MR)
and the effort to compute objective value for each
candidates isO(M). SinceL ≤ 2 MR we need to make
at most2 MR−1 comparison to find the minimum. Thus
the overall complexity of Alg.2 isO(M2R).

Notice that Scand2 ⊆ Scand1. Moreover, if S ⊆
Dm, ∀m ∈ M, then 1-SLP1 and 1-SLP2 are equivalent.
The consequence of this condition is that all of the
existing stops have to be in the same distance to all of the
demand points. This happens, e.g., if all demand points
have the same coordinate, or if all the existing stops
are at infinity. The second situation has a nice practical
interpretation: if all the existing stops are far away from
the set of demand points, we do not need to consider
them in our planning to open some additional stop. All
the demand points will be served only by the new stops,
and the problem is reduced to the problem of completely
redesigning all stops.

IV. N -STOPSLOCATION PROBLEM

In this section we study the general stop location
problem where we want to establish at mostN stops.
Following the notation from the previous section, we
call the problem of completely redesigning the stops
and opening additional stops asN -SLP1 andN -SLP2
respectively. The notationN -SLP is used if we refer
to both of the problem. In this case, we drop all the
index i = 1, 2 for the whole corresponding notation
(e.g., construction lines, candidate set) and the readers
are asked to assign the notations to the corresponding
problem.

The results we get for 1-SLP can be extended forN -
SLP. We know that the optimal solution for 1-SLP is
contained in the candidate setScand. The next theorem
shows that this holds also forN -SLP.

Theorem 4.1:For N -SLP, there exists an optimal so-
lution S∗ ⊆ Scand, |S∗| ≤ N

Proof: Suppose we have already a set of solution
S̃ for the set of demand pointsP with |S̃| ≤ N, S̃ *

Scand. Take s̃ ∈ S̃ \ Scand and consider only demand
points that are covered bỹs. Solve this problem as 1-SLP,
and due to Theorem 3.3 and 3.8 we obtain an optimal
solution s̃

′

∈ Scand. By reassigning the covering of the
demand points, we will get at least the same objective
value. Iterate this process until all stops inS̃ \Scand are
replaced by stops inScand.

However,N -SLP is NP-hard even if we only con-
sider the finite dominating setScand.

Theorem 4.2:N -SLP isNP-hard

Proof: The proof is a reduction of the rectangular
p-median problem to the decision version ofN -SLP.
(Rectangular p-median problem) Given a setP =
{p1, . . . , pM} ⊂ R

2 of points in the plane and posi-
tive rational numberk. Is there a setS ⊂ R

2 of p
points such that ifl1(pm, S) is the length of shortest
l1 travel path frompm to the closest point inS, then
∑M

m=1 l1(pm, S) ≤ k?

Rectangularp-median problem is one of some com-
mon geometric location problems. Megiddo and Supowit
[17] showed theNP-hardness of this problem using the
reduction from 3-satisfiability.

Given an instance of rectangularp-median we define
the following instance ofN -SLP :

• LeaveP as it is.
• N := p.
• DefineS such that it contains sufficiently large parts

of the construction lines, where the set ofV consists
of the end points of segments inS are at infinity.
PTN can now be defined by a node setV and
by edges corresponding to the linear pieces given
between the nodes.

Defining the instance in this way,N -SLP1 is equivalent
to N -SLP2 and theNP-hardness proof is valid for both
problems.

To establish the correctness of this (polynomial)
transformation we have to prove the following :

Claim: N -SLP has a feasible solutionS with
|S| ≤ N and

∑M
m=1 l1(pm, S) ≤ k if and only if exists

S ⊂ R
2, |S| = p such that

∑M
m=1 l1(pm, S) ≤ k.

304 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

(⇒) Let S be a feasible solution ofN -SLP.
Notice thatS is also feasible for rectangular
p-median problem. If|S| = N , the result
follows directly. If |S| < N , add N − |S|
arbitrary points. The total distance will be at
least the same, and the result follows.

(⇐) Now let S be a solution of rectangularp-
median problem. We construct a set of stops
S ⊂ S as follows. Takes ∈ S and define
covers as in Definition 2.1. Consider only
the demand points incovers and find the
optimal solutions′ for unrestricted 1-facility
problem. In the case where optimal solution
is not unique, we can take one arbitrarily.
The point s′ lies on the construction lines
(see e.g. [4] or [9] for a proof) and therefore
it is feasible for ourN -SLP. Takings′ as a
stop, the total distance forN -SLP is at least
the same as the total distance for rectangular
p-median problem and this completes our
proof.

V. HEURISTIC ALGORITHM

Due to Theorem 4.1, there exists a set of optimal stops
S∗, |S∗| ≤ N such thatS∗ ⊆ Scand, i.e. we only need
to consider the finite candidate points inScand as defined
in Definition 3.2 or 3.7. From Theorem 3.3 and 3.8 we
also know that the optimal solution for 1-SLP is always
in Scand, thus we can use the result from 1-SLP to build
a heuristic algorithm forN -SLP.

Our idea of heuristic is based on node partitioning
scheme that was previously introduced by Maranzana
[16].

We divide the demand points intoN disjoint clusters
(partition of demand points), and then consider each
cluster as 1-SLP. In other words, we will haveN inde-
pendent 1-SLPs (we call them as 1-SLP1, . . . , 1-SLPN)
and by solving them we have an initial solutioñS =
{s̃1, . . . , s̃N} ⊆ Scand, where s̃i is the optimal solution
of the 1-SLPi.

In the case where 1-SLPi does not have a unique
optimal solution for somei ∈ {1, . . . , N}, we take a
solution with maximum cover considering the whole
demand points (not only demand points in clusteri). In
more detail, we do it as follows. Let̃Si = {s̃i1 , . . . , s̃iJ

}
be a set of optimal solutions for 1-SLPi. We define

covers̃ij
,S̃i

= {pm ∈ P : s̃ij
= argmin

s∈S̃i

l1(pm, S̃i)}

of each optimal solutioñsij
∈ S̃i. It means, we define the

closest stop̃sij
∈ S̃i to each demand pointpm ∈ P. If

the closest stop is not unique, we assume that customers
can go to any of the closest stations. Having the set of
demand points that are covered by each optimal solution
in S̃i, we take the optimal solutioñsij∗

whose|covers̃ij∗
|

is maximal (for simplification, we drop the index̃Si in
denotation of cover). If this is stil not unique, we take
one arbitrarily.

Notice that several 1-SLPs may have the same optimal
solution. In this case we have to interpret the answer to
N -SLP in such a way, that we have found only a single
location on which several stops will be established.
However, if we establish a single stop on this location,
it will not effect our objective value. Therefore we
can reduce the number of stations to be established to
N ′ < N .

After we get the initial solutionS̃, we definecovers̃

for each stop̃s ∈ S̃. There is a slight different forN -
SLP1 andN -SLP2 in this step.

For N -SLP1, we definecovers̃ with respect toS̃,

covers̃,S̃ = {pm ∈ P : s̃ = argmin
s∈S̃

l1(pm, s)}

All demand points that are served by the same stop will
be put in one cluster and thus we have a secondN
clusters of demand points.

For N -SLP2, we definecovers̃ with respect toV ∪ S̃,

covers̃, V ∪S̃ = {pm ∈ P : s̃ = argmin
s∈(V ∪S̃)

l1(pm, s)}

All demand points that are served by the samenewstop
will be put in one cluster and thus we have a secondN
clusters of demand points.

By reassigning the covering, some stops in the initial
solution may become redundant. In this case, we have
N ′′ clusters of demand points whereN ′′ < N . Reducing
N to N ′′ does not effect the objective value.

We repeat the steps of considering each cluster as 1-
SLP and define the demand points covered by each stop
until we do not get better by doing so.

Now we come to the question how to get the initial
cluster of demand points. We propose two strategies to
partition our demand points, both are quite intuitive. The
first strategy is using Kruskal algorithm and the second
one is usingp-median on a tree network.

A. Clustering Using Kruskal Algorithm

The first idea to divide the demand points intoN
clusters is to use the well known Kruskal algorithm.
As we know, the Kruskal algorithm finds the minimum
spanning tree in a given graphG = (V, E) with non
negative lengthl(e) for each edgee ∈ E (see any book
on basic network optimization, e.g. [10]).

Dwi Retnani Poetranto 305

In our case, we define the graphG = (V, E) as
follows.

Definition 5.1:

V := set of demand pointsP

E := {e = (pi, pj) : for every pairpi, pj ∈ V }

l(e) := l1(pi, pj) for e = (pi, pj).
We do not want to find a minimum spanning tree in

this graph, but we want to find a minimum spanning
forest consists ofN trees.

The algorithm starts with a forest which consists of
|P| trees. Each tree contains only one node and nothing
else. In every step of the algorithm, we choose the edge
with the least weight that connects two different trees
of this forest. If the chosen edge connects nodes which
belong to the same tree, the edge is rejected, and not
examined again because it could produce a circle which
will destroy our tree. We continue with the next edge
in the order of least weight which connects two small
trees into a bigger one. It means, the number of trees
decreases by one in each iteration. Since we want to
have a spanning forest consists ofN trees, we terminate
the Kruskal algorithm after|P| − N iteration.

Unsurprisingly, we consider demand points that be-
long to the same tree as one cluster and therefore we
have an initialN disjoint clusters of our demand points.

From the discussion above, we get the following
algorithm to divide demand points intoN clusters.

Alg.3 : Division of Demand Points intoN Clus-
ters (Kruskal)

Input : Set of demand pointsP = {p1, ..., pM} ⊂
R

2.
Output : cluster1, . . . , clusterN

Step 1 : Construct a complete graph with the de-
mand points as vertices (as in Definition
5.1).

Step 2 : Find the minimum spanning forest con-
sisting of N trees using the Kruskal al-
gorithm.

Step 3 : The set of demand points (vertices) that
belong to one tree is considered as one
cluster.

Construction of a graph as in Definition 5.1 takes
O(M2) steps, and the complexity of Kruskal is
O(|E| log |E|). Our graph has1

2(M(M − 1)) edges
since it is a complete graph withM vertices, therefore
the complexity of Kruskal in this case isO(M2 log M).
Altogether, the complexity of Alg.3 isO(M2 log M).

This idea of clustering is rather simple and intuitive,

but naturally it also has its weaknesses. One which is
quite obvious, is that this method can lead to the situation
where we have one cluster with many demand points
and another cluster with only one demand point. This
happens e.g. in a situation where one demand point is
further away from the others (see Figure 10(a)) or in a
situation where each pair of demand points has the same
distance (see Figure 10(b)).

(a) Example 1 (b) Example 2

Fig. 10. Clustering using Kruskal

In the first situation, this kind of clustering is quite
reasonable since we will establish one stop which covers
one far away demand point and another stop which
covers some demand points that are close to each other,
as one will tend to do in reality. But in the second
situation, clustering using Kruskal will produce an initial
solution that is far from optimal, as we can easily see in
Figure 10(b).

Based on this fact, we came to the idea to divide the
demand points intoN clusters by finding theN -median
of our graph defined in Definition 5.1. Demand points
that are served by the same facility (median) are then put
in the same cluster, and therefore we get our initialN
clusters and can continue with the procedure as explained
in Section V.

A detailed discussion about this clustering strategy
will be presented in the next section.

B. Clustering Usingp-median on Tree Network

Determining the locations ofp facilities on a network
or space so as to minimize the total distance between
users and facilities is commonly called thep-median
problem. Hakimi [6] was the first to formulate the
problem for locating a single and multi median on a
network, and he also has shown that if the users are
located only at vertices then an optimal solution to the
p-median problems exists on the vertices (see [7]).

The problem is well known to beNP-hard, even
if we restrict the median (facilities) to be a subset of
vertices (see [5]). Hakimi [8] has also shown that the

306 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

problem remainsNP-hard when the network has a
simple structure, e.g. planar graph of maximum vertex
degree three.

However, thep-median problem is solvable in poly-
nomial time for some special structure of network. In
particular, this is true for lines [12], [19] and trees [8],
[13], [26].

We will use the algorithm in [26] to find the initial
N clusters of demand points that we require to begin
our heuristic algorithm. In this paper, Tamir proposed
an algorithm to solvep-median problem on a tree by the
”leaves to root” dynamic programming algorithm with
complexity O(pn2) wheren is the number of node in
the tree.

As in the previous section, we consider demand points
as the nodes of a complete graph as in Definition
5.1 and compute the minimum spanning tree of this
network. Since our graph is a dense graph, we use Prim’s
algorithm to find the minimum spanning tree. We then
use the algorithm presented in [26] to find setX ⊆ P,
the set ofN -median on this tree. The next step is to
definecoverx for eachx ∈ X as in Definition 2.1 and
then put all demand points that are covered by the same
facility (median)x ∈ X into the same cluster.

We conclude this procedure to get initialN clusters
of demand points usingN -median on a tree network in
the following algorithm:

Alg.4 : Division of Demand Points IntoN Clus-
ters (N -median on a tree)

Input : Set of demand pointsP = {p1, ..., pM} ⊂
R

2.
Output : cluster1, . . . , clusterN

Step 1 : Construct a complete graph with the de-
mand points as vertices (as in Definition
5.1).

Step 2 : Find the minimum spanning tree using
Prim’s algorithm.

Step 3 : Find setX ⊆ P, the N -median on this
tree using algorithm presented in [26].

Step 4 : Definecoverx for eachx ∈ X.
Step 5 : The set of demand points that are covered

by the same facility is considered as one
cluster.

From the previous subsection we know that the com-
plexity of our first step isO(M2). Prim’s algorithm
computes a minimum spanning tree also inO(M2) steps.
As already mentioned above, the algorithm in [26] finds
anN -median on a tree withM nodes in timeO(NM2).
Thus the total complexity of Alg.4 isO(NM2).

Figure 11 illustrates how this clustering strategy works
for the same example we have in Figure 10(b).

2−median

Fig. 11. Clustering usingN -median on a tree

C. The Algorithm

Summarizing all the above discussions, we get the
following heuristic algorithm to solveN -SLP.

Alg.5 : N -SLP1

Input : PTN = (V, E), demand pointsP =
{p1, ..., pM} ⊂ R

2, number of stations to
be establishedN , stopping criterionǫ.

Output : S∗ optimal stops location,|S∗| ≤ N .

Step 1: Divide demand points intoN clusters
(using Alg.3 or Alg.4). Set̃S := ∅

Step 2: For i = 1, . . . , N
calculate s̃i, the optimal single stop
for clusteri using Alg.1. If the solu-
tion is not unique, take the one with
maximum cover considering the whole
demand points.
If s̃i = s̃j for some j ∈
{1, . . . , i − 1}, setN := N − 1, else
S̃ := S̃ ∪ {s̃i}.

Step 3: Calculate f11
(S̃) =

∑N
i=1 f1(s̃i)

where f1(s̃i) is optimal objective
value in clusteri, i.e. f1(s̃i) =
∑

pm∈ clusteri l1(pm, s̃i).
Step 4: For i = 1, . . . , N

Definecovers̃i,S̃
for eachs̃i ∈ S̃.

If covers̃i
= ∅, setN := N − 1, S̃ :=

S̃ \ {s̃i}.
Step 5: Calculate f12

(S̃) =
∑

pm∈P
l1(pm, S̃).

If f11
(S̃) − f12

(S̃) < ǫ, set S∗ = S̃,
otherwise considercovers̃i

as clusteri for
i = 1, . . . , N and go to Step 2.

Step 6: Output: S∗

The complexity of Step 1 in Alg.5 has been discussed
in this section. Alg.1 finds an optimal solution for 1-SLP
in O(M2R) time, whereR is the number of tracks/rails

Dwi Retnani Poetranto 307

in the PTN. Therefore, finding optimal single stops for all
clusters takesO(NM2R) steps. In the case wherẽsi is
not a unique optimal solution for somei ∈ {1, . . . , N},
we have to determine the covering of each solution
taking into account the whole demand points. This takes
at mostO(MR) steps. Altogether the complexity of Step
2 is O(NM2R). Defining covers̃i,S̃

for each s̃i ∈ S̃
requiresO(NM) steps, and this makes the complexity
for each iterationof Alg.5 O(NM2R).

Several modifications of Alg.5 are needed forN -
SLP2. For the convenience of the reader, we write these
modifications separately in the following algorithm.

Alg.6 : N -SLP2

Input :
}

As in Alg.5
Output :

Step 1:
Step 2: For i = 1, . . . , N

calculate s̃i, the optimal single stop
for clusteri using Alg.2. If the solu-
tion is not unique, take the one with
maximum cover considering the whole
demand points.
If s̃i ∈ ∅ or s̃i = s̃j for some j ∈
{1, . . . , i − 1}, setN := N − 1, else
S̃ := S̃ ∪ {s̃i}.

Step 3: Calculate f21
(S̃) =

∑N
i=1 f2(s̃i)

where f2(s̃i) is optimal objective
value in clusteri, i.e. f2(s̃i) =
∑

pm∈ clusteri l1(pm, V ∪ {s̃i}).
Step 4: For i = 1, . . . , N

Definecovers̃i, V ∪S̃ for eachs̃i ∈ S̃.
If covers̃i

= ∅, setN := N − 1, S̃ :=
S̃ \ {s̃i}.

Step 5: Calculatef22
(S̃) =

∑

pm∈P
l1(pm, V ∪

S̃). If f21
(S̃) − f22

(S̃) < ǫ, setS∗ = S̃,
otherwise considercovers̃i

as clusteri for
i = 1, . . . , N and go to Step 2.

Step 6: Output: S∗

Until Step 3, the complexity of Alg.6 is the same as
Alg.5. Defining covers̃i, V ∪S̃ for each s̃i ∈ S̃ requires
O(N(S + M)) steps whereS is the number of existing
stops. Thus, the complexityfor each iterationof Alg.6
is O(N(S + M2R)).

Notice that Alg.5 and Alg.6 is basically a heuris-
tic algorithm for a general restricted median problem.
Since the problem isNP-hard, moreover it isNP-
hard in strong sense [18], it is unlikely that a (pseudo)
polynomial-time algorithm for its computation can ever

be found [5]. Likewise, the total complexity of our
heuristic algorithm is not known since we do not know
beforehand the number of iteration needed until the
program terminates.

VI. COMPUTATIONAL EXPERIMENTS

The heuristic algorithms were implemented in C++
and the visualization of the output was implemented
using OpenGL2. A simple input generator was also
implemented in the program. All computations were
done at the University of Kaiserslautern on a PC with an
AMD Athlon 2200+ processor running under the Linux
operating system.

The algorithm has been applied to several randomly
generated problems, having the number of demand points
M equal to 50, 100, 200, 300, 350, and 400. For prob-
lems up to 200 demand points, the number of existing
stopsS was set to 7, and the number of stations to be
establishedN varies from 4 to 7. For larger number of
demand points, we setS to 10 andN to 5, 7, 10, and 15.
For every type of setting we set the stopping criterionǫ
to 0.0001.

We try to compare the performance between our
two clustering strategies, both with respect to heuristic
performance and time performance. In order to do so,
for eachM , S, andN several instances were generated,
by randomly choosing the coordinates of demand points
pm ∈ P and existing stopsvi ∈ V uniformly within
the interval [0, 10]2. In order to construct thePTN ,
for each pair of existing stopsvi and vj we generated
an additional parameterα uniformly within the interval
[0, 1]. If α > 0.6, we construct a direct connection
betweenvi andvj .

The computational times are always given in seconds
of CPU, which excludes input and output. To get more
accurate computational time the same instance was run
several times and we took the average computational
times.

In the case where some clusters have an identical
optimal single stop, or where some optimal stops are
redundant by reassigning the covering,N will be reduced
and the program gives an optimal solutionS∗, |S∗| =
N ′ < N . The program gives also a notification that
we can reduce the number of stations to be established
without effecting the objective value.

During the computational experiment, clustering using
Kruskal often gives an indication that we could reduce
the number of stations to be established to obtain the
same objective value. From a practical point of view,
this is really good since it means that we can save

2Open Graphics Language.

308 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

the budget to establish one station. However, it often
does not give us the right interpretation of what actually
happens. Figure 12 illustrates a simple explanation why
Kruskal often gave a warning that we could reduceN
“without” effecting the objective value.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

optimal single stop for each cluster

A B C

2

3
1

(a) Clustering usingN -median on a
tree

�
�
�
�

�
�
�
�

A
B C

2
1

(b) Clustering using Kruskal

Fig. 12. A simple example withN = 3. UsingN -median strategy,
we get clusters A, B, C as in Figure (a). The single optimal stop
for each cluster is stop 1, 2, and 3 respectively and the program
continue with the next iteration. Using Kruskal, we get clusters A,
B, C as in Figure (b). The single optimal stop for cluster A is stop
1, whereas stop 2 is the identical optimal single stop for both cluster
B and C. The program gives an optimal solutionS∗, with |S∗

| = 2
and notifiesN can be reduced without effecting the objective value.
However, reducingN to two does worsen the objective value.

In Section V-A we already mention that one drawback
of clustering using Kruskal algorithm is the unbalanced
number of demand points in the clusters. It means, one
cluster might have almost all demand points whereas
the other clusters may contain only one or two demand
points in it. It is then likely to happen that two clusters
(with only few demand points) will have an identical
optimal solution, and thereforeN is reduced.

On the contrary, clustering usingN -median in a tree
network in general obtains a fair distribution of demand
points into N clusters. Therefore, a warning from the
program that we can reduce the number of stations to
be established to get the same objective value is more
reliable rather than those we get from Alg.2.

During the computational experiment, clustering using
Kruskal obtained better objective values in 28 % of the
instances, clustering usingN -median performed better
in 68 % of the instances, and in the rest 4 % of the
instances both strategies gave exactly the same solution.

Table I and II summarises the performance of these
two clustering strategies during the computational ex-
periments. For each algorithm we give the objective
value obtained by the heuristics (Obj. Val) and CPU
time in seconds (Time). The given values are averages
over the instances in each setting(M, S, N). The first
group of columns (Kruskal) refers to the case where
we use Kruskal clustering strategy, and the second (N -
median) refers to the case where we useN -median on
the spanning tree.

As one can expect, the objective values forN -SLP2

TABLE I

COMPARISON OF THE CLUSTERING STRATEGIES FORN -SLP1

Kruskal N -median

M S N Obj. Val Time Obj. Val Time

50 7 4 134,038 0,026 129,315 0,055

50 7 5 123,702 0,036 117,139 0,068

50 7 6 109,270 0,022 106,042 0,076

50 7 7 96,657 0,033 94,383 0,070

100 7 4 278,093 0,187 277,704 0,287

100 7 5 247,756 0,169 251,346 0,318

100 7 6 234,360 0,174 225,086 0,431

100 7 7 235,821 0,17 227,825 0,465

200 7 4 540,927 2,029 518,393 1,908

200 7 5 492,034 2,012 493,121 2,329

200 7 6 580,587 2,129 535,046 2,934

200 7 7 495,894 2,075 488,625 2,925

300 10 5 690,677 20,026 702,603 7,317

300 10 7 637,076 20,488 592,137 10,096

300 10 10 566,234 19,741 514,554 15,016

300 10 15 381,768 20,752 359,087 23,415

350 10 5 780,784 45,068 768,270 11,400

350 10 7 734,666 45,793 706,169 14,655

350 10 10 788,644 45,936 773,222 20,358

350 10 15 469,132 44,797 475,102 36,563

400 10 5 1019,484 87,766 1000,457 16,385

400 10 7 807,379 82,665 795,490 20,650

400 10 10 760,961 85,923 758,819 28,554

400 10 15 608,768 84,793 614,910 43,154

are almost always better compared toN -SLP1.
The comparison of time performance between these

two clustering strategies forN -SLP1 are shown in Figure
13 and 14. ForN -SLP2, the time performance of the
clustering strategies does not differ signifantly as forN -
SLP1.

Figure 13 shows how the two algorithms perform if
we keepN constant. WhenM is small, Alg.3 performs
slightly better than Alg.4, but as the number of demand
points grows larger, Alg.4 performs much faster than
Alg.3.

If we keep the number of demand pointsM constant,
we see in Figure 14 that computational time of Alg.3 is
relatively constant overN while the computational time
of Alg.4 increases asN grows. However, the increase
is not as fast as the increase of time performance of
Alg.3 asM grows. Thus, for instances with large number

Dwi Retnani Poetranto 309

TABLE II

COMPARISON OF THE CLUSTERING STRATEGIES FORN -SLP2

Kruskal N -median

M S N Obj. Val Time Obj. Val Time

50 7 4 104,187 0,025 98,605 0,070

50 7 5 102,546 0,027 98,240 0,067

50 7 6 87,953 0,030 86,215 0,095

50 7 7 85,298 0,020 82,808 0,090

100 7 4 243,761 0,150 235,196 0,315

100 7 5 202,997 0,165 202,534 0,360

100 7 6 191,470 0,160 188,649 0,495

100 7 7 203,195 0,155 199,4095 0,55

200 7 4 381,623 1,980 366,778 1,855

200 7 5 429,214 1,930 412,993 2,300

200 7 6 512,080 1,850 477,893 2,800

200 7 7 468,211 2,015 450,743 3,525

300 10 5 497,742 20,105 477,942 6,945

300 10 7 528,241 19,745 450,178 9,590

300 10 10 432,336 19,350 430,871 14,510

300 10 15 317,476 20,180 303,149 22,330

350 10 5 498,392 43,730 476,433 10,790

350 10 7 662,095 45,385 547,452 13,940

350 10 10 748,462 45,610 718,611 19,750

350 10 15 460,610 44,580 419,547 35,770

400 10 5 855,938 85,565 778,173 15,100

400 10 7 715,718 82,465 641,195 20,275

400 10 10 654,059 86,570 649,762 29,290

400 10 15 554,018 84,160 528,500 42,770

of demand points, Alg.4 still performs better even for
relatively many stations to be established.

Fig. 13. Time performance,N = 5

A visualization of the program is given in Figure
15. The smallest squares represent demand points, the
squares in middle size are existing stops, and the big
squares are the optimal solutions forN -SLP. The shade
of the background represents the Voronoi region of each
optimal solution. This gives us information about the
covering of each demand point. See e.g. [14] for further
discussion about Voronoi diagrams with respect to the
rectangular metric.

Fig. 14. Time performance,M = 300

Fig. 15. Visualization of optimal solution

VII. POSSIBLEEXTENSIONS AND FURTHER

RESEARCH

This research can be extended in many directions.
Some of them are (1) to introduce forbidden regions
along the tracks in order to avoid the optimal solutions
to be too close with the existing stops, (2) to introduce
weightswm for each demand point which represent e.g.
the number of customers travelling from/to this point,

310 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

and (3) to consider other clustering strategies. These are
left for future research.

ACKNOWLEDGEMENTS

The author would like to thank Prof. Dr. Horst W.
Hamacher and Prof. Dr. Anita Schöbel for their com-
ments, suggestions, and corrections which helped to
improve the presentation of this paper.

REFERENCES

[1] M. S. Daskin,Network and Discrete Location: Models, Algo-
rithms, and Applications. New York: Wiley, 1995.

[2] Z. Drezner, Ed.,Facility Location: A Survey of Applications
and Methods. Berlin: Springer, 1995.

[3] Z. Drezner and H. W. Hamacher, Eds.,Facility Location:
Application and Theory. Berlin: Springer, 2002.

[4] R. L. Francis, F. Leon, J. McGinnis, and J. A. White,Facility
Layout and Location: An Analytical Approach, 2nd ed. New
York: Prentice Hall, 1992.

[5] M. R. Garey and D. S. Johnson,Computers and Intractability
- A Guide to the Theory of NP-Completeness. San Fransisco:
Freeman, 1979.

[6] S. L. Hakimi, “Optimum location of switching centers and
absolute centers and medians of a graph,”Operation Research,
vol. 12, pp. 450–459, 1964.

[7] ——, “Optimum distribution of switching centers in a commu-
nication network and some related graph theoritic problems,”
Operation Research, vol. 13, pp. 462–475, 1965.

[8] S. L. Hakimi and O. Kariv, “An algorithmic approach to
network location problems. part 2 : The p-medians,”SIAM
Journal on Applied Mathematics, vol. 37, pp. 539–560, 1979.

[9] H. W. Hamacher,Mathematische L̈osungsverfahren für planare
Standortprobleme. Vieweg Verlag, 1995.

[10] H. W. Hamacher and K. Klamroth,Linear and Network Opti-
mization - A Bilingual Textbook, ser. Mathematics International.
Vieweg Verlag, 2001.

[11] H. W. Hamacher, A. Liebers, A. Schöbel, D. Wagner, and
F. Wagner, “Locating new stops in a railway network,”Elec-
tronic Notes in Theoretical Computer Science, vol. 50, no. 1,
pp. 1–11, 2001.

[12] R. Hassin and A. Tamir, “Improved complexity bounds for
location problems on the real line,”Operation Research Letters,
vol. 10, pp. 395–402, 1991.

[13] W. L. Hsu, “The distance-domination numbers of tree,”Oper-
ation Research Letters, vol. 1, pp. 96–100, 1982.

[14] D. T. Lee and C. K. Wong, “Voronoi diagrams inl1 (l∞)
metrics with 2-dimensional storage applications,”SIAM Journal
on Computing, vol. 9, pp. 200–211, 1980.

[15] R. F. Love, J. G. Morris, and G. O. Wesolowsky,Facility
Location: Models and Methods. New York: Elsevier Science
Publishing Co.,Inc., 1988.

[16] F. E. Maranzana, “On the location of supply points to minimize
transport costs,”Operational Research Quarterly, vol. 15, pp.
261–270, 1964.

[17] N. Megiddo and K. J. Supowit, “On the complexity of some
common geometric location problems,”SIAM Journal on Com-
puting, vol. 13, pp. 182–196, 1984.

[18] P. B. Mirchandani and R. L. Francis,Discrete Location Theory.
New York: Wiley, 1990.

[19] P. B. Mirchandani, R. Kohli, and A. Tamir, “Capacitated loca-
tion problems on a line,”Transportation Science, vol. 30, no. 1,
pp. 75–80, 1996.

[20] K. C. Mosler,Continous Location of Transportation Network.
Berlin: Springer, 1987.

[21] S. Nickel and H. W. Hamacher, “Restricted planar location
problem and applications,”Naval Research Logistics, vol. 42,
pp. 967–992, 1995.

[22] D. R. Poetranto, “Stop location problem in public transportation
networks,” Master’s thesis, Fachbereich Mathematik, Technis-
che Universiẗat Kaiserslautern, Germany, 2004.

[23] A. Scḧobel, “Optimization models in public transportation,”
Lecture Notes, 2003.

[24] ——, “Locating stops along bus or railway lines – a bicriteria
problem,” Annals of Operations Research, 2005, to appear.

[25] A. Scḧobel, H. W. Hamacher, A. Liebers, and D. Wagner,
“The continous stop location problem in public transporta-
tion networks,” Fachbereich Mathematik, Technische Univer-
sität Kaiserslautern, Report in Wirtschaftsmathematik 81/2002,
2002.

[26] A. Tamir, “An O(pn2) algorithm for thep-median and related
problems on tree graphs,”Operation Research Letters, vol. 19,
pp. 59–64, 1996.

[27] U. O. Vaubel, Standorttheoretische Methoden im Stadt- und
Regionalverkehr. Institut für Stadtbauwesen, RWTH Aachen,
1981.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 311

A Column Generation Approach to the Capacitated
Vehicle Routing Problem with Stochastic Demands

Christian H. Christiansen∗ and Jens Lysgaard
Aarhus School of Business/Department of Accounting, Finance and Logistics

Fuglesangs Alĺe 4, DK-8210 Aarhus V, Denmark
Email: {chc,lys}@asb.dk
∗Corresponding author

Abstract— In this article we introduce a new exact
solution approach to the Capacitated Vehicle Routing
Problem with Stochastic Demands (CVRPSD). In partic-
ular, we consider the case where all customer demands
are distributed independently and where each customer’s
demand follows a Poisson distribution.

The CVRPSD can be formulated as a Set Partitioning
Problem. We show that, under the above assumptions on
demands, the associated column generation subproblem
can be solved using a dynamic programming scheme which
is similar to that used in the case of deterministic demands.

To evaluate the potential of our approach we have
embedded this column generation scheme in a branch-and-
price algorithm. Computational experiments on a large set
of test instances show promising results.

Keywords— Routing, Stochastic programming, Logistics

I. I NTRODUCTION

T HE Capacitated Vehicle Routing Problem (CVRP)
in a deterministic environment has been widely

studied throughout the literature, and can be described
as follows. A set of customers must be provided with
known quantities of a common commodity from a single
depot. To make the deliveries a fleet of identical vehicles,
each with a given capacity, is available. The objective is
to find a collection of routes of minimum total travel cost
under the restrictions that i) each route begins and ends
at the depot, ii) each customer is serviced exactly once,
and iii) the total demand on any route does not exceed
the vehicle capacity.

The CVRP has been extended in numerous directions
for instance by incorporating time windows, multiple
depots or maximum route duration. For thorough reviews
of the CVRP with various extensions see [1], [21]. In
this article we consider the Capacitated Vehicle Routing
Problem with Stochastic Demands (CVRPSD), which
may be viewed as a stochastic counterpart of the CVRP.
The CVRPSD differs from the CVRP with respect to the
following points:

1) In the CVRPSD, the customers’ demands are
stochastic variables of which only the probability
distribution for each customer is assumed known
at the time of planning.

2) In the CVRPSD, it is theexpectedtotal travel cost
that must be minimized.

3) In the CVRPSD, the total actual demand on a route
may exceed the vehicle capacity. In such cases a
failure is said to occur. A strategy is required for
updating the routes in case of such an event. The
actual action resulting from this strategy is called
a recourseaction. The particular strategy affects
the expected cost of a given route, so the strategy
must be known at the time of planning.

The CVRPSD has not received nearly the same level
of attention as the CVRP. In the literature there are
given several reasons for the limited attention paid to
the CVRPSD. Of these perhaps the most important
reason is that the CVRP problem in itself is very hard to
solve, and adding a stochastic dimension to the problem
only makes it even more intractable.

Nonetheless, neglecting the stochastic nature of de-
mands during the planning of the routes can incur sub-
stantially higher expected costs, than what would have
been the result if the stochastic demands had been explic-
itly included in the route planning. For the TSP this has
been thoroughly illustrated by Laporte and Trudeau in
[7]. However, the effects causing the increased expected
cost does not only relate to the customers’ sequence on
each route. To see this, consider the undirected network
in Figure 1.

Each letter denotes a customer, whereas0 denotes the
depot. For each customer, the parentheses contain the
possible actual demands associated with the customer.
For customersA andC, the probability for each of the
two possible actual demands is0.5. Further, for each
customer the value in square brackets is the expected
value of the stochastic demand. If a vehicle is depleted

312 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Fig. 1. Routing with stochastic demands

it must return to the depot to reload and then continue
its route.

Considering only the expected values of the demands
as input to a CVRP model would yield the collection
of routes with minimum distance traveled, not including
the expected penalty costs, namely the routes0 − A −
B−0 and0−C−0. However, considering the stochastic
demands as input to a CVRPSD model would yield the
routes0 − B − C − 0 and0 − A − 0.

The expected travel cost (including expected penalty
cost) for the two solutions is33 and 29.5, respectively.
As this example illustrates, neglecting the stochastic
nature of demands can cause a suboptimal solution, not
only as a consequence of the sequence on each route,
but also as a consequence of wrongful allocation of
customers to the routes. Several other reasons have been
given for incorporating stochastic demands into the route
planning, for an overview of these see e.g. [4], [13], [18].

The article is organized as follows. Section II gives
a brief literature review regarding research on a priori
routing regarding CVRPSD. Section III focuses on the
CVRPSD modeling. Section IV presents our new so-
lution method, and Section V provides computational
results obtained with the proposed algorithm. Concluding
remarks are given in section VI.

II. L ITERATURE REVIEW

To the best of our knowledge the first to address the
CVRPSD was Tillman in 1969 [20]. He considered a
multi depot variant of the CVRP with Poisson distributed
demands. The model considered a cost trade off between
exceeding the vehicle capacity and finishing the route
with excess capacity. The solution approach was a mod-
ification of the savings algorithm originally introduced

by Clarke and Wright in 1964 [6]. For further review of
savings based approaches see [3], [8].

Several modeling approaches have been explored re-
garding the CVRPSD (see, e.g., [11]). Two frequently
used approaches are chance constrained programming
and two stage stochastic programming, respectively.

Chance constrained models implicitly incorporate the
cost of failure. This is done by introducing a threshold
value, limiting the maximum probability of failure for
each route in the final route collection.

Two stage stochastic programming models,however,
incorporate the cost of failure explicitly. The first stage
contains the planning of routes, taking into account
the expected failure costs incurred by the execution of
the routes. The second stage contains the execution of
the planned routes according to the chosen strategy for
updating the routes in case of failure.

Yet another approach to the CVRPSD has been
Markov decision process modeling. However, due to the
large number of states this approach has received limited
attention [7].

For a comparison of the chance constrained approach
and the two stage stochastic programming approach see
[2], [7], [19].

Regarding the two stage stochastic programming ap-
proach, Bertsimas [4] formulated two widely accepted
recourse actions (A) and (B), respectively. These are
based on two different assumptions regarding the time
at which a customer’s actual demand becomes known.
Strategy (A) assumes that a customer’s actual demand
becomes known only upon arrival at the customer.
Strategy (B), however, assumes that actual demands
become known early enough to enable the vehicle to skip
customers with zero actual demand. The recourse action
under both strategies is to deplete the vehicle at the point
of failure, return to the depot to reload and continue
the originally planned route from the point of failure. In
the particular case that a customer’s demand equals the
remaining load of the vehicle, the vehicle returns to the
depot to reload before visiting the next customer.

In their article from 1993, Laporte and Louveaux
developed an integer L-shaped method for stochastic
programs with recourse [15]. Their approach is based on
adding feasibility cuts to a relaxed flow formulation of
a CVRPSD until an integer feasible solution is found. If
the discrepancy between a lower bound on the expected
cost of failure and the current value of the failure cost is
above some threshold, an optimality cut is added to the
formulation. However, in their article no computational
results were presented. The method has been applied to
the CVRPSD in 1995 [10], 1998 [16] and 2002 [17].

Christian H. Christiansen and Jens Lysgaard 313

In the latter, instances with up to 100 customers were
solved.

From the computational results it can be seen that the
L-shaped method seems to perform best on problems
with small expected demands relative to the vehicle
capacity.

In this article we develop a new solution approach to
the CVRPSD. Specifically, we formulate the CVRPSD
as a Set Partitioning Problem and develop a dynamic pro-
gramming algorithm for solving the associated column
generating subproblem.

This approach is motivated by the tendency in de-
terministic vehicle routing that column generation ap-
proaches are particularly competitive in the case of tight
restrictions (e.g. tight capacity restrictions). Therefore,
column generation seems to be a promising approach to
solving those instances that have proven most difficult
to existing algorithms.

Indeed, we expect our approach to be competitive for
solving CVRPSD instances in which it is optimal to have
only a few customers per route. It is worth emphasizing
that this is exactly the instance type for which the L-
shaped approach in [17] seems relatively less effective.
By the introduction of our approach, a wider range
of problem instances is expected to be solvable, hence
strengthening the practical ability of stochastic models.

III. N OTATION AND MODEL FORMULATION

To formally describe the model letG = (V, E) be an
undirected graph, with vertex setV = {0, . . . , n} and
edge setE. Vertex 0 represents a depot, and each of the
vertices inVc = {1, . . . , n} represents a customer. With
each edge{i, j} is associated a travel costdij . Each
customeri has a Poisson distributed demand with an
expected value ofλi > 0. We make the assumption that
eachλi is integer. The customers’ demands are assumed
to be independent. The vehicle capacity is denotedQ.
For each customeri, we let qi denote the stochastic
variable describing the demand at customeri.

We define a feasibleelementary route as a path
(0, v1, . . . , vk, 0) where v1, . . . , vk are k different cus-
tomers whose total expected demand does not exceedQ.
(As in [17], we do not permit routes whose total expected
demand exceedsQ, as such routes would systematically
fail.) For any feasible elementary router, let cr denote
its expected cost. Further, letℜe denote the set of all
feasible elementary routes.

Let αir be a binary parameter describing the number
of times router visits customeri, and letxr be a binary
variable of value 1 if router is chosen and 0 otherwise.
This leads to the following Set Partitioning formulation:

(Porg)

min:
∑

r∈ℜe

crxr (1)

s.t.:
∑

r∈ℜe

αirxr = 1 ∀i ∈ Vc (2)

xr ∈ {0, 1} ∀r ∈ ℜe (3)

The objective (1) minimizes the total expected distri-
bution cost. Constraints (2) ensure that each customer is
contained in exactly one route, whereas the constraints
(3) are the binary constraints on the decision variables.

The recourse that we have chosen is identical to
strategy (A), with one exception. If the vehicle, on
a route (0, 1, . . . , k, 0), at some customeri < k is
exactly depleted, we assume that it continues, without
an intermediate return to the depot, along the route until
it at some customerj ∈ {i + 1, . . . , k} encounters a
positive demand (or reaches the depot). The failure cost
corresponding to this recourse is2d0j (with d00 = 0).

We now consider in detail how the expected costcr

of a route r ∈ ℜe can be calculated. For notational
convenience, we assume that the route is(0, 1, . . . , k, 0).

The total expected costcr can be decomposed into
two elements. The first element (CD) is the deterministic
cost of following the path(0, 1, . . . , k, 0), which must be
done irrespective of actual demands. This cost element
is simply d01 + dk0 +

∑k−1
i=1 di,i+1.

The second element (CS) is the cost incurred by
the stochastic nature of demands. Generally,CS is the
expected cost of travel to/from the depot as a result
of failures, for the entire route as a whole. We note
that the extra traveling represented byCS must be done
in addition to traveling the path represented byCD,
so that CD and CS are additive. Indeed, we obtain
cr = CD + CS .

The complicating part ofcr is the calculation ofCS .
As it turns out, however, we are able to separateCS into
k additive terms, one for each customer1, . . . , k. This
is shown in the following.

Let u > 0 be an integer parameter describing the ac-
cumulated number of failures. The probabilityF (i|u, Q)
that the total actual demand on the path(0, 1, . . . , i) does
not exceeduQ can be calculated as follows:

F (i|u, Q) = Pr(
i

∑

h=1

qh ≤ uQ). (4)

Proposition 1: The probability in (4) depends only on
the total expected demand along the path toi, not on

314 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

how this total expected demand is divided among the
customers on the path.

Proof: Our assumption that the demands are inde-
pendent Poisson distributions implies that the expression
∑i

h=1 qh is in itself a Possion distributed variable with
an expected value of

∑i
h=1 λh. As such, the distribution

of
∑i

h=1 qh does not depend on the individual expected
demands, but only on

∑i
h=1 λh.

Proposition 1 is the key to our algorithm for solving
the column generation subproblem in Subsection IV-B.

As a consequence of Proposition 1 we can for the
remainder of this Section leave the assumption of the
path(0, . . . , i), and simply consider any elementary path
from 0 toi on which the total expected demand is a given
value, say,Λ. We let Po(Λ) represent any variable which
follows a Poisson distribution with an expected value of
Λ. In addition, we defineF (Λ, U) as the probability that
the total actual demand on a path, whose total expected
demand isΛ, does not exceedU , whereU is a positive
integer:

F (Λ, U) = Pr(Po(Λ) ≤ U). (5)

We now turn to considerfailures in more detail.

Definition 1: For a given integeru ≥ 1 and any
elementary path(0, . . . , j, i) we say that theu’th failure
occurs at customeri if and only if the total actual
demand on the path(0, . . . , j, i) exceedsuQ and the
total actual demand on the path(0, . . . , j) does not
exceeduQ.

Let Λ denote the total expected demand on the path
(0, . . . , i). The probability that theu’th failure occurs at
customeri is thenF (Λ − λi, uQ) − F (Λ, uQ).

For any elementary path(0, . . . , i) with total expected
demandΛ, the expected number of failures FAIL(Λ, i)
at customeri can then be calculated by summing over
all possible failures:

FAIL(Λ, i) =
∞
∑

u=1

F (Λ − λi, uQ) − F (Λ, uQ), (6)

which in practical computations is approximated by
replacing∞ with some sufficiently large number.

Since the failure cost2d0i is incurred for every failure
at customeri, the expected failure costEFC(Λ, i) at
customeri, for any elementary path(0, . . . , i) with total
expected demandΛ, can be calculated as follows:

EFC(Λ, i) = 2d0iFAIL(Λ, i). (7)

This result is originally obtained in [7]. We note that
our assumption of independent Poisson demands permits

a tractable calculation of expected failure costs, in the
light of Proposition 1.

IV. SOLUTION PROCEDURE

Our solution procedure is based on Dantzig-Wolfe
decomposition. As is usual in Set Partitioning based ap-
proaches to vehicle routing, we make a few modifications
to the formulation in order to obtain a more tractable
problem.

A. The master problem

To obtain the master problem denotedPM , we i) relax
the integrality constraints (3), ii) change the partitioning
constraints to covering constraints in order to obtain a
smaller dual solution space, and iii) enlarge the set of
feasible routes by permitting non-elementary paths. This
leads to the following master problem:

(PM)

min:
∑

r∈ℜ

crxr (8)

s.t.:
∑

r∈ℜ

airxr ≥ 1 ∀i ∈ Vc (9)

xr ≥ 0 ∀r ∈ ℜ (10)

In PM , the setℜ contains all feasible elementary
routes as well as all non-elementary routes without 2-
cycles (i-j-i) on which the total expected demand does
not exceedQ. A customeri contributesλi to the total
expected demand on every arrival ati on the route. The
coefficientair equals the number of times that customer
i is visited on router.

We initialize PM by n single-customer routes and
solve this LP. By solvingPM a vector of dual prices
π1, . . . , πn is obtained related to the constraint set (9), so
that the dual price associated with customeri is πi. The
dual prices are used in the subproblem in the search for
one or more columns with negative reduced cost. If such
columns are identified, they are added to the LP, which
is then reoptimized. The steps of column generation and
LP reoptimization are repeated until no further columns
with negative reduced cost exist. The current solution is
then optimal forPM .

If the LP solution is integer, it is optimal. (If not all
inequalities (9) are satisfied with equality in an integer
solution, we change the inequalities to equations, resolve
the LP, and continue the iterative procedure.) If the LP
solution is fractional we resort to branching in order to
eventually obtain an integer solution. The overallbranch-
and-pricealgorithm is a variant of a branch-and-bound

Christian H. Christiansen and Jens Lysgaard 315

algorithm in which column generation is performed at
each node in the branch-and-bound tree.

The two main ingredients: Column generation and
Branching, respectively, are described in the following
two subsections.

B. Column generation

In the case of deterministic demands, the column
generation subproblem has frequently been solved by
a dynamic programming algorithm which effectively
solves a shortest path problem on a particular acyclic
network. This applies to, e.g., the approaches in [5], [12].
The generated paths are invariably restricted to those
without 2-cycles, which can be done without increasing
the computational complexity using the idea in [14].

Our column generation approach is quite similar to
this, but with the modification that expected failure
costs must be taken into account. We note that the
calculation of expected failure costs is not affected by
permitting non-elementary routes. In the following we
describe our construction of the network.

We let GS = (VS , AS) denote the graph that we
construct for the purpose of solving the column gen-
eration subproblem.VS contains(n + 1)Q + 1 vertices.
Vertex v(0, 0) is the beginning of any generated path.
Each vertexv(Λ, i), for Λ = 1, . . . , Q and i = 0, . . . , n,
represents all paths without 2-cycles from 0 toi on each
of which the total expected demand equalsΛ.

Beginning with an empty setAS , we add arcs toAS

as follows:

1) Fori = 1, . . . , n, add an arc fromv(0, 0) to v(λi, i)
and set its cost tod0i + EFC(λi, i) − πi.

2) For each ordered pairi, j ∈ Vc, i 6= j and each
Λ = 1, . . . , Q − 1, add an arc fromv(Λ, j) to
v(Λ+λi, i) (provided thatΛ+λi ≤ Q) and set its
cost todji + EFC(Λ + λi, i) − πi.

3) For eachΛ = 1, . . . , Q and eachj = 1, . . . , n,
add an arc fromv(Λ, j) to v(Λ, 0) and set its cost
to dj0.

The shortest path inGS from v(0, 0) to v(Λ, 0), for
someΛ ∈ {1, . . . , Q}, represents the route of minimum
reduced cost on which the total expected demand equals
Λ. As such, computing the shortest path fromv(0, 0)
to v(Λ, 0) for all Λ = 1, . . . , Q effectively solves the
column generation subproblem. This can be done in
O(n2Q) time, also in the case that 2-cycles are prohib-
ited.

C. The branching strategies

A traditional branching rule is to branch on single
flow variables (as in [12]). However, the restriction of
forcing two customers to be adjacent is typically more
restrictive than the complementary restriction of forcing
two customers not to be adjacent. This often leads to
unbalanced branch and bound trees.

In order to obtain branch-and-bound trees that are
more balanced, we adopt the branching strategy proposed
by Gelinas et al. in 1995 for the Vehicle Routing Problem
with Time Windows and Backhauls [9]. They introduced
a branching procedure based on the time windows. In
each branching the parent problem is split into two
restricted problems each containing a restricted time
window for some customer.

In a similar way, we branch on the capacity resource.
If a solution to the master problem is fractional, then
either a customer is visited more than once on the
same route or a customer is visited on several routes.
This means that at least one customeri will be visited
on two paths of the form(0, . . . , i) with two different
accumulated expected demands.

To illustrate this, consider a customeri which is
visited twice, possibly on two different fractional routes,
with different total expected demands on the path
from the depot. These visits correspond to two vertices
v(Λ1, i) andv(Λ2, i), respectively, inGS (see Subsection
IV-B). As Λ1 6= Λ2, this fractional solution can be
eliminated by choosing a thresholdδ betweenΛ1 and
Λ2, and creating two restricted subproblems as follows.
In the first problem, we permit only verticesv(Λ, i) with
Λ ≤ δ to be visited on any path inGS , and in the second
problem, only verticesv(Λ, i) with Λ > δ are permitted
to be visited. In the remainder of the article this strategy
is referred to asA, whereas the original flow variable
branching strategy is referred to asB. Both strategies
have been included in the computational testing in order
to compare their relative performance.

V. COMPUTATIONAL RESULTS

The algorithm was tested on several instances origi-
nally developed for the CVRP. The data for these CVRP
instances are available atwww.branchandcut.org. To
convert each CVRP instance into a stochastic instance,
the original deterministic demand values were regarded
asexpectedvalues of the stochastic (Poisson distributed)
demands in the corresponding CVRPSD instance. For
all instances the capacity and demands are divided by
their largest common denominator. This decreases the
time consumed by the algorithm. However, this must be
taken into account when calculating the expected cost.

316 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

The instances chosen include all instances of the Augerat
test sets A and P, and the Christofides and Eilon test set
with up to 60 customers. For the latter; instances E-23-3
and E-30-3 are omitted due to their high vehicle capacity,
which leads to computational inaccuracies regarding the
calculation of the penalty costs. No test results for
instances with more than60 customers are included
since preliminary testing showed that none of these were
solvable.

Each instance was run on a Pentium Centrino
1500Mhz computer with 480MB of RAM. For each
instance we set a time limit of 1200 seconds. For
each instance, data were recorded when the root node
was solved, and when the algorithm terminated, either
due to timeout or optimality. These data are given in
Table I. Columns2 − 5 show the data collected after
solving the root node, whereas columns6−14 show the
data collected after the algorithm had terminated. Each
column (1-15) will now be discussed in detail.

Column 1 shows the name of the instance. Column
2 shows the objective value after solving the root node.
Column 3 shows the number of columns generated at
the root node, and column4 shows the number of times
the master problem has been solved. Column5 shows
the sum of the decision variables after having solved the
root node. We note that this sum may be integer also for
a fractional solution. Indeed, an integer solution is only
obtained at the root for the instance P-23-8 in Table I.

Columns6 and 7 show the total time spent by the
algorithm in seconds, when using branching strategy
A and B, respectively (the sign ”##” indicates that the
algorithm has reached the time limit). Columns8 and9
show the number of nodes solved in the branching tree
for each of the two branching strategies. Columns10
and 11 present lower bounds on the optimal objective
value, for each of the alternative branching strategies.
If a lower bound is marked with an upper case (*) the
solution is optimal. Column12 shows an upper bound
on the optimal objective value. This bound can originate
from three different sources: 1) The optimal solution 2)
The best integer solution found during branching 3) The
best obtainable expected cost given the solution of the
CVRP Counterpart (column 14). Column13 shows the
sum of the decision variables, hence also the number
of routes in the optimal solution. Column14 shows the
lowest expected cost if the stochastic demand is not
included in the route planning; this is calculated on the
basis of the optimal solution of its CVRP counterpart.
For each route in the optimal solution of the CVRP
instance, the minimum expected route cost is calculated,
given the customers and their sequence. The expected
solution cost is then the sum of the minimum expected

route costs for all routes in the CVRP solution. (If
alternative optimal CVRP solutions are known, the
alternative resulting in the minimum expected cost is
used.) Finally column15 shows the ratio between the
objective value found at the root node and the best
known upper bound ((LBroot)

(UB)).

From Table I it can be seen that our algorithm (with a
few exceptions) solves all problem instances with up to
40 customers either to optimality or within 1 percent of
the optimal solution. On several instances, the number
of routes in the optimal solution exceeds the minimum
possible for serving all customers (the minimum possible
number of routes is the number after the second ‘-’ in the
name). For the instance P-55-15 this is particular evident
in that three extra routes are formed.

Comparing the best expected solution cost given a
deterministic route planning (Column 14) to the optimal
expected solution cost, it is clear that neglecting the
stochastic nature of demands during the route planning
can incur large cost increases. This is especially evident
for the instance E-33-4. For this particular instance the
extra expected cost is more than15 percent of the
optimal solution cost. This proves that deterministic
CVRP models applied to a situation containing stochastic
demands could incur larger actual costs than a stochastic
model applied to the same situation.

The largest instance successfully solved by the algo-
rithm was an instance with 60 customers and 16 routes.
This is considerable progress when comparing to the
results obtained in [17] where only instances involving
up to 4 vehicles were solved to optimality. Furthermore,
the solved problems with more than50 customers are
all characterized by having a small average number of
customers on each route. In general the algorithm seems
to perform better when the number of required vehicles
is large relative to the number of customers. This is
contrary to the results in [17] where the computational
effort required increases sharply with the number of
routes. This leads to the conclusion that our algorithm
broadens the range of VRPSD instances solvable, hence
strengthens the applicability of VRPSD models.

The lower bound obtained at the root is very close
to the optimal solution for all instances solved. Despite
this fact the number of nodes in the branch-and-bound
tree can be very large. This is particularly clear for the
instance P-55-15. For this instance the solution at the
root was within half a percent of the optimal solution,
even so the number of nodes in the tree exceeded twenty
thousand, when using strategy A and thirty thousand
when using strategy B. This can be partly explained by
the nature of the failure costs. Regardless of the direction

Christian H. Christiansen and Jens Lysgaard 317

TABLE I

COMPUTATIONAL RESULTS

Inst.
LB
Root

Cols. P M Routes
Root

Time
A

Time
B

Nodes
A

Nodes
B

LB
A

LB
B

UB
Routes
Opt

Best
Det

LBRoot

UB

A-32-5 817.31 1221 67 5.00 257 ## 2467 10223 856.3* 841.12 856.30 5 890.13 0.95
A-33-5 700.01 962 44 5.00 8 7 117 107 704.20* 704.20* 704.20 5 722.99 0.99
A-33-6 775.00 832 43 6.05 43 ## 893 20329 793.9* 789.18 793.906 816.58 0.98
A-34-5 803.26 1212 62 5.31 ## ## 11559 11355 824.34 822.42 826.87 - 839.95 0.97
A-36-5 838.83 1641 113 5.00 ## ## 5809 5869 851.37 850.29 907.55 - 907.55 0.92
A-37-5 687.40 1758 95 5.00 ## ## 6619 6521 706.54 702.35 708.34 - 709.83 0.97
A-37-6 1007.98 1237 67 6.48 ## ## 12307 10673 1029.71 1020.961030.76 - 1069.32 0.98
A-38-5 739.19 1207 55 5.47 ## ## 10631 10447 760.41 754.45 778.09 - 831.99 0.95
A-39-5 866.92 1722 73 6.07 2 3 9 23 869.18* 869.18* 869.18 6 903.26 1.00
A-39-6 850.09 1462 84 6.04 242 ## 2453 8193 876.6* 870.15 876.60 6 960.81 0.97
A-44-7 1007.55 1871 59 6.43 ## ## 8101 7405 1020.67 1016.80 1025.48 - 1047.18 0.98
A-45-6 984.38 1861 95 6.75 ## ## 6631 7887 1005.95 1000.26 1096.19 - 1096.19 0.90
A-45-7 1254.23 1954 84 7.13 794 ## 5365 6955 1264.83* 1262.631264.83 7 1302.20 0.99
A-46-7 986.39 1951 84 7.00 ## ## 5433 6789 999.08 996.67 1069.66 - 1069.66 0.92
A-48-7 1160.52 2482 91 7.13 ## ## 5237 6061 1179.37 1177.23 1248.27 - 1248.27 0.93
A-53-7 1093.64 3273 128 7.69 ## ## 4003 4025 1108.67 1106.22 1180.10 - 1180.10 0.93
A-54-7 1262.49 2636 98 7.44 ## ## 4347 4195 1279.46 1272.17 1342.87 - 1342.87 0.94
A-55-9 1148.40 1881 55 9.76 ## ## 7427 7237 1172.58 1159.20 1264.18 - 1264.18 0.91
A-60-9 1489.82 3043 108 9.20 ## ## 4777 4197 1502.90 1497.87 1608.40 - 1608.40 0.93
E-22-4 409.86 460 34 4.20 1 1 9 13 411.73* 411.73* 411.73 4 411.73 1.00
E-33-4 844.35 3030 148 4.00 74 ## 73 879 850.27* 849.66 850.274 984.28 0.99
E-51-5 538.75 3290 138 5.48 ## ## 2035 1925 544.34 543.38 553.26 - 553.26 0.97
P-16-8 511.27 79 8 8.50 1 1 11 19 511.00* 511.00* 511.00 8 512.82 1.00
P-19-2 210.90 620 63 2.17 131 138 1815 1529 224.06* 224.06* 224.06 3 229.68 0.94
P-20-2 221.11 871 88 2.18 298 450 3191 3819 233.05* 233.05* 233.05 2 233.05 0.95
P-21-2 217.75 1037 100 2.14 4 6 27 45 218.96* 218.96* 218.96 2 218.96 0.99
P-22-2 223.67 1129 103 2.21 186 297 1335 1903 231.26* 231.26*231.26 2 231.26 0.97
P-22-8 677.97 205 18 8.92 1 1 63 55 680.10* 680.10* 680.10 9 707.80 1.00
P-23-8 619.52 22 19 9.00 1 1 0 0 619.52* 619.52* 619.52 9 662.310.94
P-40-5 471.47 1905 80 5.00 8 5 35 29 472.5* 472.5* 472.50 5 475.45 1.00
P-45-5 519.03 2153 101 5.14 ## ## 3379 3219 527.34 526.24 546.05 - 546.05 0.24
P-50-7 573.66 2016 67 7.13 ## ## 3925 3909 580.85 579.63 606.41 - 606.41 0.95
P-50-8 659.67 1522 55 8.78 ## ## 7689 7921 666.54 666.53 724.69 - 724.69 0.91
P-50-10 750.27 1320 50 11.00 ## ## 14453 14301 756.27 757.17 792.20 - 792.20 0.95
P-51-10 802.58 1436 57 10.99 440 1024 5347 12329 809.70* 809.70* 809.70 11 859.24 0.99
P-55-7 582.12 2782 102 7.00 ## ## 2301 2533 585.43 585.28 616.44 - 616.44 0.94
P-55-8 599.67 2457 87 7.31 ## ## 2777 2965 603.42 603.49 2438.00† - 0.25
P-55-10 734.69 1747 56 10.17 ## ## 8181 8779 739.75 741.00 797.21 - 797.21 0.92
P-55-15 1062.67 867 21 17.18 838 ## 20355 32751 1068.05* 1067.90 1068.05 18 1191.34 0.99
P-60-10 793.71 2102 59 10.58 ## ## 5817 5307 798.77 799.32 831.24 - 831.24 0.96
P-60-15 1080.85 1175 29 16.08 ## 1167 20581 18483 1085.22 1085.49* 1085.49 16 1133.30 1.00
†upper bound = total expected cost if all customers were serviced on separate routes

in which a route is traveled the failure cost tends to
be very low for the customers at the beginning of the
route until the accumulated expected demand approaches
Q. From here the failure cost increases rapidly. The
route’s total failure cost may change only slightly when
changing the direction of the route. This element of near-
symmetry seems to make the branching less effective.
However, when considering the number of problems
solved by the each of the two branching strategies,
strategy A solves more problems than does strategy B.

Furthermore, when comparing the instances solved by
both branching strategies, strategy A tends to search
fewer nodes before reaching optimum than does strategy
B. These two facts indicate that strategy A in general
performs better than strategy B.

VI. CONCLUDING REMARKS

In this article we have introduced a new branch-
and-price algorithm for solving the Capacitated Vehicle
Routing Problem with Stochastic Demands (CVRPSD),

318 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

where the objective is to minimize the expected so-
lution cost. We show that under the assumption of
independently Poisson distributed demands the column
generation problem can be formulated as a shortest path
problem on an acyclic network and solved by dynamic
programming.

The algorithm was tested on a large number of CVRP
instances that were converted into stochastic instances.
The algorithm showed good results by solving almost
all instances with up to around forty customers, and by
solving a few instances with over fifty customers and
more than 10 vehicles. This is a significant progress
compared to previous work done on the CVRPSD.
Moreover, we proposed a new branching strategy for
the VRPSD based on accumulated demand, which shows
some potential, when compared to a well known flow-
variable based branching strategy.

REFERENCES

[1] M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, Eds.,
Network Routing. North-Holland: Elsevier Science Publisher
B.V., 1995.

[2] C. Bastian and A. R. Kan, “The stochastic vehicle routing
problem revisited,”European Journal of Operational Research,
vol. 56, pp. 407–411, 1992.

[3] J. Beasley, “Fixed routes,”Journal of the Operational Research
Society, vol. 35, pp. 49–55, 1984.

[4] D. Bertsimas, “A vehicle routing problem with stochastic de-
mand,” Operations Research, vol. 40, pp. 574–585, 1992.

[5] N. Christofides, A. Mingozzi, and P. Toth, “Exact algorithm
for the vehicle routing problem, based on spanning tree and
shortest path relaxations,”Mathematical Programming, vol. 20,
pp. 255–282, 1981.

[6] G. Clarke and J. W. Wright, “Scheduling of vehicles from
a central depot to a number of delivery points,”Operations
Research, vol. 12, pp. 568–581, 1964.

[7] M. Dror, G. Laporte, and P. Trudeau, “Vehicle routing
with stochastic demands: properties and solution frameworks,”
Transportation Science, vol. 23, pp. 166–176, 1989.

[8] M. Dror and P. Trudeau, “Stochastic vehicle routing with
modified savings algorithm,”European Journal of Operational
Research, vol. 23, pp. 228–235, 1986.

[9] S. Gélinas, M. Desrochers, J. Desrosiers, and M. Solomon,
“A new branching strategy for time constrained routing prob-
lems with application to backhauling,”Annals of Operations
Research, vol. 61, pp. 91–109, 1995.

[10] M. Gendreau, G. Laporte, and R. Ségiun, “An exact algorithm
for the vehicle routing problem with stochastic demands and
customers,”Transportation Science, vol. 29, pp. 143–155, 1995.

[11] M. Gendreau, G. Laporte, and R. Séguin, “Stochastic vehicle
routing,” European Journal of Operational Research, vol. 88,
pp. 3–12, 1996.

[12] E. Hadjiconstantinou, N. Christofides, and A. Mingozzi, “A new
exact algorithm for the vehicle routing problem based onq-
paths andk-shortest paths relaxation,”Annals of Operations
Research, vol. 61, pp. 21–43, 1995.

[13] M. Haughton, “Route reoptimization’s impact on delivery ef-
ficiency,” Transportation Research Part e, vol. 38, pp. 53–63,
2002.

[14] D. Houck, J. Picard, M. Queyranne, and R. Vemuganti, “The
travelling salesman problem as a constrained shortest path prob-
lem: theory and computational experience,”Opsearch, vol. 17,
pp. 93–109, 1980.

[15] G. Laporte and F. Louveaux, “The integer L-shaped method
for stochastic integer programs with complete recourse,”Oper-
ations Research Letters, vol. 13, pp. 133–142, 1993.

[16] ——, “Solving stochastic routing problems with the integer L-
shaped method,” inFleet management and logistics, T. Crainic
and G. Laporte, Eds. United states: Kluwer Academic Pub-
lishers, 1998, ch. 7, pp. 159–167.

[17] G. Laporte, F. Louveaux, and L. Hamme, “An integer L-shaped
algorithm for the capacitated vehicle routing problem with
stochastic demands,”Operations Research, vol. 50, pp. 415–
423, 2002.

[18] M. Savelsbergh and M. Goetschalckx, “A comparison of the
efficiency of fixed versus variable vehicle routes,”Journal of
Business Logistics, vol. 16, pp. 163–187, 1995.

[19] W. Stewart and B. Golden, “Stochastic vehicle routing: a
comprehensive approach,”European Journal of Operational
Research, vol. 14, pp. 371–385, 1982.

[20] F. Tillman, “The multiple terminal delivery problem with prob-
abilistic demands,”Transportation Science, vol. 3, pp. 192–204,
1969.

[21] P. Toth and D. Vigo, Eds.,The vehicle routing problem.
Philadelphia: SIAM Monographs on Discrete Mathematics and
Applications, 2002.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 319

Integrating nurse and surgery scheduling
Jeroen Belïen∗ and Erik Demeulemeester†

∗Katholieke Universiteit Leuven, Department of Applied Economics
Naamsestraat 69, B-3000 Leuven, Belgium

Email: jeroen.belien@econ.kuleuven.be
†Katholieke Universiteit Leuven, Department of Applied Economics

Naamsestraat 69, B-3000 Leuven, Belgium
Email: erik.demeulemeester@econ.kuleuven.be

Abstract— One common problem at hospitals is the
extreme variation in daily (even hourly) workload pressure
for nurses. The operating room is considered to be the
main engine and hence the main generator of variance in
the hospital. It is our belief that integrating the operation
room scheduling process with the nurse scheduling process
is a simple, yet effective way to achieve considerable sav-
ings in staffing costs. The purpose of this paper is threefold.
First of all, we present a concrete model that integrates
both the nurse and the operating room scheduling process.
Secondly, we show how the column generation technique
approach, often employed for nurse scheduling problems,
can easily cope with this model extension. Thirdly, by
means of a large number of computational experiments
we provide an idea of the cost saving opportunities and
required solution times.

Keywords— nurse scheduling, surgery scheduling, col-
umn generation, integer programming.

I. I NTRODUCTION

DURING the last decades, cost pressures on hos-
pitals have increased dramatically. This emphasis

on cost containment has forced hospital executives to
run their organizations in a more business-like manner.
The constant challenge is to provide high-quality service
at ever reduced costs. In order to achieve this purpose,
inefficient use of resources should be identified and
actions should be taken to eliminate these sources of
waste. Operations research techniques are increasingly
being used to assist in this complicated task.

As nursing services account for an important part of a
hospital’s annual operating budget, concentrating on this
resource can lead to substantial savings. The situation is
exacerbated by an acute shortage of nurses in all western
countries, said to be 120,000 today and expected to grow
to 808,000 by 2020 in the United States (US) alone
[24]. Hence, it is of vital importance that nurses are
used as much as possible at the right time and at the
right place. This goal is hard to achieve because of two
reasons. The first one is inherent in service organizations

for which human resources outnumber all other types of
resources. Unlike machines, staff schedules are restricted
by collective agreement requirements. These form an
important hindrance for the flexibility with which nurses
are scheduled.

A second reason is the presence of variability. Vari-
ability is probably the main obstacle to efficient delivery
of health care and reducing it is one of the major con-
cerns in current health care management [19]. Compared
with industrial environments, hospitals are much more
stochastic by nature. One common problem at hospitals
is the extreme variation in daily (even hourly) workload
pressure for nurses. On days when the workload is
too high, the quality of care decreases because it is
too costly to staff for peak loads. On days when the
workload is too low, there is waste. Fortunately, the
situation is not as chaotic as it seems to be at first
sight. As pointed out in [19], an important amount of
the variability can effectively be managed and reduced
by a thorough analysis of the existing system and by
appropriate decision-taking. Special emphasis is put on
the operating room since it is considered the main engine
and hence the main generator of variance in the hospital.
It is our believe that integrating the operation room
schedule process into the nurse scheduling process is a
simple yet effective way to achieve considerable savings
in staffing costs.

This paper is organized as follows. In Section II a
discussion of the background together with a brief liter-
ature review is given. In Section III a general overview
of the model together with a branch-and-price solution
approach is presented. Section IV provides more details
on both pricing problems, while a general overview of
the branch-and-price algorithm is given in Section V.
Section VI discusses a specific branching scheme. In
Section VII some computational issues are discussed and
in Section VIII extensive computational results are given.
Finally, Section IX draws conclusions and lists some
topics for further research.

320 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

II. BACKGROUND AND LITERATURE REVIEW

Nurse scheduling problems are frequently encountered
in the operations research literature. Recently, a good
bibliographic survey on medical staff rostering problems
has appeared [13]. Several studies in the literature have
utilized mathematical programming techniques to assist
in finding efficient staff schedules (see e.g. [22], [28],
[3], [8], [12], [4]). These problems typically involve
some kind of set covering or set partitioning formulation.
The main drawback, however, is that these models can
have far more variables than can be reasonably attacked
directly. Therefore, the linear program (LP) is often
solved using column generation (see e.g. [18], [5] and
[6], [21], [20]). To the best of our knowledge, all the
proposed models consider the nurse scheduling problem
as a separate problem, i.e. not related to any other activity
in the hospital. In this paper we will describe a more
general approach in which the demand constraints are
dependent on the operation room schedule and hence
become a part of the decision process.

The operations research literature is replete with ex-
amples of integer programming techniques being applied
to operating room scheduling problems. This work can
be categorized based on the stage of the scheduling
process to which it applies. Developing operating room
(OR) schedules can be seen as a three stage process.
In a first stage the available OR time is divided over
the different surgeons (or surgical groups). This first
phase is also referred to as case mix planning, since
it determines for which pathologies capacity will be
preserved. Hughes and Soliman [17] propose a linear
programming model to solve case mix planning prob-
lems. Dexter and Macario [14] argue that OR time should
be allocated to maximize OR efficiency instead of ”fixed
hours” blocks based on historical utilization data. Blake
and Carter [10] propose a methodology that uses two
linear goal programming models. One model sets case
mix and volume for physicians, while holding service
costs fixed; the other translates case mix decisions into
a commensurate set of practical changes for physicians.

Once the OR time allocated to each surgical group has
been chosen, the second stage involves the development
of a master surgery schedule. The master surgery sched-
ule is a cyclic timetable that defines the number and type
of operating rooms available, the hours that rooms will
be open, and the surgical groups or surgeons who are to
be given priority for the operating room time. Compared
to case mix planning (first stage) and elective case
scheduling (third stage), the literature on master surgery
scheduling is rather scant. Blake et al. [11] propose an
integer programming model that minimizes the weighted

average undersupply of OR hours (i.e. allocating to each
surgical group a number of OR hours as close as possible
to its target OR hours).

After the development of the master surgery schedule,
elective cases can be scheduled. This third stage occurs
on a daily base and involves detailed planning of each
intervention. Each patient needs a particular surgical
procedure, which defines the human (surgeon) and ma-
terial (equipment) resources to use and the intervention
duration. Guinet and Chaabane [15] define this problem
as a general assignment problem and propose a primal-
dual heuristic to solve it. Weiss [29] deals with the
problem of determining the case orderings and presents
both analytical and simulation results.

The methodology presented in this paper has some
similarities with models for integrating the scheduling
of project tasks and employees (Alfares et al. [1] and
Alfares and Bailey [2]). Although several authors men-
tion the interdependency between the surgery scheduling
process and the development of nurse rosters, as far as
we know, no models have been proposed to integrate
both areas of decision-making. Litvak and Long [19]
underline the negative impact of variability in hospital
environments. They consider the operating room as the
engine that drives the hospital. Consequently, the ac-
tivities inside the operation room heavily determine the
fluctuations in resource demands throughout the rest of
the hospital. A poor operating room schedule could for
instance be directly responsible for the occurrence of
(contra-productive) peeks in the demand for certain types
of resources. The authors distinguish between two types
of variability: natural variability and artificial variability.
Natural variability is inherent to the uncertain world of
health care. This variability arises from uncertainty in pa-
tient show-ups, uncertainty in recovery time, uncertainty
in the successfulness of therapies etc. . . . Artificial vari-
ability originates from poor scheduling policies. Beliën
and Demeulemeester [9] have elaborated this idea. They
propose a number of integer programming models for
building robust surgery schedules for which the resulting
expected bed shortage is minimized.

In this paper the master surgery schedule is being
considered as the main generator of the workload of the
nurses. In order to couple both scheduling environments,
the objective in the surgery schedule process will be
to construct a favorable workload distribution for the
nurses.

III. M ODEL DESCRIPTION

A. General idea

Figure 1 contains a schematic overview of the general
idea elaborated in this paper.

Jeroen Belïen and Erik Demeulemeester 321

Workload

distribution

Collective

agreement

requirements

Contributions

surgery type to

nurse workload

Surgery

schedule

restrictions

Master

surgery

schedule

Nurse

schedule

Fig. 1. Schematic overview of the general idea

First have a look at the nurse scheduling process
at the right of this figure. The input for the nurse
scheduling process consists of the restrictions implied
on the individual nurse roster lines on the one hand
and the workload distribution over time on the other
hand. The workload distribution itself is determined by
the master surgery schedule. In order to be able to
deduce the workload from the surgery schedule one
also has to know the workload contributions of each
specific type of surgery. The dotted arrow at the bottom
indicates the feedback that could be given from the nurse
scheduling process to the surgery scheduling process
in order to produce more favorable surgery schedules
with respect to the resulting workloads. The freedom in
modifying the surgery schedule is however limited, since
the master surgery schedule itself is restricted by a set
of specific surgery constraints (e.g. capacity and demand
constraints). It must be clear, however, that integrating
the surgery scheduling process with the nurse scheduling
process provides more flexibility in building the nurse
schedules, since one has an instrument to make the
workload distribution fit for the nurse schedules.

In what follows we will describe a mathematical
model for implementing this idea. Therefore, we start
with stating the standard nurse scheduling problem and
discuss the column generation solution procedure for
solving it. Then, we extend this model with the extra
decision of the nurse scheduling process and show how
the column generation solution procedure can easily
cope with this extension. Hereby, we focus on the
minimization of the total required number of nurses.
The reason for this objective is that it allows for a
quantitative measure of the resulting benefits, i.e. the
decrease in staffing cost. Obviously, this quantitative

benefit can easily be turned into a qualitative benefit by
employing the saved nurse(s) on moments when they are
most needed.

B. The nurse scheduling problem

The nurse scheduling problem (NSP) consists of gen-
erating a configuration of individual schedules over a
given time horizon. The configuration of nurse sched-
ules is generated so as to fulfill collective agreement
requirements and the hospital staffing demand coverage
while minimizing the salary cost. An individual’sroster
line can be viewed as a sequence ofdays on and
days off, where each day on contains a singleshift
identified by a label such as ‘day’, ‘evening’ or ‘night’.
Each such label coincides with a start and a finish
time of the corresponding shift. Furthermore, a day is
subdivided into severaldemand periodscharacterized by
fixed starting and ending times. These demand periods
do not necessarily coincide with the shifts. However, the
demand per shift can easily be determined.

Coverage constraints imply how many nurses of ap-
propriate skills have to be scheduled for each demand
period. For ease of exposition and without loss of
generalization we consider all nurses equally-skilled
throughout the rest of this paper.

Collective agreement requirements are rules that de-
fine acceptable schedules for individual nurses in terms
of total workload, holidays, weekends off and shift
transitions (e.g. a morning shift after a night shift is not
allowed). These rules cannot be violated and dramati-
cally reduce the set of feasible individual roster lines.
Obviously, when building nurse schedules also a set
of individual constraints, often called preference con-
straints, have to be taken into account. For instance, some
nurses prefer to do night shifts, others do not. Again, for
ease of exposition and without loss of generalization, we
make abstraction of these differences in individual pref-
erences and only consider those restrictions which are
stated in the collective agreement rules and consequently
apply on all nurses. Hence, we present an integrated
model that can be used to find optimal schedules for
a homogeneous set of nurses.

In what follows we state the standard set covering
model, which is often used for this type of problems.
Let J be the set of feasible roster linesj and I be the
set of demand periodsi. Let di ∈ ℜ+, ∀i ∈ I, denote
the required number of nurses scheduled during periodi.
Furthermore, letaij be 1 if roster linej contains an active
shift during periodi and 0 otherwise. The general integer
decision variablexj , ∀j ∈ J , indicates the number of
individual nurses which are scheduled by roster linej.

322 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Then, the nurse scheduling problem (NSP) can be stated
as follows:

Minimize
∑

j∈J

xj (1)

subject to:
∑

j∈J

aijxj ≥ di ∀i ∈ I (2)

xj ∈ {0, 1, 2, . . . } ∀j ∈ J (3)

C. Solution procedure for the nurse scheduling problem

The integer program (IP) (1)-(3) is solved by first
solving the linear programming relaxation and then using
a branching scheme to drive the solution into integrality.
As the number of possible roster lines an individual can
work is usually too large to allow complete, a-priori
enumeration, column generation is often applied to solve
the LP relaxation. Typically, the pricing step involves
the solution of a dynamic programming shortest path
problem (also called thesubproblem) to find the legal
column with the most negative reduced cost. Letπi,
∀i ∈ I, denote the dual price of constraint (2). Then,
the reduced cost of a new column (roster line)j is given
by:

1 −
∑

i∈I

aijπi (4)

A brief discussion of the solution procedure for this
subproblem is given in Section IV-A. The process of
adding new columns continues until no more columns
price out, i.e. no more columns with negative reduced
cost can be found. However, at that point, the solution is
not necessarily integral and applying a standard branch-
and-bound procedure to the restricted master with its
existing columns will not guarantee an optimal (or
feasible) solution. Therefore, a branching scheme has to
be applied to drive the solution into integrality. After
branching, new columns might price out favorably and
hence have to be added to the model.

Since it lies not in the scope of this paper to discuss
effective branching schemes for the NSP, we will not
go into details about this, but instead refer the reader
to the specialized literature. Barnhart et al. [7] discuss
appropriate branching strategies for solving a mixed
integer program (MIP) using column generation. Since
NSP (1)-(3) has identical restrictions on subsets (i.e.
there are no subsets having a separate convexity con-
straint), elaborating a branching scheme is a complex

issue. Conventional integer programming branching on
variables is not effective for reasons of symmetry and
also because fixing variables destroys the structure of the
subproblem. Vanderbeck and Wolsey [27] developed a
general rule in which one is branching on the constraints
(see also [26]). The drawback is that the branching
constraints cannot be used to eliminate variables and
have to be added to the formulation explicitly. Hence,
each branching constraint will contribute an additional
dual variable to the reduced cost, which complicates the
pricing problem.

D. The generalized nurse scheduling problem

In the NSP the right hand side values of the coverage
constraints (i.e. thedi’s in formulation (1)-(3)) are con-
sidered to be fixed. Nevertheless, coverage constraints
are based on workload estimations which entail the sum-
mations of individual patientworkload contributions. An
individual patient workload contribution is determined
by the patient type. The patient type can generally be
described by three dimensions. The first dimension is the
type of surgery the patient has undergone. The second is
the number of periods the patient has already recovered.
The third is the period to which the workload applies.
For instance, some pathologies may require increased
care during nights.

The number and type of the patients that are present
in the hospital at each moment in time is largely deter-
mined by the operation room schedule. Obviously, due
to emergency cases and uncertainty in patient show-ups,
patient recovery times etc. . . , exact estimations are not
possible. However, an in-depth analysis of the operation
room schedule enables hospital executives to make a
quite accurate prediction of the workload of the nurses.
Moreover, they can reshape the workload distribution
by modifying the operation room schedule. In the long
term case mix planning decisions determine the overall
workload. In shorter term the cyclic master surgery
schedule determines the workload distribution over time.

The generalized nurse scheduling problem (GNSP)
takes into account this extra dimension. Instead of as-
suming the demand values to be fixed, we consider them
to be dependent on the number and type of patients
undergoing surgery in the hospital at each moment.
By manipulating the master surgery schedule, hospital
management can create (and choose between) a number
of different workload distributions, further referred to
as workload patterns. Let K denote the set of possible
workload patterns that could be generated by modifying
the surgery schedule. These will be obtained by enumer-
ating all possible ways of assigning operating blocks to

Jeroen Belïen and Erik Demeulemeester 323

the different surgeons, subject to surgery demand and
capacity restrictions (for more details see Section IV-B).
Each workload patternk is described by a number of
periodic demandsdik ∈ {0, 1, 2, . . . }, ∀i ∈ I. Let zk be
1 if the surgery schedule that corresponds to workload
k is chosen and 0 otherwise. Then, the problem can be
stated as follows:

Minimize
∑

j∈J

xj (5)

subject to:
∑

j∈J

aijxj ≥
∑

k∈K

dikzk ∀i ∈ I (6)

∑

k∈K

zk = 1 (7)

xj ∈ {0, 1, 2, . . . } ∀j ∈ J (8)

zk ∈ {0, 1} ∀k ∈ K (9)

Constraint (7), further referred to as the workload
convexity constraint, implies that exactly one workload
pattern has to be chosen. In a feasible solution all
zk’s but one equal 0. Hence, in constraint (6) only the
correspondingdik’s are added in the right hand side
values. It is easy to see that the NSP is a special case of
the GNSP in which onezk is fixed to be 1.

E. Solution procedure for the generalized nurse schedul-
ing problem

In this part we show that the column generation
approach to solve the LP relaxation of NSP can easily
be extended to cope with the GNSP. Similarly to the
roster lines, the number of possible workload patterns
is usually too large to allow for complete, a-priori
enumeration. Also here, the process starts with a limited
subset of workload patterns and new patterns (columns)
are added as needed. Therefore, a second subproblem
has to be solved. The generation of a new workload
pattern boils down to the construction of a new master
surgery schedule. The subproblem is constrained by a set
of specific surgery schedule restrictions. Its objective is
the minimization of the reduced cost of a new workload
pattern. Letγ denote the dual price of the workload
pattern convexity constraint (7). Then, the reduced cost
of a new workload patternk is given by:

0 − γ +
∑

i∈I

πidik (10)

Obviously, the appropriate solution approach to price
out a new workload pattern strongly depends on the
characteristics of the master surgery schedule. In this

paper the workload pattern pricing problem is formulated
as an IP and solved using a state-of-the-art optimization
package (CPLEX). More details on this formulation can
be found in Section IV-B.

IV. PRICING PROBLEMS

A. Generating a new roster line

Although the generation of a new roster line happens
in a standard way (shortest path problem solved with
recursive dynamic programming) (see e.g. [12]) and its
exact implementation is not really necessary for under-
standing the general idea of this paper, we briefly discuss
the procedure. First, we summarize the restrictions which
apply to a roster line.

As already mentioned earlier, this work is only
concerned with collective agreement requirements and
leaves individual preferences out of consideration. Con-
cretely, we take into account five types of requirements
when building a new roster line. First of all, a nurse
cannot work more than one shift per day. Secondly,
the overall number ofactive days, i.e. days in which
the roster line contains anactive shift(”day”, ” evening”
or ”night”), cannot exceed a certain limit. Thirdly, the
maximum number ofconsecutiveworking days is also
constrained. The same holds for the maximum number
of consecutive rest days. A sequence of working days is
further referred to as ablock. Fourthly, the number of
so-called unpopular shifts (night shifts, weekend shifts)
is limited per roster line. Fifthly, in a block, certain shift
transitions are not allowed. For instance, a nurse cannot
switch from, say, a night shift to a morning shift without
having a rest first.

Generating a new roster line is typically done using a
dynamic programming recursion. To this aim, we define
a table giving the minimum cost that can be achieved in
days1 to d by a roster line that, starting from a situation
in which on dayd a shift s is scheduled and in which
between daysd to n a certain number of active shiftsf
occurred, a certain number of unpopular shiftsg occurred
and a number of consecutive working or rest daysh
(including dayd) is assigned. Formally, the entries of
the table are of the form

τ(d, f, g, s, h),

defined ford = 1..n, f = 0..fmax, g = 0..gmax, s ∈ S,
h = 0..hmax. Hereby,n denotes the number of days
in the scheduling horizon,fmax denotes the maximum
number of working days in a roster line,gmax is the
maximum penalty in terms of unpopular shifts,S is the
set of shift types (”day”, ” evening”, ” night”, ” rest”) and
hmax is the maximum of both the maximum number

324 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

of consecutive working days(hmax
1) and the maximum

number of consecutive rest days(hmax
2). Let pd,s be the

penalty cost for assigning an unpopular shift(d, s). LetA
denote the set of allowed shift transitions(s, s′) between
two consecutive days on. We consider demand periods
as being subsets of the shifts, i.e. no demand period can
be spread over more than one shift. However, a shift can
consist of more demand periods. LetQ(d,s) be the set of
demand periodsi that fall into shift(d, s). Let λd,s be the
total dual cost of a shift(d, s), i.e. λd,s =

∑

i∈Q(d,s)
πi.

The computation of the entries in the table is done by
starting at the beginning of the time horizon and working
forward by considering an insertion of a shift types on
the next dayd of the roster line associated with an entry
already computed. Therefore, we make use of recursive
algorithm 1.

Algorithm 1 RECURSION(d, f, g, s, h)
if (d=0) then

return0; {beginning of time horizon reached}
else if (τ(d, f, g, s, h) 6= 999999999) then

returnτ(d, f, g, s, h); {state already visited, can be pruned}

else
cost ← +∞;
min cost ← +∞;
for (all shifts s̄ ∈ S\{”rest”}) do

if (g+pd−1,s̄ ≤ gmax) AND ((s̄, s) ∈ A) AND (f < fmax) then
if (s 6= ”rest”) then

if (h < h1
max) then

cost ← λd,s+RECURSION(d−1, f+1, g+pd−1,s̄, s̄, h+1);
{successive active shift}

end if
else if (s = ”rest”) then

cost ←RECURSION(d−1, f+1, g+pd−1,s̄, s̄, 1); {start active
shift}

end if
end if
if (cost < min cost) then

min cost ← cost;
end if

end for
if (s 6= ”rest”) then

cost ← λd,s+ RECURSION(d − 1, f, g, ”rest”, 1); {start rest}
else if (s = ”rest”) then

if (h < h2
max) then

cost ← RECURSION(d−1, f, g, ”rest”, h+1); {successive rest}
end if

end if
if (cost < min cost) then

min cost ← cost;
end if
returnτ(d, f, g, s, h) ← min cost;

end if

Before starting the recursion all entries of table
τ(d, f, g, s, h) are initialized to999999999. The mini-
mal reduced cost of a new roster line can now easily
be calculated by starting the recursion on dayn and
minimizing over each shift type (see algorithm 2).

Once all the calculations are done, the best new roster
line can easily be constructed backward. The overall

Algorithm 2 FIND-NEW-ROSTER-LINE
{initialize all entries ofτ}
for (d = 1 to n) do

for (f = 0 to fmax) do
for (g = 0 to gmax) do

for (all shifts s ∈ S) do
for (h = 0 to hmax) do

τ(d, f, g, s, h) ← 999999999;
end for

end for
end for

end for
end for
cost ← +∞;
min cost ← +∞;
{start the recursion}
for (all shifts s̄ ∈ S\{”rest”}) do

if (pn,s̄ ≤ gmax) then
cost ←RECURSION(n, 1, pn,s̄, s̄, 1); {end with an active shift}

end if
if (cost < min cost) then

min cost ← cost;
end if

end for
cost ←RECURSION(n, 0, 0, ”rest”, 1); {end with a rest}
if (cost < min cost) then

min cost ← cost;
end if

space complexity of the dynamic programming recursion
is

O(n · fmax · gmax · |S| · hmax)

whereas the time complexity is (in the case that there
are no forbidden shift transitions),

O(n · fmax · gmax · |S| · hmax · |S|)

since each entry of the table is updated by considering
up to O(|S|) other entries.

B. Generating a new workload pattern

Each workload pattern corresponds to a particular
surgery schedule. Hence, a new workload pattern can be
obtained by building a new surgery schedule. Hereby,
the capacity preserved for the different surgeons (or,
more generally, surgery groups) is already determined
by the case mix planning (first stage, long term) and
considered to be fixed in our application. Elective case
scheduling (third stage) is also left out of consideration
because of two reasons. First of all, the impact of each
specific elective case on the workload is rather scant.
It is the type of surgery that determines the workload
contribution, not the individual case. Secondly, it is very
hard to predict the precise impact of the individual cases
on the workload contribution at the moment that the
nurse rosters have to be built. Often, at that moment,
an important part of the elective surgery scheduling is
still to be done.

Jeroen Belïen and Erik Demeulemeester 325

The master surgery schedule is considered to be the
tool for manipulating the workload distribution over
time. This work is concerned withcyclic master surgery
schedules. Cyclic schedules are schedules that are re-
peated after a certain time period (referred to as the cycle
time). During such a cycle time there might be a number
of time periods during which surgery cannot take place.
These periods are referred to as the inactive periods, the
others are active. Typically, cycle times are multitudes
of weeks in which the weekends are inactive periods.

In our application, a new surgery schedule is built by
solving an integer program. To find a new workload
pattern with minimal reduced cost given the current
set of roster lines and workload patterns, the objective
function minimizes the dual price vector of the demand
constraints (6) multiplied by the new demands. We deal
with two types of constraints. Surgery demand con-
straints determine how many blocks must be preserved
for each surgeon. Capacity constraints ensure that the
number of blocks assigned during each period do not
exceed the available capacity. Letyrt (∀r ∈ R and
t ∈ T) be the number of blocks assigned to surgeon
r in period t. Hereby, T represents the set of active
periods andR the set of surgeons. Letqr be the number
of blocks required by each surgeonr. Let bt be the
maximal number of blocks available in periodt. Let
wrti ∈ ℜ+ denote the contribution to the workload of
demand periodi of assigning one block to surgeonr in
period t. Then, the integer program to construct a new
surgery schedule (and at the same time price out a new
workload patternk) is as follows:

Minimize
∑

i∈I

πidik (11)

subject to:

∑

t∈T

yrt = qr ∀r ∈ R (12)

∑

r∈R

yrt ≤ bt ∀t ∈ T (13)

∑

r∈R

∑

t∈T

wrtiyrt ≤ dik ∀i ∈ I (14)

yrt ∈ {0, 1, 2, . . . ,min(qr, bt)} ∀r ∈ R, ∀t ∈ T (15)

dik ∈ {0, 1, 2, . . . } ∀i ∈ I (16)

The objective function (11) minimizes the reduced
cost of a new workload pattern. Observe that the periodic
demandsdik are now an integral part of the decision
process, whereas these are merely coefficients in the
master problem (5)-(9). Constraint set (12) implies that
each surgeon obtains the number of required blocks.

Constraint set (13) ensures that the number of blocks
assigned does not exceed the available number of blocks
in each period. Constraint set (14) triggers thedik’s to
the appropriate integer values. Finally, constraint set (15)
and (16) defineyrt anddik to be integer.

At first sight, constraint set (16) which requires the
periodic demandsdik to be integral, seems to be re-
dundant from a formulation point of view. Indeed, due
to constraint (6) and the fact thataij ∈ {0, 1} and
xj ∈ {0, 1, 2, . . . } fractional demand valuesdik would
also be covered by the upper integer number of nurses.
The reason why we require thedik’s to be integral is
to improve the computational efficiency of the overall
branch-and-price algorithm. We come back to this issue
in Section VII-A.

V. OVERVIEW OF THE BRANCH-AND-PRICE

ALGORITHM

Algorithm 3 contains the pseudocode of the branch-
and-price algorithm to solve the GNSP.

The algorithm starts with a heuristic in order to find
an initial solution. The heuristic generates only one
workload pattern. This is done by building a surgery
schedule for which the sum of the resulting quadratic
demand values is minimized. The idea is to level the
workload distribution as much as possible over the time
horizon and as such to avoid the occurrence of peeks in
the workload. This approach turned out to be beneficial
for the surgery scheduling problem in which the expected
shortage of beds has to be minimized (see [9]). The
surgery schedule is built with a mixed integer program
(MIP) in which the constraints are given by (12)-(15)
(replacing thedik’s by di’s) and the objective is:

Minimize
∑

i∈I

d2
i

with di the required number of nurses in periodi. To
speed up the heuristic, thedi’s are not required to be
integral. Instead, we round eachdi to the next upper
integer after solution of the quadratic MIP. Given this
workload pattern, new roster lines are added until the
set of roster lines (one nurse scheduled by each roster
line) completely satisfies the coverage constraints. A new
roster line is found by solving exactly the same shortest
path problem as in Section IV-A, but replacing the dual
pricesπi by the remaining right hand side valuesdi. As
such each new roster line cuts the peeks in the remaining
workload pattern until all demand is covered.

After detection of an initial solution, the objective
value is saved as an upper bound and both the surgery
schedule and the nurse schedule are registered. The
columns making up the initial solution are entered into

326 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Algorithm 3 BRANCH-AND-PRICE
apply heuristic to find initial solution;
if (solution found)then

register nurse schedule and surgery schedule;
upperbound← best solution found;
initiate master with the columns making up the initial solutionand (|I|+
1) supercolumns;

else
upperbound← +∞;
initiate master with|I| + 1 supercolumns;

end if
lower bound← −∞;
stop← FALSE;
while (stop=FALSE)do

LP opt found← FALSE;
{solve LP with column generation}
while (LP opt found=FALSE)do

LP opt found← TRUE;
improving rosterline found← TRUE;
while (improving rosterline found=TRUE)do

RCj ← FIND-NEW-ROSTER-LINE(j);
if (RCj < 0) then

add new roster line to master;
LP opt found← FALSE;
LP opt ← SOLVE-MASTER-LP();

else
improving rosterline found← FALSE;

end if
end while
RCk ← FIND-NEW-WORKLOAD-PATTERN(k);
if (RCk < 0) then

add new workload pattern to master;
LP opt found← FALSE;
LP opt ← SOLVE-MASTER-LP();

end if
end while{LP solved to optimality}
if (fractional z) then

expand node;{replace node by two child nodes}

else if (LP opt<bestintegral z) then
bestintegral z ← LP opt;

end if
if (no more nodes)then

stop← TRUE;
else

explore next node;{best-first}
lower bound← boundbestnode;
if (lower bound≥ upperbound OR lowerbound≥ bestintegerz)
then

stop← TRUE;
end if

end if
IP opt ← SOLVE-MASTER-IP();
if (IP opt < upperbound)then

upperbound← IP opt;
register nurse schedule and surgery schedule;

end if
end while

the master together with a number of supercolumns,
which are needed to ensure feasibility of the master in
each stage of the branch-and-bound algorithm.

The algorithm starts with the LP optimization loop in
which iteratively a number of new roster lines and one
new workload pattern are added until no more columns
price out. Observe that roster lines are added until no
more lines with negative reduced cost can be found,
whereas only one workload pattern is generated, after
which the generation of new roster lines restarts. This
approach turned out to be the most successful, given the
generally larger computation times to price out a new
workload pattern.

Upon detection of the LP optimum, the solution is
checked for fractionalzk’s (workload patterns). If there
still are fractionalzk’s, branching is applied in order
to drive the solution into an integralz solution (i.e.
with only one zk equal to 1 and all other equal to
0). The algorithm does not branch until an integralxj

(roster line) solution, because branching schemes for
the xj variables are not straightforward to implement
and significantly complicate the roster line subproblem.
Moreover, it provides no extra value for the extended
model, which is the subject of this paper. Instead, we
report lower and upper bounds for the required number
of nurses to cover demand. The lower bound is the
best possible solution with exactly onezk equal to 1,
however one for which thexj ’s are not necessarily
integral. Hence, the solution represented by the lower
bound might not be interpretable in terms of the nurse
schedule (e.g. schedule 2.5 nurses following roster line
j). The upper bound on the other hand is the best found
overall integer solution (with also integrality of thexj ’s),
which is fully interpretable.

In order to increase the lower bound as much as
possible, the branch-and-bound tree is traversed in a
best-search way. After each move in the tree, the master
problem is solved with required integrality on both the
xj ’s and thezk’s. Because the integral master problem is
often computationally very intensive, the MIP optimizer
is interrupted after a specified time interval (e.g. 10
seconds). If a better solution is found, the upper bound
decreases and as such the gap between the lower and
upper bound tightens.

VI. B RANCHING

For reasons that are explained earlier, this work is only
concerned with a branching scheme for driving thezk’s
to integrality and leaves thexj ’s out of consideration. We
apply a constraint branching scheme [23] which works
as follows.

Jeroen Belïen and Erik Demeulemeester 327

First we search for the highest fractionalzk. Let this
be zk′ . Then we select anotherzk > 0, say zk′′ , and
take the first periodi for which dik′ 6= dik′′ . If no such
period exists, bothzk’s represent essentially the same
workload patterns and hence one of them can be set
to 0 while its fractional value is added to the other one.
Suppose we found periodi′ as the branching period with
di′k′ < di′k′′ . Then, we create two nodes in the branch-
and-bound tree. In the left node we implydi′k ≤ di′k′

and in the right node we implydi′k ≥ di′k′ +1. Figure 2
visualizes this branching scheme. Else ifdi′k′ > di′k′′ we
imply di′k ≤ di′k′′ in the left node anddi′k ≥ di′k′′ + 1
in the right node.

Parent

node

d
i’k

d
i’k’

d
i’k

d
i’k’
+1

Fig. 2. Binary branching scheme in the case ofdi′k′ < di′k′′

VII. C OMPUTATIONAL PERFORMANCE ISSUES

In this section we present some techniques which
helped to improve the computational efficiency of the
algorithm.

A. Integral versus fractional demand values

It has already been mentioned at the end of Section IV-
B that we imply thedik’s to be integral in the workload
pattern pricing problem. Although this is not necessary
from a formulation point of view, it has a substantially
positive impact on the overall computational efficiency
of the algorithm.

Implying integrality of thedik’s affects the compu-
tation time in two ways. On the one hand, there is
a negative impact, because the pricing problem itself
becomes more complex. On the other hand, there is
a positive impact as far fewer columns can be found
with negative reduced cost. Preliminary results indicate
that this positive effect dramatically exceeds the negative
effect. Consequently, the master LP is solved much
faster when integrality of thedik’s is implied. More-
over, requiring integral demand values in the workload

patterns makes the LP optimal solution substantially less
fractional in terms of thexj ’s. Hence, finding a global
optimum (with both integrality on thezk’s and on the
xj ’s) turns out to be much easier. In our application the
gap between the lower and upper bound becomes much
smaller.

B. Upper bound pruning for the workload pattern pric-
ing problem

Basically, we are no longer interested in finding the
column with the lowest reduced cost from the moment
we know that this reduced cost will be positive anyway.
Hence, we can act as if we already found a solution with
reduced cost 0 by providing an appropriate upper bound.
For the workload pattern subproblem, this observation
yields dramatic time savings.

The reduced cost expression (4) consists of a fixed
part and a variable part. By setting the upper bound
equal to the fixed part with reverse sign, we act as if
we found already a new column with reduced cost equal
to 0. The reduced cost of a workload pattern is given by
0 − γ +

∑

i∈I πidik. Consequently, we provideγ as an
upper bound in the integer program (11)-(16).

Note that, since generating a new roster line is
done using a backward dynamic recursion, upper bound
pruning cannot be applied here. As an alternative, we
wrote an A* algorithm (enumeration approach entailing
a forward recursion including both dynamic pruning and
pruning based on bound comparisons). Dynamic pruning
occurs if a state has already been visited at lower cost.
For pruning based on bound comparisons we need an
upper and lower bound for the best new roster line.
Since the reduced cost of a new roster line is given by
1 −

∑

i∈I aijπi, we can provide -1 as an initial upper
bound in the A* algorithm. Obviously, this bound is
decreased each time a better roster line is found. Starting
from a certain day, a lower bound on the minimal cost
path could be obtained by selecting for each remaining
day the shift with the lowest total of corresponding dual
prices, i.e:

MIN
{

MIN
s∈S\{”rest”}

{λd,i}, 0
}

∀d

and summing up only the (fmax − f) lowest values
amongst these. In other words, for calculating the lower
bound, we relax all constraints but the not-more-than-
one-shift-per-day constraint and the maximum number
of active days constraint. Preliminary tests, however,
indicated that the A* algorithm is outperformed by the
backward dynamic recursion. Hence, the time saved from
upper bound pruning in the A* algorithm is inferior to

328 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

the time won by visiting each state only once in the
purely dynamic backward recursion.

C. Two-phase approach for the workload pattern pricing
problem

During the LP optimization loop it is not necessary
to find the column with the most negative reduced cost,
any column with negative reduced cost will do. Again,
particularly for the computationally intensive workload
pattern pricing problem, using this observation dramat-
ically decreases the computation times. To guarantee
optimality of the LP solution, a two-phase approach is
applied for the workload pattern pricing problem. In
the first phase, a certain time limit is set for the MIP
optimizer. Only if no new workload pattern is found
with negative reduced cost within this time limit, the
algorithm enters the second phase. In this phase the time
limit is undone and the optimizer is required to search
until a feasible solution is found with negative reduced
cost or it is proven that such a column does not exist.

D. Lagrange dual pruning

It is well known that Lagrangian relaxation can com-
plement column generation in that it can be used in
every iteration of the column generation scheme to
compute a lower bound to the original problem with little
additional computational effort (see e.g. [25], [27]). If
this lower bound exceeds an already found upper bound,
the column generation phase can end without any risk
of missing the optimum. Using the information from
solving the reduced master and the information provided
by solving the pricing problem for a new workload
patternk, it can be shown (see e.g. [16]) that a lower
bound is given byδ + RCkθk whereδ is the objective
value of the reduced master,RCk is the reduced cost
of a newly found workload patternk andθk is a binary
variable equal to 1 whenRCk is non-negative and set to
zero, otherwise. This lower bound is referred to as the
Lagrangian lower bound, since it can be shown that it
equals the bound obtained by Lagrange relaxation.

Obviously, if the pricing procedure finds a negative
reduced cost column during the first phase and hence
does not enter the second phase (see Section VII-C) this
lower bound cannot be used, because the workload pat-
tern pricing problem has not been solved to optimality.

Using CPLEX, it is very easy to set upper bounds,
time limits and limits on the number of feasible solu-
tions. Moreover, it can easily be verified if either the
problem has been solved to optimality or optimization
has prematurely ended because of an insufficient time
limit.

VIII. C OMPUTATIONAL RESULTS

A. Test set

To test the algorithm, we started from the same set
as the one introduced in [9] for their surgery scheduling
application. All surgery scheduling problems in this set
involve a cycle time of 7 days. The last two days are
not available to allocate OR time (weekend), which is
common practice. The problems differ with respect to
five factors. These are: (1) the number of time blocks
per day, (2) the number of surgeons, (3) the division of
requested blocks per surgeon, (4) the number of operated
patients per surgeon and finally (5) the length of stay
(LOS) distribution. If we consider two settings for each
factor and repeat each factor combination three times,
we obtain25 ∗3 = 96 test instances. Table I contains the
settings for these five factors. Some of the factor settings
require some further explanation.

TABLE I

FACTOR SETTINGS IN SURGERY SCHEDULING TEST SET

Factor Nr. blocks Nr. Division Nr. patients LOS

setting per day surgeons req. blocks per surgeon

1 3-6 3-7 evenly 3-5 2-5

distributed

2 7-12 8-15 not evenly 3-12 2-12

distributed

The number of blocks per day is drawn from a
uniform distribution with bounds 3 and 6 in the first
setting and 7 and 12 in the second setting. A block is
defined as the smallest time unit for which a specific
operating room can be allocated to a specific surgeon
(or surgical group). Note that, due to large set-up time
and costs, in real-life applications the number of blocks
per day in one operating room is usually 1 or 2, i.e
each surgical group has the OR for at least half a day.
Hence, considering more blocks can be seen as a way
of considering more operating rooms as there is no
difference from a computational point of view. The third
factor indicates whether or not the requested blocks are
evenly distributed among all surgeons; e.g. if there are
20 time blocks and 5 surgeons, each surgeon requires
4 time blocks in the evenly distributed case, whereas in
the unevenly distributed case huge differences can occur.
For the LOS in factor 5 we simulated exponential distri-
butions (made discrete by use of binomial distributions)
with mean dependent on the factor setting.

Next, we generated some weightswrti defining the
contributions to the workload of periodi of allocat-
ing a block to surgeonr in period t. These weights

Jeroen Belïen and Erik Demeulemeester 329

vary linearly with the number of patients of surgeon
r operated in periodt that are still in the hospital in
period i. The patient’s workload contribution generally
decreases the longer the patient has already recovered
in the hospital. In our test set the workload demand
periods coincide with the shifts. Furthermore, we set the
contribution to a ”day” shift two times as large as the
one to an ”evening” shift and four times as large as the
one to a ”night” shift. Obviously, although attempting
to represent realistic scenarios, these contributions are
chosen somewhat arbitrarily.

Thirdly, we composed a set of collective agreement
rules which apply on individual roster lines. The schedul-
ing horizon amounted to 4 weeks or 28 days (= n). The
maximum days an active shift could be scheduled (”day”,
”evening” or ”night”) was set to 20 (= fmax). Shifts
during the weekends were marked as unpopular shifts:
day and evening shifts got a penalty of 1, night shifts got
a penalty of 2. The maximum number of consecutive
working days was set to 6 (=hmax

1 = hmax) and the
maximum number of consecutive rest days was set to
3 (= hmax

2). Furthermore, we distinguished between
two scenarios: a hard constrained scenario and a flexible
one. Collective agreement rules in the hard constrained
scenario differ from those in the flexible scenario on the
following two points:

• In the hard constrained scenario, there is only one
shift type allowed within each block. In other words,
no shift transitions between different shift types can
occur without scheduling a rest first. In the flexible
scenario, all shift transitions are allowed, except the
following three: a ”night” shift followed by a ”day”
shift, a ”night” shift followed by an ”evening” shift
or an ”evening” shift followed by a ”day” shift.

• In the hard constrained scenario, the maximal
penalty with respect to unpopular shifts is set to
4, whereas in the flexible scenario it is set to 8
(=gmax).

B. Savings

Table II contains the lower and upper bounds for
both the NSP and the GNSP. In the NSP, a surgery
schedule is generated randomly. The resulting workload
pattern contains the (fixed) right-hand side values of
the coverage constraints. Then, the NSP is solved using
column generation. In the GNSP, new surgery schedules
(and hence resulting workload patterns) are generated
during search if needed. We distinguish between the
flexible and the hard constrained scenario. To give an
idea of the variability, the detailed bounds are provided
for the first 9 and the last 9 problems of the problem set.

The last line contains the average bounds over the whole
set. Observe that the name of each problem (dijklm n)
contains the information about the surgery scheduling
subproblem:i stands for the setting of the first factor in
Table I (0 for the first setting, 1 for the second),j for
the second one, etc. . . , andn for the iteration number.

From these results one may conclude the following.
First have a look at the upper bounds, which are after all
the solutions that will be worked with. Although it is not
guaranteed that the upper bound will be better (one might
be lucky in the NSP and find the same or even a better
overall integer solution), the upper bounds for the GNSP
are generally better than those for the NSP. We compared
them using a one-tailed paired T-test. The extremely
small p-values obtained indicate that the differences are
statistically significant both for the flexible and for the
hard constrained case. The same results are obtained for
the lower bounds. Unlike the upper bounds, the GNSP
lower bounds are of course guaranteed to be at least as
good as the NSP lower bounds.

When comparing the lower bounds for the NSP with
the upper bounds for the GNSP, both scenarios entail
different conclusions. The average lower bound for the
NSP is lower than the average upper bound for the GNSP
in the flexible scenario, whereas the reverse is true in the
hard constrained scenario. Both differences turned out
to be significant using a one-tailed paired T-test (again
extremely small p-values). This observation can easily
be explained. The stricter the collective agreement rules,
the harder it is to nicely fit the nurse rosters into the
required workload pattern in the NSP. As the workload
pattern can be adapted in the GNSP, the GNSP includes
more possible savings in the case of severe collective
agreement requirements.

C. Interpretation of the savings

In the previous section we concluded that integrating
the surgery scheduling process with the nurse scheduling
process may yield important savings in terms of required
nurses to hire. In this section we identify the source of
these savings. Therefore, we provide an answer to the
question: ’Where lies the waste if one is considering the
surgery schedule (and hence the workload distribution)
as being fixed?’ It turns out that the origin of the waste
is twofold.

First of all, an unfavorable workload pattern may
contain many workload demands that slightly exceed the
workforce ofx nurses, but that are dramatically inferior
to the workforce ofx + 1 nurses. In terms of thedik’s
one could think of manydik’s having a small decimal
part, like e.g. 6.1, 8.2, 4.05 etc. . . This type of waste is

330 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE II

LOWER AND UPPER BOUNDS FOR THENSPAND THE GNSP

Flexible scenario Hard constrained scenario

NSP GNSP NSP GNSP

Nr. Problem lb ub lb ub lb ub lb ub

1 d000000 15 17 13 15 19 19 16 17

2 d000001 26 28 25 27 34 35 31 31

3 d000002 25 27 23 25 32 32 28 29

4 d000010 40 42 39 41 49 50 47 48

5 d000011 45 47 44 46 54 54 52 53

6 d000012 94 96 92 94 112 113 109 110

7 d000100 34 36 32 35 43 43 40 40

8 d000101 40 42 38 40 49 50 47 47

9 d000102 28 30 26 27 34 35 32 33

. .

88 d111010 96 98 94 96 114 115 112 113

89 d111011 99 102 97 99 119 120 116 116

90 d111012 122 125 119 121 145 146 142 143

91 d111100 83 85 80 82 101 102 96 96

92 d111101 111 113 109 111 138 139 132 132

93 d111102 58 60 56 58 73 74 67 68

94 d111110 252 254 249 252 303 304 296 297

95 d111111 119 122 116 119 143 144 139 140

96 d111112 135 137 131 133 162 163 156 157

Average 70.18 72.43 68.33 70.44 86.07 86.73 81.91 82.61

referred to as the waste due to the workforce surplus per
shift. In many hospitals this kind of waste is taken care
of by simply schedulingx nurses instead ofx+1 nurses
during those shifts. The result is a group of overworked
nurses and an almost for sure decrease in the quality
of care. This illustrates how the GNSP approach can
also be very useful for optimizing qualitative instead of
quantitative objectives.

Secondly, waste also originates from the inflexibility
of the roster lines, due to strict general agreement
requirements. Because of this, no set of roster lines can
be found that perfectly fit with the workload demand.
This source of waste is further referred to as waste due
to the inflexibility of roster lines.

Table III gives an overview of the importance of both
sources of waste. Hereby, we again distinguish between
the flexible scenario and the hard constrained scenario.
For each scenario there are three columns. The first
column contains the total waste in terms of overstaffing
in the NSP compared with the GNSP. These numbers are
obtained by subtracting the upper bounds for the GNSP
from those for the NSP. The second and third column
indicate the parts of this total waste that are due to the
workforce surplus per shift and to the inflexibility of
roster lines. These numbers can easily be calculated as

follows. Firstly, for both the NSP and the GNSP we make
the sum of the (integral) demands of the chosen workload
pattern. Call this number the total required workforce
(=

∑

i∈I di for the NSP and
∑

i∈I

∑

k∈K dikzk for
the GNSP). Next, divide this number by the workforce
per nurse (= fmax in our application). This gives the
minimal number of nurses that would be needed and
can be obtained in the case of fully flexible roster lines.
The difference between these numbers for the NSP and
GNSP is the waste due to the workforce surplus per shift.
The difference between the total waste and the waste due
to the workforce surplus per shift is the waste due to the
inflexibility of roster lines. Observe that these wastes
may be negative (e.g. the waste due to workforce surplus
per shift for problem d000002 is -1). This situation
occurs when the gain with respect to one source of
waste is so large that the best found solution for the
GNSP includes a limited sacrifice with respect to the
other source of waste.

The results in Table III clearly indicate that the im-
portance of the source of waste strongly depends on the
strictness of the general agreement requirements. The
stricter these requirements are, the larger is the share of
the waste due to the inflexibility of the roster lines.

Jeroen Belïen and Erik Demeulemeester 331

TABLE III

INTERPRETATION OF THE SAVINGS

Flexible scenario Hard constrained scenario

Waste due to Waste due to Waste due to Waste due to

Total workforce surplus inflexibility of Total workforce surplus inflexibility of

Nr. Problem waste per shift roster lines waste per shift roster lines

1 d000000 2 1.2 0.8 2 1.2 0.8

2 d000001 1 1.2 -0.2 4 1.4 2.6

3 d000002 1 2 -1 3 1 2

4 d000010 1 1.2 -0.2 2 0.6 1.4

5 d000011 2 1 1 1 0.2 0.8

6 d000012 2 1.6 0.4 3 0 3

7 d000100 1 1.4 -0.4 3 1 2

8 d000101 1 1.6 -0.6 3 1.6 1.4

9 d000102 1 1.8 -0.8 2 -0.6 2.6

. .

88 d111010 2 1.4 0.6 2 0.6 1.4

89 d111011 2 1.8 0.2 4 0.2 3.8

90 d111012 1 2.2 -1.2 3 0.2 2.8

91 d111100 2 1.6 0.4 6 0.8 5.2

92 d111101 2 0.8 1.2 7 0.6 6.4

93 d111102 1 2 -1 6 1.8 4.2

94 d111110 2 1.2 0.8 7 0.2 6.8

95 d111111 2 1.8 0.2 4 -0.6 4.6

96 d111112 1 2 -1 6 0.6 5.4

Average 1.58 1.43 0.16 4.11 0.28 3.84

D. Computational results

Table IV and Table V contain the computational
results for the flexible respectively hard constrained
scenario. For the NSP, both the computation time and
the number of generated roster lines are given. For the
GNSP also the number of generated demand patterns
and the number of nodes in the branch-and-bound tree
are provided.

Obviously, the required computation times for the
GNSP exceed those for the NSP. However, taking into
account the explosion of the feasible solution space
for the GNSP compared to the NSP, the increase in
computation time is rather small. We can conclude that
column generation is an excellent technique for solving
the GNSP.

If we compare the flexible scenario with the hard
constrained scenario, a couple of things attract the
attention. First of all, observe that for the NSP the
computation times for the flexible scenario surpass those
for the hard constrained scenario, whereas for the GNSP
the computation times for the hard constrained scenario
exceed those for the flexible scenario. For the NSP this
difference is statistically significant (extremely small p-
value for a two-tailed paired T-test) and easy to explain.

In the flexible scenario much more legal roster lines exist
and hence much more roster lines with negative reduced
cost are found during the search process (on average
207.25 versus 106.07). Moreover, the time needed to
price out a new roster line is also larger since the feasible
state space contains more legal states.

For the GNSP the difference in computation time is
not statistically significant at the 5% level (p-value of
0.113 for a two-tailed paired T-test). As again the number
of generated roster lines is significantly smaller (very
small p-value for a two-tailed paired T-test), the higher
computation times for the constrained scenario must be
produced by the higher number of generated workload
patterns and the higher number of nodes in the branch-
and-bound tree. The differences in number of generated
workload patterns and in nodes in the branch-and-bound
tree are found to be significant (very small p-values for
two-tailed paired T-tests). This can easily be explained
as follows. In the flexible scenario, it is unlikely that
an extra workload pattern improves the overall solution.
Thanks to the flexibility in the roster lines, an already
very good solution can be found using a limited set
of workload patterns. In the hard constrained case on
the other hand, the inflexibility of the roster lines might

332 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

obstruct the detection of a good solution. In this case, it
is far more likely that adding a new workload pattern
improves the overall solution. We can conclude that
the GNSP is easier to solve if the collective agreement
requirements are less strict, whereas the reverse is true
for the NSP.

As a final remark we note that a large part of the
computation time goes to the calculation of an overall
feasible solution in order to detect an upper bound after
each move in the branch-and-bound tree in the GNSP
and at the end of the column generation process in the
NSP.

TABLE IV

COMPUTATIONAL RESULTS FOR THE FLEXIBLE SCENARIO

NSP GNSP

Roster Roster Workload

Nr. Problem Time (s) lines Time (s) lines patterns Nodes

1 d000000 43484 150 44422 183 2 0

2 d000001 44063 174 51000 196 2 0

3 d000002 46423 235 45438 213 2 0

4 d000010 44078 173 46000 221 2 0

5 d000011 43829 167 45172 190 2 0

6 d000012 44844 212 48829 238 3 0

7 d000100 45266 211 70359 274 2 0

8 d000101 46311 237 185623 535 17 8

9 d000102 44594 208 166892 640 32 13

. .

88 d111010 44390 213 47984 243 2 0

89 d111011 44953 228 52031 257 2 0

90 d111012 44734 230 56438 280 2 0

91 d111100 46203 252 358811 555 30 15

92 d111101 45265 238 1765257 815 128 59

93 d111102 47359 200 423125 507 28 14

94 d111110 46360 347 69266 381 2 0

95 d111111 45719 243 59063 319 2 0

96 d111112 45048 237 251970 512 14 6

Average 44146.04 207.25 99008.57 310.31 5.93 1.95

TABLE V

COMPUTATIONAL RESULTS FOR THE HARD CONSTRAINED

SCENARIO

NSP GNSP

Roster Roster Workload

Nr. Problem Time (s) lines Time (s) lines patterns Nodes

1 d000000 453 46 66953 263 8 4

2 d000001 500 70 55359 304 18 6

3 d000002 422 64 11781 111 2 0

4 d000010 468 77 609 81 2 0

5 d000011 453 74 687 95 3 0

6 d000012 672 120 782 127 2 0

7 d000100 4250 113 216064 470 79 43

8 d000101 953 113 323236 448 129 47

9 d000102 750 80 201970 459 102 39

. .

88 d111010 2125 122 1656 130 2 0

89 d111011 1531 126 2625 146 2 0

90 d111012 1610 149 2109 159 2 0

91 d111100 1938 123 456191 439 58 17

92 d111101 1500 152 1228851 508 92 45

93 d111102 5438 101 102470 310 10 1

94 d111110 8000 251 12265 264 2 0

95 d111111 4859 143 19359 185 2 0

96 d111112 4922 153 1809557 600 221 83

Average 1215.52 106.07 153927.85 226.05 28.08 10.81

IX. CONCLUSIONS AND FURTHER RESEARCH

This paper presents an integrated approach for build-
ing nurse and surgery schedules. It has been shown
how the column generation technique, often employed
for solving nurse scheduling problems, can easily be
extended to cope with this integrated approach. The
approach involves the solution of two types of pricing
problems, the first one is solved with a standard dynamic
programming recursion, the second one by aims of a
state-of-the-art mixed integer programming optimizer. A
constraint branching scheme has been proposed to drive
the solution into integrality with respect to the workload
patterns while the integrality of the roster lines was left
out of the scope of this paper. Finally, some techniques
were presented that helped to improve the computational
efficiency of the branch-and-price algorithm.

Our computational results indicate that considerable
savings could be achieved by using this approach to build
nurse and surgery schedules. We simulated problems
for a large range of surgery scheduling instances and
distinguished between a flexible and a hard constrained
scenario with respect to the collective agreement require-
ments. Our conclusions can be summarized as follows.
First of all, column generation is a good technique to

Jeroen Belïen and Erik Demeulemeester 333

deal with the extra problem dimension of modifying
surgery schedules. Secondly, the obtained gains originate
from two sources of waste: waste due to the workforce
surplus per shift and waste due to the inflexibility of
roster lines. Thirdly, unlike the NSP, the GNSP turns out
to become harder to solve when the collective agreement
requirements are more strict.

Obviously, in real-life hospital environments it is not
so easy to modify the master surgery schedule. As the
surgery schedule can be considered to be the main engine
of the hospital, it not only has an impact on the workload
distribution for nurses, but also on several other re-
sources throughout the hospital. Think for instance about
anaesthetists, equipment, radiology, laboratory tests and
consultation. This observation yields a negative as well
as a positive note for the reasoning in this paper. The neg-
ative note is that the possible savings obtained through
integrating the nurse and the surgery scheduling process
are in real-life probably much smaller, due to the smaller
flexibility with which surgery schedules can be modified.
The positive note is that not only savings in nurse staffing
costs are possible, but also in other related resource
types, by integrating the scheduling of these resources
with the surgery scheduling process. This is probably
the main contribution of this paper. This work clearly
shows the benefits of integrating scheduling processes
in health care environments and moreover proposes a
methodology for implementing the heart of a supporting
ICT infrastructure.

Possible topics for further research include the ap-
plication of this approach in a real-world environment
involving a detailed report on the experienced merits and
pitfalls. From a theoretical point of view, it would be
interesting to elaborate this technique for one or more
of the other resource types stated above.

ACKNOWLEDGEMENTS

We acknowledge the support given to this project by
the Fonds voor Wetenschappelijk Onderzoek (FWO) -
Vlaanderen, Belgium under contract number G.0463.04.

REFERENCES

[1] H. Alfares and J. Bailey, “Integrated project task and manpower
scheduling,”IIE Transactions, vol. 29, pp. 711–718, 1997.

[2] H. Alfares, J. Bailey, and W. Lin, “Integrating project oper-
ations and personnel scheduling with multiple labor classes,”
Production Planning & Control, vol. 10, pp. 570–578, 1999.

[3] M. N. Azaiez and S. S. Al Sharif, “A 0-1 goal programming
model for nurse scheduling,”Computers and Operations Re-
search, vol. 32, pp. 491–507, 2005.

[4] J. F. Bard, C. Binici, and A. H. deSilva, “Staff scheduling at
the United States Postal Service,”Computers and Operations
Research, vol. 30, pp. 745–771, 2003.

[5] J. F. Bard and H. W. Purnomo, “A column generation-based
approach to solve the preference scheduling problem for nurses
with downgrading,”Socio-Economic Planning Sciences, vol. 39,
pp. 193–213, 2005.

[6] ——, “Preference scheduling for nurses using column genera-
tion,” European Journal of Operational Research, vol. 164, pp.
510–534, 2005.

[7] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savels-
bergh, and P. H. Vance, “Branch-and-price: Column genera-
tion for solving huge integer programs,”Operations Research,
vol. 46, pp. 316–329, 1998.

[8] N. Beaumont, “Scheduling staff using mixed integer program-
ming,” European Journal of Operational Research, vol. 98, pp.
473–484, 1997.

[9] J. Beliën and E. Demeulemeester, “Integer programming for
building robust surgery schedules,” Katholieke Universiteit Leu-
ven, Department of Applied Economics, Research Report OR
0446, 2004.

[10] J. T. Blake and M. W. Carter, “A goal programming approach to
strategic resource allocation in acute care hospitals,”European
Journal of Operational Research, vol. 140, pp. 541–561, 2002.

[11] J. T. Blake, F. Dexter, and J. Donald, “Operating room man-
ager’s use of integer programming for assigning block time
to surgical groups: A case study,”Anesthesia and Analgesia,
vol. 94, pp. 143–148, 2002.

[12] A. Caprara, M. Monaci, and P. Toth, “Models and algorithms
for a staff scheduling problem,”Mathematical Programming,
vol. 98, pp. 445–476, 2003.

[13] B. Cheang, H. Li, A. Lim, and B. Rodrigues, “Nurse roster-
ing problems - A bibliographic survey,”European Journal of
Operational Research, vol. 151, pp. 447–460, 2003.

[14] F. Dexter and A. Macario, “Changing allocations of operating
room time from a system based on historical utilization to one
where the aim is to schedule as many surgical cases as possible,”
Anesthesia and Analgesia, vol. 94, pp. 1272–1279, 2002.

[15] A. Guinet and S. Chaabane, “Operating theatre planning,”Int.
J. Production Economics, vol. 85, pp. 69–81, 2003.

[16] E. W. Hans, “Resource loading by branch-and-price tech-
niques,” Ph.D. Dissertation, Twente University Press, Enschede,
The Netherlands, 2001.

[17] W. L. Hughes and S. Y. Soliman, “Short-term case mix manage-
ment with linear programming,”Hospital and Health Services
Administration, vol. 30, pp. 52–60, 1985.

[18] B. Jaumard, F. Semet, and T. Vovor, “A generalized linear
programming model for nurse scheduling,”European Journal
of Operational Research, vol. 107, pp. 1–18, 1998.

[19] E. Litvak and M. C. Long, “Cost and quality under managed
care: Irreconcilable differences?”The American Journal of
Managed Care, vol. 6, pp. 305–312, 2000.

[20] A. J. Mason and M. C. Smith, “A nested column generator
for solving rostering problems with integer programming,”
in International Conference on Optimisation: Techniques and
Applications, 1998, pp. 827–834.

[21] A. Mehrotra, K. E. Murphy, and M. A. Trick, “Optimal shift
scheduling: A branch-and-price approach,”Naval Research Lo-
gistics, vol. 47, pp. 185–200, 2000.

[22] H. E. Miller, W. P. pierskalla, and G. J. Rath, “Nurse schedul-
ing using mathematical programming,”Operations Research,
vol. 24, pp. 857–870, 1976.

[23] D. M. Ryan and B. A. Foster, “An integer programming ap-
proach to scheduling,” inComputer Scheduling of Public Trans-
port Urban Passenger Vehicle and Crew Scheduling, A. Weren,
Ed. North-Holland, Amsterdam, 1981, pp. 269–280.

[24] USDHHS, Projected supply, demand and shortages of regis-
tered nurses: 2000-2020. National Center for Health Work-

334 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

force Analysis. US Department of health and Human Services,
Rockville, MD, 2002.

[25] M. Van den Akker, H. Hoogeveen, and S. L. van de Velde,
“Combining column generation and lagrangian relaxation to
solve a single-machine common due date problem,”INFORMS
Journal on Computing, vol. 14, pp. 37–51, 2002.

[26] F. Vanderbeck, “On Dantzig-Wolfe decomposition in integer
programming and ways to perform branching in a branch-and-
price algorithm,”Operations Research, vol. 48, pp. 111–128,
2000.

[27] F. Vanderbeck and L. A. Wolsey, “An exact algorithm for IP
column generation,”Operations Research Letters, vol. 19, pp.
151–159, 1996.

[28] D. M. Warner, “Scheduling nursing personnel according to
nursing preferences: A mathematical programming approach,”
Operations Research, vol. 24, pp. 842–856, 1976.

[29] E. N. Weiss, “Models for determining estimated start times and
case orderings in hospital operating rooms,”IIE Transactions,
vol. 22, pp. 143–150, 1990.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 335

A bi-objective coordination setup problem in a
two-stage production system

Michele Ciavotta∗, Paolo Detti†, Carlo Meloni‡ and Marco Pranzo†
∗D.I.A. Universit̀a Roma Tre

Via Della Vasca Navale, 79, I-00146 Roma Italy
Email: ciavotta@dia.uniroma3.it

†D.I.I. Universit̀a di Siena
Via Roma, 56, I-53100 Siena Italy
Email: {detti, pranzo}@dii.unisi.it

‡D.E.E. Politecnico di Bari
Via E. Orabona, 4, I-70125 Bari Italy

Email: meloni@deemail.poliba.it

Abstract— This paper addresses a problem arising in
the coordination between two consecutive departments of
a production system, where parts are processed in batches,
and each batch is characterized by two distinct attributes.
Due to limited interstage buffering between the two stages,
these departments have to follow the same batch sequence.
In the first department, a setup occurs every time the first
attribute of a new batch is different from the previous
one. In the downstream department, there is a setup
when the second characteristic changes. The problem
consists in finding a set, as large as possible, of batch
sequences optimizing the number of setups paid by each
department. This case results in a particular bi-objective
combinatorial optimization problem. Here we present a
geometrical characterization for the solution space of the
problem and we propose an experimental study of three
different metaheuristics. The proposed approaches result
in fast, accurate and effective algorithms which are able
to find almost the whole Pareto front with an acceptable
computation time.

Keywords— Setups, Multi-Objective Algorithms, Se-
quencing, Manufacturing systems.

I. I NTRODUCTION

T HIS work deals with a problem of real-life manu-
facturing interest: the coordination of two consecu-

tive production departments. Each department consists of
a flexible machine, the first one deals in shaping items of
raw wooden panels; the second concerns the painting of
the just shaped items. To avoid unnecessary costs, each
department works with batches of jobs, in which every
job has the same shape and color. Since it is not possible
for a job to change its own route in the production chain,
as well as for a department to reschedule the sequence

of incoming batches, this problem belongs to the class
of Permutation Scheduling.

When two consecutive jobs with different features
have to be processed, at least one department must
pay a setup. Each department tends to organize its own
operations in order to minimize its setup number. From
a global point of view, this problem is inherently multi-
objective ([8], [14]) because each department has to take
into account the requirements of the other one. At this
aim, a set of optimization algorithms are proposed in this
paper.

A graph model introduced in [1] is used to obtain
a lower and upper bound setup number for each de-
partment, and a good estimation of all possible Pareto
front points. At an operational level the goal is to find
a, possible large, set of sequences of batches solving a
trade-off between different objectives. We tackled this
multi-criteria problem using a metaheuristic approach.
The goal of this algorithm is to obtain a good estimation
of the Pareto front for the multi-objective problem. In
the proposed approach first the total setup number of
the production system is minimized, then a different
procedure is employed to spread the setups over de-
partments keeping constant the total number of setups.
Different procedures to guide the algorithms toward the
discovering of a greater part of the Pareto front are
implemented. The proposed approach returns a set of
non-dominated points achieving a high probability of
covering almost the whole Pareto front in an acceptable
computation time.

The paper is organized as follows. In Section II, liter-
ature results and applications are discussed. In Section
III the industrial context is described, a formal descrip-
tion of the problem and a geometrical characterization

336 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

of the solution space are given. In Section IV, three
metaheuristic algorithms are presented, and in Section
V a large sample of experiments are reported, showing
the effectiveness of the proposed approaches. Finally, in
Section VI conclusions are drawn.

II. L ITERATURE AND APPLICATIONS

Minimizing the impact of changeovers has been
widely described as a main component of modern
production management strategies [16]. Pursuing high
changeover performances is a way to enable agile and
responsive manufacturing processes by improving line
productivity and reducing downtime losses [10]. This
aspect of the production management involving both
organizational and economic aspects has received an in-
creasingly attention also in fields as applied mathematics
and operations research.
In particular, over the past few decades, there has
been a significant effort associated with reducing the
time required to perform setups and developing suit-
able changeover modeling processes. This process can
be quite complicated, but yields important benefits in
planning and scheduling a production system [16] im-
proving both the production capacity and the system
manageability. Important surveys on changeovers and
setups are proposed in [3], [11] where classifications of
setups are also given. A wide discussion on MIP models
is given in [17]; while [12] offers a review of heuristics
for setup problems in serial systems. The models and
algorithms presented in this paper particularly refer to
the furniture production case first addressed in [1].
Despite the problem is quite specific, it may arise in
different production contexts in which one is interested
in minimize the setups. Typically, in such cases, setup
costs are a prominent part of the overall production
costs. In successive works, some strongly related prob-
lems have been considered, by the same authors, under
both theoretic and algorithmic point of view [4], [5].
In particular, these works deal with graph problems
such as the Hamiltonian Completion Number (HCN)
problem and the Minimum Cardinality Dominating Trail
Set (MDTS) problem. The literature also presents other
different real world applications of some variants of the
problem addressed in this paper. As examples, we cite
the optimization of the line scheduling for production of
components for catalytic converters considered in [13],
the setup sequencing problems arising in the weaving
industry [?], and the part loading scheduling in a forging
machine addressed in [15].

III. PROBLEM DESCRIPTION

A. The industrial context

This paper addresses a problem arising in the coordi-
nation between two consecutive production departments
of an industrial system. Often in multi-stage serial man-
ufacturing systems there not exists an interstage mecha-
nism for re-scheduling the items. Hence a very important
task becomes to select an appropriated sequence of jobs.
Such sequence has to take into account the requirements
of every stage. In particular, we consider the problem of
sequencing production batches of jobs in two consecutive
manufacturing departments. Due to the lack of interstage
buffering, departments must process the batches in the
same order. Batches to produce are characterized by two
different attributes, sayA1 andA2, the actual cardinality
of each batch (i.e., the number of parts that compose each
batch) is of no interest at all in this kind of problems. In
the first (the second) department, a setup occurs when
the attributeA1 (attribute A2) of the next batch to be
processed changes. Therefore this kind of setups can be
classified as sequence dependent [3], [11].

Each given sequence of batches results in a number of
setups to be paid by each department, and the problem
is finding a collection of batch sequences minimizing
the costs related to changeovers (i.e., setups). In this
way it is possible to offer to the decision-maker a wide
range of choices. Moreover it may be useful to re-
schedule the production work on line holding unchanged
the quality of the schedule; this could be obtained by
selecting (where it is possible) another sequence of the
found solution set. Since, in the context under study,
the activities involved in a changeover are very similar,
regardless of the particular changeover, the total number
of setups is, in this case, a meaningful index of perfor-
mance. We refer to the real industrial context addressed
in [1], in which a large number of different slabs of
wood are cut, painted and assembled to build kitchen
furniture. In this system, two consecutive departments
are considered and no resequencing is possible between
the two stages. The two departments are the cutting and
the painting departments and batches are characterized
only by shapes and a colors. In the cutting department,
a setup occurs when a batch has a different shape from
the preceding one (cutting tools and machinery must be
reconfigured). Similarly, in the painting station a setup
occurs when a new color is used (the equipment and the
pallets must be thoroughly cleaned in order to eliminate
the residuals of the previous color). Hence, in both
cases costs are paid in terms of time and manpower. In
particular, we consider the case in which all the setups
have the same cost. Hence, we focus our attention on

Michele Ciavotta et al. 337

the number of setups. Since each item to be produced
has its own shape and color, all the items having the
same shape and color form a single batch. In fact,
there is no convenience, on either side, in splitting such
batches, while the actual cardinality of each batch is
of no interest for us here. Hence, in processing two
consecutive batches, at least a department has to pay
a changeover. Minimizing the changeover cost for a
department often implies the increasing of the setup
costs for the other one. It leads that this problem is
inherently multi-objective. More in details, we analyze
a bi-criteria version of the described problem, where
the two objectives we consider are the minimization
of the number of the setups paid by each department.
This bi-objective problem is NP-hard [1] (even if the
single-objective problem requiring to minimize the setup
cost of a single department is clearly an easy task)
and it calls for a heuristic solution approach. Hence,
our aim is to find in a reasonable computation time a
good approximation of the Pareto-optimal front. Thus,
in general, a solution of the problem is a set of trade-off
solutions, i.e., non dominated solutions. In this paper we
propose three metaheuristic approaches for the problem
which are able to attain a good approximation of the
Pareto front in reasonable amount of time even for large
instances.

B. Notation and problem formulation

The problem we consider in this paper can be more
formally formulated as follows. LetA be a set of batches
to be produced. The batches must be processed by two
departments of the plant, calledDS and DC , in the
same order. Each batch is characterized by two attributes,
say shapeand color. Let S and C denote the sets of
all possible shapes and colors respectively. We denote
the shapes assi, i = 1, . . . , |S| and the colors ascj ,
j = 1, . . . , |C|. Each batch is therefore defined by a
pair (si,cj). If batch (si,cj) is processed immediately
after batch (sh,ck), a setup is paid in departmentDS

if sh 6= si, and a setup is paid in departmentDC if
ck 6= cj . We can represent the input as a bipartite graph,
G = (S, C, A), where nodes inS correspond to shapes,
nodes inC to colors and each edge ofA corresponds
to a batch to be produced. The problem is to sequence
the batches in a profitable way from the viewpoint of
the number of setups. This means that we must find
some particular orderingσ of the edges ofG. If two
consecutive edges(i, j) and (h, k) in σ have no nodes
in common, this means that both departments have to
pay one setup when switching from batch(i, j) to batch
(h, k). We refer to this as aglobal changeover. On the

other hand, ifi = h (j = k), only departmentDC (DS)
pays a setup. This is calledlocal changeover. For a given
sequenceσ, we can therefore easily compute the number
of setups incurred by each department, call themNS(σ)
and NC(σ) respectively. In fact, letδih be equal to 1
if i 6= h and 0 otherwise, and lets(σ(q)) denote the
shape of theq-th batch in the sequenceσ, and letc(σ(q))
denote its color. Hence,

NS(σ) = 1 +

|A|−1
∑

q=1

δs(σ(q)),s(σ(q+1)) (1)

NC(σ) = 1 +

|A|−1
∑

q=1

δc(σ(q)),c(σ(q+1)) (2)

The two objectives of the problem addressed in this
paper are exactlyNS(σ) and NC(σ) (for sake of sim-
plicity, we useNS and NC when the context does not
require to remark the dependence ofσ). The problem we
address, denoted asNS-NC problem, consists in finding
a set of batch sequences minimizing the two objectives
NS andNC .

C. Geometrical properties of the solution space ofNS-
NC problem

In this section, a geometrical characterization of the
solution space ofNS-NC problem is presented. Such
characterization is useful to determine a good estimation
of the Pareto front.

In the literature, a heuristic approach for another bi-
criteria optimization problem with the same combina-
torial structure but with a different pair of objective
functions has been presented in [6]. In particular, in [6]
the minimization of following criteria is considered:
SUM = NS + NC and
MAX = max{NS , NC}.

In the following, we refer to this bi-objective problem
as SUM -MAX problem. The above criteria strongly
depend on those (i.e.,NS and NC) considered in the
problem under study in this paper. Some observations
on the solution space of theSUM -MAX problem
give important information about the solution space of
the NS-NC problem. In the computational experiments
presented in [6] and carried on a wide set of instances,
the effectiveness of the proposed heuristic is shown.
Moreover, the computational experiments highlight that
the Pareto front always contains few (often one) non
dominated points. This is due to the strong correlation
between the objectivesSUM and MAX. Note that,
in general, to the same point in the criteria space may
correspond several batch sequencesσ. In the following,

338 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

we give a geometric representation of the solution space
of SUM -MAX problem andNC-NS problem.

In [5], [6], the authors proposed a pair of useful
lower (upper) boundsLBSUM (UBSUM) andLBMAX

(UBMAX) for the SUM and MAX objective, respec-
tively. The lower bounds define an ideal pointIP =
(LBSUM , LBMAX) for SUM -MAX problem, whereas
the upper bounds are used to define a nadir point
(UBSUM , UBMAX).

The solution space of theSUM -MAX problem has
the following geometrical properties. Given a batch
sequenceσp, let p = (SUMp, MAXp) be a point
in the solution space of theSUM -MAX problem,
where SUMp = NS(σp) + NC(σp) and MAXp =
max{NS(σp), NC(σp)} Let p be a point in the solution
space of theSUM -MAX problem, and letSUMp and
MAXp be the coordinates ofp in the solution space
SUM -MAX. It can be noted that the following relations
hold:

SUMp ≤ 2 ∗ MAXp (3)

MAXp + η ≤ SUMp (4)

where η = minσ{NS(σ), NC(σ)} is a constant that
can be easily computed.

Obviously, inequality (3) holds for all pointsp repre-
senting a feasible solution for theSUM -MAX problem.
In fact, for each solution point, the correspondent value
of the objective functionSUM is less than twice of the
value assumed by the second objectiveMAX. Note that
Relation (4) holds for all the feasible points of theSUM -
MAX problem, too. Hence, inequalities (3), (4) and the
lower and upper bounds previously introduced describes
the whole solution space of the problemSUM -MAX
(see Figure 1). It is important to note that while coor-
dinatesSUMp andMAXp depend on the particularσp

associated to a pointp, η is a constant which depends
only on the instance of the problem.

In the Figure 1, IP is the ideal point determined
by LBSUM and LBMAX ; while the point A is the
unfeasible solution point individuated by the intersection
of the two lines (i.e.,3 and 4) bounding the solution
space.

These observations give us some useful information
about the solution space of theNS-NC problem, object
of this paper.

Each batch sequenceσp has a representative pointp =
(SUMp, MAXp) in the solution space ofSUM -MAX
problem, while in the solution space ofNS-NC problem,
the same sequence has an image given by the pointπ =
(NS(σp), NC(σp)), where:

MAX

SUM

IP

A

M
A

X
 +

 η
=

SU
M

SUM = 2 x MAX

LBSUM

LBMAX

UBSUM

UBMAX

Fig. 1. Geometric aspects of the feasible region of theSUM -MAX

problem.

Min(Ns)

Max(Ns)

IP

A

Nc

Ns

N c
=

N s

SU
M

 =
 2

x M
AX =

 2
x L

b M
AX

45°

Min(Nc) = η

Max(Nc)45°

N
c + N

s = SUM
 = LB

SUM

M
A

X
 +

 η
=

 S
U

M

MAX + η = SUM

Fig. 2. Geometric aspects of the solution space of theNS-NC

problem.

SUMp = NS(σp) + NC(σp), and
MAXp = max{NS(σp), NC(σp)}.
Thus, several characteristics of one space can easily

be mapped in the other one.
In Figure 2, the solution space ofNS-NC problem is

depicted and, in Figure 3, the ideal Pareto front of the
problem is shown.

It can be observed thatLBSUM is quite useful also in
the space of theNS-NC problem giving an estimation of
the whole Pareto front. In fact, in this space the relation
SUM ≥ LBSUM can be re-viewed asNS + NC ≥
LBSUM and hence it gives a lower bound for the Pareto
front of the problem. Note that in Figure 2 the case
with η = minσ{NC(σ)} = minσ{NS(σ), NC(σ)} is
depicted.

Michele Ciavotta et al. 339

Nc

Ns

Min(Nc)

Min(Ns)

Ideal Pareto Front
Nc + Ns = SUM = LBSUM

NsSUMUB γ=

Nc SUM
UB γ=

Fig. 3. Bounds for the Pareto front for theNS-NC problem.

The estimation of the Pareto front can be easily
detailed determining an estimation of the number and the
position of elements (i.e., integer solutions) contained in
it.

More information about the solution space of theNS-
NC problem can be obtained mapping other geometric
objects from theSUM -MAX solution space as shown
in Figures 2 and 3.

Since the minimum setup costs for a department (as
single objective) can be easily attained by ordering the
batches in the sequence by grouping them by the same
color or shape, we can calculate, in closed form, the
minimum valuesminσ{NS(σ)} and minσ{NC(σ)} for
a given instance of the problem. Given an estimated
Pareto frontNS + NC = SUM = γ for an instance
of NS-NC problem, upper boundsUBNS

|SUM=γ and
UBNC

|SUM=γ on the values ofNS and NC , respec-
tively, whenSUM is fixed to the valueγ are:

UBNS
|SUM=γ = γ − min{NC};

UBNC
|SUM=γ = γ − min{NS}.

The above values delimit the estimated Pareto front.
Moreover, using the information given by these geo-

metric observations and the values of the bounds pre-
viously introduced, it is possible to calculate, in closed
form, the cardinality|PFγ | of the set of all points lying
on the estimated Pareto frontPFγ described by

NS + NC = SUM = γ.
In fact, due to the geometric properties of the bounds

on the solution space, the number of points contained in
the estimated Pareto front is:

|PFγ | = UBNC
|SUM=γ − min{NC} + 1, (5)

or, in an equivalent way,

|PFγ | = UBNS
|SUM=γ − min{NS} + 1. (6)

and the position of each point belonging to the Pareto
front can be easily computed.

We use this geometric characterization in the design
and development of the proposed algorithms. In fact, the
estimated number and position of the ideal solutions is
used to guide the algorithms’ behavior toward the Pareto
front.

IV. A LGORITHMS

In this section we describe three metaheuristic ap-
proaches developed to tackle the problem. A meta-
heuristic is an iterative solution procedure, combining
subordinate heuristic tools into a more sophisticated
framework [7], [9]. All the developed algorithms are
based on the same basic subordinate procedures.

• Constructive Heuristic: This heuristic is a greedy
procedure. It starts from the empty sequenceσ = ∅
and at each step it adds to the partial sequenceσ all
the batches sharing a given attribute. The behavior
of this routine is controlled by an input parameter
in order to produce promising starting points for the
improving procedures.

• Improving procedures: As solution improving tools
we adopted an advanced local search procedure able
to attain solutions belonging to the Pareto front or
close to it. Besides the local search we developed
also an exploration procedure that, given a solution,
it generates a set of neighbors adjacent to it in the
solution space having the same quality.

• Update routine: This helper function updates the
Pareto front adding, if necessary, the new Pareto
solutions found by the improving procedures.

These subordinate procedures are used by someMas-
ter procedureto guide the search process toward the
exploration of the Pareto front. In the following subsec-
tions, first we describe in details the tools that consti-
tute our framework, and next we introduce two Master
procedures employing the described subordinate tools,
and finally we illustrate the metaheuristic algorithms
developed.

A. Constructive heuristic

The constructive heuristic is an iterative greedy pro-
cedure used to generate starting solutions. The heuristic
starts from the empty sequenceσ = ∅ and at each step it
selects one attribute from a department. Then it adds to
the partial sequenceσ all the batches sharing the selected

340 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

attribute. This process is repeated until all the batches are
sequenced.

More in details, the behavior of the heuristic is guided
by an an input parameter (ρ) determining which depart-
ment is selected at each iteration. In particular, ifρ > 0
(ρ < 0) then attributes from departmentDS (department
DC) are chosen in the nextρ iterations. After theseρ
iterations one attribute from departmentDC (department
DS) is selected. Given a selected department the attribute
with the smaller number of occurrences among the
unsequenced batches is selected. In terms of the bipartite
graph G = (S, C, A) the chosen attribute corresponds
to the node having smaller degree. The node degree is
updated every time a batch is added to the sequenceσ.

Observe that the solution generated by the constructive
heuristic may have a poor quality. A global changeover
is paid at every iteration of the algorithm because the
sequenceσ switches from two batches with both depart-
ments operating a setup.

B. Solution improving procedures

As improving procedures we consider two different
procedures minimizing the single objective problems,
SUM and MAX independently. The two single objective
problems minimize the overall number of setups and the
balanceness of the setup among the two departments,
respectively.

Observe that, minimizing the SUM objective, i.e.,
minimizing NS + NC , corresponds to a move to-
ward the Pareto front. In fact, given a solutionp =
(SUMp, MAXp), the reduction of the SUM objective
by one generates a new solutionp′ which is eitherp′ =
(SUMp − 1, MAXp) or p′ = (SUMp, MAXp − 1). On
the other hand, the MAX objective represents the balance
among the setups paid by the departments. Varying the
MAX objective, while maintaining constant the value of
MAX, allows the exploration of new solutions having the
same SUM quality. In fact, the reduction (the increase)
of the MAX objective generates a new solutionp′ in
the solution space toward the center (extremity) of the
Pareto front. In other wordsp′ is eitherp′ = (SUMp +
1, MAXp − 1) or p′ = (SUMp − 1, MAXp + 1).

More in details, this is done by the following proce-
dures:

• An Iterated Local Search (first introduced in [4])
minimizes the SUM objective. It is used to attain a
solution belonging to the Pareto front or close to it.
Given an initial solution the ILS performs a Vari-
able Neighborhood Descent (based on two complex
neighborhoods) as local search step. The Perturba-
tion phase applies random moves to the incumbent

solution. The actual number of perturbating moves
is randomly drawn in the[1; 0.15|A|] interval. A
solution is accepted as the new incumbent solution
only if it strictly decreases the SUM objective. Each
run of the ILS is stopped whenever the optimality
of the solution is proved or when the computational
bounds (3 seconds or 50 iterations) are reached. The
lower bound used to prove the optimality and to stop
the search process is described in details in [5].

• Once a Pareto point is obtained, COVER, a di-
versification procedure in the MAX objective, is
performed. This procedure basically consists, given
a solution possibly on the Pareto front, in both
minimizing and maximizing the MAX objective and
it permits a fast exploration of the Pareto front. In
particular, given a solutionp the COVER procedure
attains a set of non dominated solutions that can
be reached in a simple neighborhood [6] starting
from p. Let pmin and pmax be the two extreme
solutions that can be reached in the neighborhood
starting fromp, then all the solutions in the interval
[pmin, pmax] are found by COVER.

C. Update routine

This helper function updates the Pareto front adding,
if necessary, the new Pareto solutions found by the
solution improving procedures. Since COVER returns a
set of non dominated solutions that are reachable by the
solution found by the ILS phase the knowledge of the
two extreme solutions (pmin and pmax) is sufficient to
calculate the exact amount of Pareto front covered in the
iteration.

D. Master procedures

The subordinate procedures are used byMaster proce-
duresto guide the search process toward the exploration
of the Pareto front. Starting solutions are generated by
the constructive greedy and they are improved by local
search procedures previously described. In the following
two Master procedures are introduced:

• The Sweepprocedure (Figure 4) uses the construc-
tive greedy to generate anEqually Spaced Initial
Solutions Set(ESISS) which is used to control
the search process. Starting from each solution in
ESISS the improving procedures (ILS and COVER)
are applied in cascade aiming to reach a Pareto point
and consequently covering a portion of the Pareto
front. The number of solutions in the ESISS is a
parameter for the algorithm.

• TheFill procedure uses a different strategy. Starting
from the knowledge of the coverage of the Pareto

Michele Ciavotta et al. 341

sweep

NC

NS

Fig. 4. The Sweep procedure.

front, an hole is identified, i.e., a portion of the
Pareto front not yet explored by the algorithm.
Given an hole, Fill pilots the constructive heuristic
to build an initial solution having the same balance-
ness of the hole (Figure 5). In this way it creates a
new initial solution trying to drive the exploration
to fill up the hole. The search process, in this case,
is guided by the knowledge of the Pareto front
found during the search process, and no additional
parameters are required.

Pareto
Front

Hole

New
initial
solution

NC

NS

Fig. 5. The Fill procedure.

E. Metaheuristics

Using the two defined Master procedures we devel-
oped three different metaheuristic algorithms.

• TheMulti-Sweep(MS) algorithm repeatedly applies
the Sweep procedure. Once all the solutions of the

ESISS are considered, it starts again from the same
sequence of piloting starting solutions. This process
is iterated until the time limittmax is reached or the
whole Pareto front is covered.

• The Sweep and Fill(SF) algorithm uses a different
strategy. Like Multi-Sweep it creates an Equally
Spaced Initial Solution Set and it uses it as a pool
of initial solutions. Once all the solutions in the
ESISS are considered the algorithm applies the Fill
procedure trying to fill the holes in the Pareto front
until the time limit tmax is reached or the whole
estimated Pareto front is covered.

• TheFront Fill (FF) algorithm relies only on the Fill
procedure. Clearly at the beginning no solution in
the Pareto front has been yet identified, therefore
it generates the initial solution corresponding to
the central element of the Pareto front. The Fill
procedure is repeated until the whole Pareto front
is identified or the time limittmax is reached.

V. COMPUTATIONAL EXPERIMENTS

In this section we describe the experiments carried out
to evaluate the behavior of the three proposed algorithms.

A. Instances description

The algorithms have been tested on one set of
32 real-life instances (GSET) and on twelve sets of
20 randomly generated problems (RND10B–RND10E,
RND30B–RND30E, RND60B–RND60E) [1]. The 32
real-life instances consist of unbalanced bipartite graphs
G = (V1, V2, E) where|V1| = 32 and|V2| = 14. In these
instances|E| ranges from 150 to about 300. The other
sets of instances consist of balanced bipartite graphs
G = (V1, V2, E), with cardinalityn = |V1| = |V2| and
graph densityd ranging from 10% to 40%. In particular,
10, 30 and 60 nodes have been considered for each
department, and 10, 20, 30, 40% for the densityd. For
each pair(n, d) a set of 20 connected instances has been
generated.

In a preliminary test phase we tuned the proposed al-
gorithms. On all the teststmax is set to 300 seconds. The
algorithms stop when one of the following conditions
holds: (i) the maximum number of starting solutions is
reached (at most 500,000);(ii) the computation time
exceedstmax; (iii) the whole Pareto front is found.

The cardinality of the ESISS (the number of initial
solution in the Sweep routine) for MS and SF is set to
((|PF | ∗ d)/2) + 1, where|PF | is the cardinality of the
ideal Pareto front calculated according to Equations 5
and 6. The knowledge of the cardinality of the ESISS
permits to calculate easily the parameterρ controlling

342 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

the constructive algorithm. Since the algorithms are
stochastic, for each instance 10 runs are executed in order
to obtain a meaningful representation of the behavior of
the developed algorithms.

All the experiments have been performed on a 3.2
GHz Pentium 4 laptop equipped with 512 MB ram, and
the algorithms are coded in standard C language.

B. Performances Analysis

In Table I, we summarize the results for each algo-
rithm on each test set showing the computation time in
seconds (time), the number of initial solutions generated
(Iter.) and the Pareto front covering percentage (%). Each
row refers to the average results over 20 instances and
10 repetitions. On average a large part of the Pareto front
is covered by all algorithms (%) in a small computation
time. In general, MS performs better on sparse instances
(sets RND30B and RND60B). On the other hand, as the
graph density grows, SF and FF require a smaller amount
of time to cover the same percentage of the front. The
second algorithm (SF) implements a more sophisticated
strategy, in fact once all the initial solutions in the
ESISS are explored, other promising initial solutions
are generated by the Fill routine. Hence, in general, a
lower number of improving procedures are needed to
attain the same covering percentage of the Pareto front.
Finally, the last algorithm (FF) generates initial starting
solutions dynamically guided by the Pareto front and its
performances are very similar to those of SF.

It is important to note that for real-life instances,
which have a relatively low number of nodes and high
density, all the proposed algorithms achieve a covering
percentage close to 100% (≥ 99%). Regarding the bal-
anced and small sets (RND10B–RND10E), the average
percentage of covering is quite high (≥ 85%), even if a
very high number of starting solutions are generated.

In Tables II–III we report, for each instance and
for each algorithm, the computation time in seconds
(time), the total number of initial solutions generated
(Iter.) and the Pareto front covering percentage (%). Each
row refers to the average results over 10 repetitions.
Observe that in Table III (small and sparse instances)
the number of iterations to attain all the Pareto front
is, in general, small; but there are some remarkable
exceptions where the number of iterations reached is
maximum (i.e., 500,000), while the Pareto coverage is
smaller than 100%. In other words, the algorithms try
without succeeding to cover all the front, generating a
great number of initial solutions. In fact, some points
in the Pareto front may not correspond to a solution
(see for example RND10B.006). Moreover, the Pareto

front calculated as described in Section III-B may even
be unreachable, since theLBMAX value is only lower
bound on the optimal value. In fact some instances (see
for example RND10B.007) have a null Pareto coverage.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper a two objective setup coordination prob-
lem arising in a two stage serial manufacturing system
is addressed. The problem consists in finding a common
sequence of batches to be produced such that the number
of setup paid on each department is minimized. In par-
ticular the case in which all the setups are identical has
been considered. Since the peculiarity of the problem it
is possible to give a geometrical description of the Pareto
front of the search space. Three heuristic algorithms
for the problem have been proposed and they have
been extensively tested on a wide set of instances. The
proposed algorithms are able to cover large portions of
the optimal Pareto front in average, within a reasonable
computation time.

Future research directions may aim to improve the
lower bound procedure and to try to establish a priori
that some points of the Pareto front do not corresponds to
feasible solutions. Such improvements could guarantee
better performance of the algorithms both in terms of
quality and computation time.

From the decision maker point of view it could be
also interesting to find different solutions (i.e. sequences)
corresponding to each Pareto point. In fact, the proposed
approach is only interested in finding only a solution for
each Pareto point.

REFERENCES

[1] Agnetis, A., Detti, P., Meloni, C., Pacciarelli, D., (2001),Setup
coordination between two stages of a supply chain, Annals of
Operations Research, 107, 15–32,

[2] Al–Haboubi, M.H., Selim, S.Z., (1993),A sequencing problem in
the weaving industry, European Journal of Operational Research,
66, 65–71.

[3] Allahverdi, A., Gupta J.N.D., Aldowaisan, T., (1999),A review
of scheduling research involving setup considerations, Omega,
27, 219–239.

[4] Detti, P., Meloni, C., Pranzo, M., (2003),Local Search Algo-
rithms for the Minimum Cardinality Dominating Trail Set of
a Graph, Technical report RT-DIA-84-2003, Dipartimento di
Informatica e Automazione, Università Roma Tre, Roma, Italy.

[5] Detti, P., Meloni, C., Pranzo, M., (2004),Simple bounds for
the minimum cardinality dominating trail set problem, Tech-
nical report RT-DIA-87-2004, Dipartimento di Informatica e
Automazione, Università Roma Tre, Roma, Italy.

[6] Detti, P., Meloni, C., Pranzo, M., (2005),Minimizing and bal-
ancing setups in a serial production system., Technical report
01/05, Dipartimento di Ingegneria dell’Informazione, Università
di Siena, Italy.

[7] Glover, F., Kochenberger, G., (2003),Handbook of Metaheuris-
tics, Kluwer Academic Publishers.

Michele Ciavotta et al. 343

TABLE I

RESULTS

Instance MS SF FF
set time Iter. % time Iter. % time Iter. %

GSET 0.24 229.11 100 12.84 2971.02 99.99 15.03 3814.18 99.99
RND10B 45.39 125266.59 86.67 41.71 103605.94 88.33 40.41 104701.19 88.33
RND10C 11.12 25875.71 95 25.63 51308.02 92.50 19.59 40884.75 93.50
RND10D 1.56 2941.03 100 1.24 2866.12 100 1.74 3730.37 100
RND10E <0.01 10.15 100 <0.01 12.35 100 <0.01 10.42 100
RND30B 14.51 4314 99.85 22.77 5322.02 99.81 21.40 5159.41 99.83
RND30C 0.06 42.75 100 0.10 43.38 100 0.35 169.23 100
RND30D 0.18 131.68 100 0.11 79.35 100 0.09 68.51 100
RND30E 0.38 242.17 100 0.26 177.25 100 0.24 166.06 100
RND60B 3.93 175.13 100 27.90 875.08 99.98 28.14 887.33 99.98
RND60C 17.32 511.68 100 12.56 369.25 100 12.58 373.33 100
RND60D 58.16 1412.07 100 36.68 837.44 100 38.82 906.08 100
RND60E 131.15 2423.39 99.99 95.31 1642.47 100 115.18 2015.77 99.98

TABLE II

GSET

Instance MS SF FF
name time Iter. % time Iter. % time Iter. %

GSET1 0.32 316.80 100 0.06 81.80 100 0.11 157.90 100
GSET2 0.28 290.40 100 0.08 101.20 100 0.01 23 100
GSET3 0.41 422.40 100 0.10 140.50 100 0.03 50.30 100
GSET4 0.20 202.40 100 0.09 111.80 100 0.08 117.80 100
GSET5 0.42 405 100 0.07 78.70 100 0.20 274.10 100
GSET6 0.23 207 100 0.09 108.20 100 0.09 123.50 100
GSET7 0.35 280.60 100 26.16 11347.10 100 64.62 26763.30 100
GSET8 0.11 99 100 0.15 183.60 100 0.13 179.80 100
GSET9 0.41 395.60 100 0.07 81 100 0.06 89 100
GSET10 0.22 216.20 100 0.12 162 100 0.11 145 100
GSET11 0.14 138 100 0.15 200.80 100 0.09 119.80 100
GSET12 0.19 184 100 0.13 168 100 0.15 225.50 100
GSET13 0.71 441.80 100 115.61 22887.40 99.88 174.37 36870.20 99.84
GSET14 0.52 414 100 160.20 33102.40 99.88 74.47 16850.30 100
GSET15 0.24 174.80 100 84.99 18175.80 99.96 82.80 18889.80 99.92
GSET16 0.23 179.40 100 18.50 4432.20 100 81.20 18535.20 100
GSET17 0.08 96 100 1.98 1456.30 100 0.64 469.30 100
GSET18 0.02 30 100 0.03 75 100 0.04 106.40 100
GSET19 0.14 175.50 100 1.35 967.90 100 0.44 324.10 100
GSET20 0.04 75 100 0.02 51 100 0.03 83.40 100
GSET21 0.14 135 100 0.11 131.90 100 0.15 182.60 100
GSET22 0.20 198 100 0.10 123.20 100 0.08 138.80 100
GSET23 0.46 450 100 0.08 96.60 100 0.05 83.10 100
GSET24 0.27 265.50 100 0.07 91 100 0.08 108.80 100
GSET25 0.30 328.50 100 0.12 161.40 100 0.10 132.90 100
GSET26 0.09 99 100 0.09 123 100 0.07 115.50 100
GSET27 0.35 382.50 100 0.05 70 100 0.18 253.50 100
GSET28 0.19 198 100 0.05 59.10 100 0.08 118.20 100
GSET29 0.06 63 100 0.07 92.40 100 0.13 209 100
GSET30 0.05 45 100 0.07 92.40 100 0.09 120.10 100
GSET31 0.17 162 100 0.05 53 100 0.08 104.20 100
GSET32 0.27 261 100 0.06 65.80 100 0.06 89.40 100

AVG 0.24 229.11 100 12.84 2971.02 99.99 15.03 3814.18 99.99

[8] Ehrgott, M., (2000),Multicriteria Optimization, Lecture Notes
in Economics and Mathematical Systems, Springer–Verlag.

[9] Hoos, H.H., Sẗutzle, T., (2004),Stochastic Local Search: Foun-
dations and Applications, Morgan Kaufmann Publishers.

[10] McIntosh, R.I., Culley, S.J., Mileham, A.R., Owen , G.W.,
(2001), Changeover improvement: A maintenance perspective,
International Journal of Production Economics, 73, 153–163.

[11] Potts, C.N., Kovalyov, M.Y., Scheduling with batching: A
review, European Journal of Operational Research.120, 228–
249, 2000.

[12] Rı́os–Mercado, R.Z., Bard, J.F., (1998),Heuristics for the flow
line problem with setup costs, European Journal of Operational

Research, 110, 76-98.

[13] Spina, R., Galantucci, L.M., Dassisti, M., (2003),A hybrid
approach to the single line scheduling problem with multiple
products and sequence-dependent time, Computers & Industrial
Engineering, 45, 573–583.

[14] T’kindt, V., Billaut, J.C., (2002),Multicriteria scheduling: the-
ory, models and algorithms, Springer, Berlin.

[15] Tsujimura, Y., Gen, M., (1999),Parts loading scheduling in a
flexible forging machine using an advanced genetic algorithm,
Journal of Intelligent Manufacturing, 12 (3), 413–420.

[16] Voß, S., Woodruff, D.L., (2003),Introduction to computational
optimization models for production planning in a supply chain,

344 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE III

RND10B

Instance MS SF FF
name time Iter. % time Iter. % time Iter. %

RND10B0 <0.01 2 100 <0.01 2 100 <0.01 6.30 100
RND10B1 0.19 336 100 0.69 1545.20 100 0.16 474.40 100
RND10B2 0.01 41.60 100 0.01 15 100 0.02 55.90 100
RND10B3 <0.01 2 100 <0.01 2 100 <0.01 5 100
RND10B4 <0.01 2 100 <0.01 2 100 <0.01 1 100
RND10B5 <0.01 4 100 <0.01 8 100 <0.01 2 100
RND10B6 170.30 500000 66.67 14.66 68028.40 100 19.83 90517 100
RND10B7 202.46 500000 0 203.74 500000 0 196.64 500000 0
RND10B8 140.95 500000 66.67 184.67 500000 66.67 157.68 500000 66.67
RND10B9 2.39 4139.40 100 0.91 2359.80 100 0.78 2033.50 100

RND10B.010 0.01 2 100 <0.01 2 100 <0.01 1 100
RND10B.011 <0.01 4.80 100 <0.01 4 100 <0.01 9 100
RND10B.012 0.11 232.80 100 <0.01 2 100 0.26 842.30 100
RND10B.013 0.01 2 100 <0.01 7 100 <0.01 2 100
RND10B.014 0.14 528.40 100 0.04 116.80 100 0.03 64 100
RND10B.015 0.01 6 100 <0.01 8 100 <0.01 2.10 100
RND10B.016 191.99 500000 50 203.21 500000 50 198.59 500000 50
RND10B.017 <0.01 16.80 100 0.01 10.50 100 0.01 3.20 100
RND10B.018 199.21 500000 50 226.24 500000 50 234.13 500000 50
RND10B.019 <0.01 2 100 <0.01 2 100 0.04 1 100

AVG 45.39 125266.59 86.67 41.71 103605.94 88.33 40.41 104701.19 88.33

Springer–Verlag, Berlin.
[17] Wolsey, L.A., (1997),MIP modelling of changeovers in pro-

duction planning and scheduling problems, European Journal of
Operational Research, 99, 154–165.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 345

Abstract—Two unifying frameworks (conceptual
structured framework inside of which some voting
methods lie) are proposed and described, and two new
voting methods, one obtained in each framework, are
defined and analysed with respect to the properties of
Monotonicity and Participation.

Keywords—Voting; Monotonicity; Participation

I. INTRODUCTION
oting methods have in general been defined
directly, by means of algorithms, and only

further investigations have allowed to notice some
similarities among apparently distant algorithms.
The point of view from which these similarities are
revealed is an enriching one because it facilitates a
better understanding of algorithms and methods
and their properties.

Some times this point of view is a kind of
conceptual structured framework inside of which
some voting methods lie. This framework, which
will be called Unifying Framework, depends
explicitly on some characteristics or parameters, in
such a way that every particularization of these
parameters leads to a particular voting method.
 Some contributions from this point of view to
the voting and decision literature are
Marcotorchino and Michaud [9], who classify
aggregation procedures based on the minimization
of distances, Barthelemy and Monjardet [2], who
study general relations and distances, and Lerer
and Nitzan [7] and Campbell and Nitzan [4], who
characterize some voting methods by means of
distances between preference profiles.
 It is worth to note that the subject of this paper is
perfectly relevant, in a wide sense, to the
operations research field. Since a voting method is
(apart from the possible strategic aspects, not
studied here) a process of aggregation of
preferences, it is formally analogous to a
multicriteria decision process, where the
preferences of voters correspond to evaluation
criteria. Therefore, there is a close relationship
between the field of social choice and voting and

the field of operations research, not only in the
subfield of preference aggregation but also in that
of preference modelling. In fact, many studies in
the ordinal multicriteria decision literature make
use of the terminology, results and intuitions of the
social choice and voting literature. See Marchant
[8] and Arrow and Raynaud [1] for a study of the
relation between these fields, and see Bouyssou et
al [3], Arrow and Raynaud [1], Pérez [12], Pérez
and Barba-Romero [14] and Pomerol and Barba-
Romero [15] for studies in multicriteria decision
contexts which make use of the voting
methodology and insights.

The aim of this paper is twofold. Firstly, we will
study two such unifying frameworks (the first one
is a generalization, studied in Jimeno [5], of the
idea leading to the well-known Dogdson voting
method, while the second one is an extension of
some distance frameworks, started in Pérez [11]),
and on the other hand we will identify two
relatively new voting methods, one from each
framework, and analyse them from the point of
view of Monotonicity and Participation Properties.
Although we are dealing with voting theory, this
work is also applicable to other aggregation
contexts like ordinal multicriterion decision.

II. TERMINOLOGY AND PRELIMINARIES
Let X = {x1, x2, ..., xn} be a finite set with two or
more candidates. Preferences of any voter are
supposed to take the form of a complete ranking, that
is to say, a linear (strict and complete) order L over
X. We say
L = xyzt... to denote the preference order in which x
is the most preferred candidate, y is the second one,
and so on, and a L b means that a is preferred to y in
L.
 Given the set of candidates X = {x1, x2, ..., xn}, and
any finite set V = {1, 2, ..., m} with one or more
voters, we call a Situation any pair (X,p), where p is
a preference profile over X from V, that is to say, a
m-tuple of orders over X, each one meaning the
preferences of a voter over X.

Two unifying frameworks in voting theory

V

Estefanía García, José Luis Jimeno and Joaquín Pérez
Universidad de Alcalá/Dept. de Fundamentos de Economía e Historia Económica

Plaza de la Victoria 2, 28802 Alcalá de Henares. Madrid. Spain.
Email: estefania.garcia@uah.es , josel.jimeno@uah.es , joaquin.perez@uah.es

346 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

 We call Voting Correspondence (from now on
VC) any function f which maps any situation (X, p)
to a non-empty subset of X, f(X, p). The elements of
f(X, p) are the chosen candidates (the winners) over
X from the preference profile p. Given any two VCs f
and g, we call f a refinement of g when
f(X, p)⊆g(X, p) for every (X, p). A VC which, for any
situation, chooses only one candidate is called
Voting Function.
 We will consider only anonymous VCs. Thus, a
preference profile over X from V can also be
described by specifying how many of the m voters
from V sustain any of the n! linear orders on X.
 Given any X, any two disjoint sets of voters
V1={1, 2, ... ,m1} and V2={m1+1, m1+2 ,..., m1+m2},
and any two preference profiles p1 and p2 over X
from, respectively, V1 and V2, we can merge these
two profiles in order to obtain a new profile over X,
but now originated from V1∪V2. This new profile
will be called p1+p2.

Given any situation (X, p) with n candidates and m
voters, r(x, j) means the number of voters in p for
which x is the j-th preferred candidate (that is to say,
j-1 candidates are preferred to x and n-j candidates
are less preferred than x). The square n×n matrix Rp,
whose entries are r(x, j), will be called the Rank
Matrix for (X, p). Given (X, p) and any two different
candidates x, y from X, p(x, y) means the number of
voters in p which prefer x to y. Because ties are not
allowed in any voter's ballot, p(x, y)+p(y, x)=m. The
square n×n matrix Mp, whose entries are p(x, y), will
be called the Comparison Matrix for (X, p). For
every candidate x, the sum of the off-diagonal row
entries in Mp is called the Borda Score of x.
 Candidate x is said to beat y, denoted by xWpy,
when p(x, y)>p(y, x). If we use ≥ instead of >, we
have the relation x beats or ties y, which is denoted
by xUpy. If x beats any other, then x is called the
Condorcet candidate. A VC f is said to be a
Condorcet correspondence if f(X, p)={x} for every
situation (X, p) in which x is a Condorcet candidate.
 We call Victories Matrix, denoted Vp, to the
square n×n matrix with entries v(x, y) = 1 if
p(x, y)>p(y, x) and 0 in any other case
 For every order L: x1x2...xn of the candidates, the
sums K(L) = ∑i<j p(xi, xj) and S(L) = ∑i<j v(xi, xj) will
be called, respectively, the Kemeny Score of L and
the Slater Score of L.
 Any change in Mp by which a unit is added to the
off-diagonal entry p(x, y) and subtracted from p(y, x),
is called an elementary interchange in Mp. Any
change in (X, p), by which two consecutive

candidates x and y in a voter's order interchange their
position in that voter's order, is called an elementary
interchange in (X, p).
 Given any nonempty set Ω, we call a distance in
Ω to any map d which assigns a nonnegative real
number d(a, b) to any pair (a, b) of elements of Ω,
satisfying:
 1) d(a, b) = 0 if and only if a = b.
 2) d(a, b) = d(b, a) for every a, b ∈ Ω.
 3) d(a, c) ≤ d(a, b) + d(b, c) for every a, b, c ∈ Ω.
Any such a map satisfying 2) and 3) is called a
pseudodistance.
 In the space Rh, the best known family of
distances is the p-norm family, defined as follows
for any real positive p:

dp(x, y) = p
1

p
hh

p
22

p
11)y-x...y-xy-x(+++

where x = (x1, x2, …, xh) and y = (y1, y2, …, yh).
The most frequently used are the 1-norm distance

d1, also called the taxicab or the Manhattan distance
and the 2-norm distance d2, also called the
Euclidean distance. Another distance closely related
to this family is the infinity norm distance d∞, which
is defined as the limit of dp as p goes to infinity. It is
easy to see that:

d∞(x, y) =

1
p ph

i i
i 1

lim x - y
p→∞

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑ = i ii=1,2,...,h

Max x - y

Another interesting distance is the following:

dcd(x, y) = ∑
=

h

1i
ii y-xsgn , that is to say, the number

of components in which x and y differ.
 A natural and easy way of constructing
pseudodistances in Rh, is to apply a distance to a
proper subset of the components of the vectors. For

example, δ(x, y) = p
1

p
22

p
11)y-xy-x(+ is a

pseudodistance in Rh constructed from the distance
dp in R2 applied to the first and second components
of the vectors x and y.

Some well-known correspondences and some
monotonicity and participation properties

Let us define the following correspondences
identifying, for every situation (X, p), the set of
winning candidates.

Definition 1:
a) Plurality correspondence (fPLU).

Estefanía García et al. 347

fPLU (X, p) ≡ {x∈X: r(x, 1) ≥ r(y, 1) for every y∈ X
}
b) Borda correspondence (fBORDA).
fBORDA (X, p) ≡ {x∈X: ∑j = 1…n (n-j-1)r(x, j) ≥
∑j = 1…n (n-j-1)r(y, j) for every y∈ X}
 Or, equivalently,
fBORDA (X, p) ≡ {x∈X: x has a maximal Borda score}
c) Kemeny correspondence (fKEM).
fKEM (X, p) ≡ {x∈X: x is at the top of an order L with
maximal Kemeny Score}
d) Simpson-Cramer Minmax correspondence
(fMINMAX).
fMINMAX(X, p)≡{x∈X: The minimal off-diagonal term
of row x in Mp is maximal}
e) Dogdson correspondence (fDOG).
fDOG (X, p) ≡ {x∈X: The number of elementary
interchanges in (X, p) needed by x to become a
Condorcet candidate is minimal}

Definition 2: A VC f satisfies the Monotonicity
property if for any given pair of situations (X, p) and
(X, p’x), where p’x is a profile obtained from p by just
making an elementary interchange favourable to x, If
x∈f(X, p), then x∈f(X, p’x).

We say f satisfies Strict Monotonicity when If
x∈f(X, p), then f(X, p’x) = {x}.

We say f satisfies Semi-Strict Monotonicity when
it satisfies Monotonicity and also satisfies that

If z∉f(X, p), then z∉f(X, p’x).
In other words, Monotonicity requires that if a
chosen candidate x is favoured by an elementary
interchange, x will remain chosen. Strict
Monotonicity also requires x will be the only chosen,
while Semi-Strict Monotonicity also requires that no
candidate not chosen before will be chosen now.

Definition 3: A Voting Function f satisfies the
Participation property if for any given pair of
situations (X, p) and (X, v), where profile v has only
one voter, (f(X, p) = {x} and x is preferred to y in v)
implies f(X, p+v) ≠ {y}.
In words, if x is the winner for a situation and a new
voter who prefers x to y is added, candidate y will not
become the winner. Thus, the new voter could not do
better abstaining. Moulin [10] shows that no
Condorcet voting function satisfies Participation.
 The following properties are adaptations of this
property to the voting correspondences framework.

Definition 4: A VC f satisfies the Optimist
Participation property if for any given pair of
situations (X, p) and (X, v), where profile v has only

one voter, If x∈f(X, p), then (x∈f(X, p+v) or there
exists a candidate z preferred to x in v such that
z∈f(X, p+v)).

We say f satisfies Strict Optimist Participation
when it satisfies Optimist Participation and also
satisfies that If x∈f(X, p), then there is no y less
preferred than x in v such that y∈f(X, p+v).

We say f satisfies Semi-Strict Optimist
Participation when it satisfies Optimist Participation
and also satisfies that If x∈f(X, p), then there is no y
less preferred than x in v such that y∈f(X, p+v),
unless x∈f(X, p+v),.
In other words, Optimist Participation requires that if
candidate x is chosen, x or another candidate z
preferred by v to x, will be chosen when a new voter
v is added. Strict Optimist Participation also requires
that no y less preferred than x will be chosen, while
Semi-Strict Optimist Participation also requires that
no candidate less preferred than x not chosen before
will be chosen now.
 Jimeno et al [6] shows that no Condorcet voting
function satisfies Optimist Participation.

Definition 5: A VC f satisfies the Positive
Participation or Positive Involvement (PI) property
if for any given pair of situations (X, p) and (X, v),
where profile v has only one voter, If x∈f(X, p) and x
is preferred to any y in v, then x∈f(X, p+v).

We say f satisfies Strict Positive Involvement
(SPI) when If x∈f(X, p) and x is preferred to any y in
v, then f(X, p+v)={x}.

We say f satisfies Semi-Strict Positive
Involvement (S-SPI) when If x∈f(X, p) and x is
preferred to any y in v, then x∈f(X, p+v) and f(X,
p+v)⊆f(X, p).

In other words, Positive Involvement requires that if
candidate x is chosen, x will remain chosen when a
new voter is added whose favourite is x. Strict
Positive Involvement also requires that x will be the
only chosen, while Semi-Strict Positive Involvement
also requires that no candidate not chosen before will
be chosen now.
 Pérez [13] shows that almost no Condorcet voting
function satisfies Positive Participation. Cramer-
Simpson Minmax is an exception.

Failing to satisfy any of the above Participation
properties means that a No Show paradox sets in.

Definition 6: A VC f satisfies the Consistency
property if for any two situations (X, p1) and (X,

348 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

p2), f(X, p1)∩f(X, p2)≠∅ implies f(X, p1+p2) =
f(X, p1)∩f(X, p2).
In other words, if some candidates are chosen for
profile p1 and profile p2, they, and only they, are
chosen when the two profiles are merged.

This property, sometimes called Young’s
Consistency, is used in Young [16] in order to make
a characterization of the Borda rule where the
Consistency property plays a fundamental role.

The positional voting correspondences, whose
best known examples are the Plurality rule and
the Borda rule are known to satisfy this property.

III. UNIFYING FRAMEWORKS
The following two frameworks, although not
completely new, have been less studied than others.

A. A first unifying framework
On an informal way, it seems reasonable to

define a voting method by means of the
conjunction of the following elements:

i) A Perfection Criterion whose fulfilment
determines the set of winners, that is derived from
a binary relation or comparison on the set of
candidates of each situation (X, p).

ii) An Improvement Criterion or a unit of
measurement on (X, p) that allows, in absence of
candidates who fulfil the perfection criterion, to
determine the set of winners, as the ones that are
nearest to the fulfilment of the perfection criterion,
according to the established improvement
criterion.

This way, we can define voting methods on an
analogous way to as some Condorcet methods are
defined. In order to clarify the idea we consider
some Condorcet methods. In them, the binary
relation of strict majority allows to define as
perfection criterion the Condorcet principle
(according to which whenever a Condorcet
candidate exists this candidate is the only winner).
Nevertheless, if this candidate does not exist in a
situation (X, p) each method establishes its own
rules. Thus, for example, the Dogson method
considers elementary interchanges in voters
preferences and takes as winner that candidate who
requires less elementary interchanges to become
Condorcet, since that candidate is, according to
this criterion, closest to perfection. On the other
hand, the Young method considers as winner that
candidate who requires eliminating fewest voters
to become Condorcet.

Although we have used some Condorcet
methods to exemplify the idea, in fact it is valid for

other voting methods, depending on the binary
relation and perfection criterion we use, and on the
way we define the improvement criterion that
allows measuring the distances to the supposedly
perfect candidates for each criterion.

Therefore, in a certain way, we are talking about
the application of what in the multicriterion
context means to minimize the distance to the
ideal, considering that the ideal is defined by a
perfection criterion and the distance is measured
using an improvement criterion.

1) Binary relations and Perfection Criterion

Let us consider a situation (X, p) with X = {x1,
x2, ..., xn}and m voters. Call R an irreflexive and
asymmetric relation, not necessarily transitive,
between candidates that we will interpret on the
following way: "If xRy, candidate x has more
merits than y to become winner in (X, p), when we
restricted X to the set {x, y}”. An Example of this
kind of binary relation already constitutes the
relation defined of strict majority.

Given a relation R, we can define the concepts
of R-Perfect candidate and R-Perfection criterion:

Definition 7 (R-Perfect Candidate). Given a
situation (X, p) and a relation R, we say that a
candidate x is R-Perfect in (X, p) if xRy for every
y∈X \{x}.
In words, any candidate is R-perfect if it
overcomes in relation R to all the other candidates.
If we consider, for example, the strict majority
relation, we will say that x is R-Perfect if x is a
Condorcet candidate.

Thus, in the same way that the majority relation
allows us to define the Condorcet criterion like the
angular stone of a family of voting methods, each
possible relation R allows us to define a R-
Perfection criterion that will be used as a base for
the definition of different families of voting
methods:

Definition 8 (Respecting the R-Perfection).
Given a relation R, we say that a voting method f
respects the R-perfection if in all situations (X, p)
in which a R-perfect candidate exists, that
candidate is the only one chosen.

The asymmetry of R guarantees that if in a given
situation (X, p) exists a R-perfect candidate, this
candidate is unique.

It is worth to note that if the relation R is
transitive we can say that, by definition, a method

Estefanía García et al. 349

f respects the R-relation if in all situations in which
xRy, the candidate y is not chosen. In that case, it is
clear that if f respects the R-relation then f also
respects the R-perfection. If, on the contrary, R is
not transitive, in such a way that it
presents/displays cycles, the property "f respects
the R-relation" is not well defined, because in all
situation (X, p) in which x1Rx2R ... RxnRx1, there
would be no winner at all.

Definition 9 (Respect to R-Relation). Given an
irreflexive, asymmetric and transitive relation R,
we say that method f respects R if and only if, for
all situation (X, p) in which xRy, candidate y is not
chosen.

Although we can define a lot of perfection
criteria based on different binary relationship, we
focus on the domination relations, the stronger of
which is the Pareto domination.

2) Perfection Criteria based on Domination
Relations.

The domination relations we define next take
their base in the candidate comparison two by two
and therefore in the majority relation.

Pareto Domination Relation.
Definition 10 (Pareto Domination Relation, RP).
We say that R determines a domination relation in
the sense of Pareto, denoted by RP, if given any
situation (X, p) and given any pair of candidates x,
y∈X, “x RP y if and only if p(x, y) = m”, that is to
say, x dominates y in the sense of Pareto (all voter
prefers x to y).

This way, a candidate is RP-Perfect if he is the
unique Pareto optimum. This means that a voting
procedure f respects RP-Perfection if, whenever a
unique Pareto optimum exists, f selects it as the
only winner.

Two generalizations of the concept of Pareto
domination can be expressed in the following way:

C2-Domination Relation.
Definition 11 (C2-Domination Relation, RC2).
We will say that R determines a C2-Domination
Relation, and we will denote it by RC2, if given any
situation (X, p) and any pair of candidates x, y∈X,
“x RC2 y if and only if {p(x, y) > p(y, x) and p(x, z)
≥ p(y, z), ∀z∈X\{x, y}}”, that is to say, x
dominates y in C2 sense.

This relation determines that a candidate is RC2-
Perfect when he dominates in C2 sense to all the

others. In this sense, a voting procedure f respects
RC2-Perfection if it selects the C2-dominant
candidate as the only winner whenever it exists.

C1-Domination Relation.
Definition 12 (C1-Domination Relation, RC1).
We will say that R determines a domination
relation in C1 sense, and we will denote it by RC1

if, given any situation (X, p) and any pair of
candidates x, y∈X, “x RC1 y if and only if {p(x, y) >
p(y, x) and, in addition, ∀z∈X\{x, y}, if p(y, z) ≥
p(z, y) then p(x, z) >
p(z, x)}”, that is to say, x dominates y in the C1
sense.

This relation determines that a candidate is RC1-
Perfect when he dominates in C1 sense all the
others. In this sense, a voting procedure f respects
RC1-Perfection, if it selects the C1-dominant
candidate as the only winner whenever it exists.

By the definition of RC1, a RC1-Perfect candidate
is a Condorcet candidate, and therefore, all voting
procedures f that respects RC1-Perfection are in fact
Condorcet procedures, thus choosing the
Condorcet candidate in all situation in which it
exists.

Proposition 1.
Let f be a voting correspondence:

a) If f respects RC1-Perfection, then f respects
RC2-Perfection.

b) If f respects RC2-Perfection, then f respects RP-
Perfection.
Proof:

a) If f does not respect RC2-Perfection, then there
exists a situation (X, p) with m voters, in which a
RC2-Perfect candidate x exists so that {x}≠f(X, p).
This means that a RC1-Perfect candidate exists, the
same x, which is not the only winner. Thus, f does
not respect RC1-Perfection.
b) If f does not respect RP-Perfection, then there
exists a situation (X, p) with m voters, in which a
RP-Perfect candidate x exists so that {x}≠f(X, p).
This means that a RC2-Perfect candidate exists, the
same x, which is not the only winner. Thus, f does
not respect RC2-Perfection. ￭

On the other hand, in the case of the domination
relations RP, RC1, and RC2, if f respects the R-
relation, then f respects R-Perfection, because they
are transitive relations.

Another class of generalizations of the Pareto
Domination Relation appears if we relax the idea

350 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

of Pareto dominant candidate by a relation based
on the number of first positions in the preference
profile. A candidate is Pareto dominant if he is in
the first position in the preference of all voters.
Thus a relaxation of Pareto dominant candidate is a
q-majority of first positions candidate, so that he is
favourite for more than qm voters, where q∈[1/2,
1). In the following we only consider the case q =
1/2.

First Positions Majority Perfection
This perfection criterion requires the use of the
rank matrix to be expressed:
Definition 13 (First Positions Majority
Perfection Criterion, RFPM). We will say that a
candidate x∈X satisfies First Positions Majority
Perfection Criterion (RFPM) in a situation (X, p) if
and only if r(x, 1)>n/2.

This criterion determines that a candidate will be
RFPM-Perfect whenever he appears as the first one
in a strict absolute majority of voter preferences. In
this sense, a voting procedure f respects RFPM-
Perfection if it selects such a candidate as the only
winner whenever it exists.

3) Improvement Criteria and Actions.

The search of social election correspondences
based on comparison relations requires, not only to
establish a binary relation with a perfection
criterion, but also to determine what candidate or
candidates will be chosen as winners when such
criterion is not fulfilled. In our framework, this
means to define an improvement criterion or action
that allows to select the candidates based on its
proximity in terms of this established criterion to
the R-perfect candidate. Thus the winner
minimizes the distance to the R-perfect candidate
in the sense that, with the minimum of
improvement actions, becomes perfect.

Let R be a comparison relation or criterion and I
be a type of improvement action. We define a
voting method f (I, R) in the following way:

Definition 14 (f(I, R)-Winner Candidate). Given
the situation (X, p) we say that candidate x is a (I,
R)-Winner Candidate, or x∈f(I, R)(X, p), if x is the
candidate who needs less improvement actions to
become a R-Perfect one.

Intuitively speaking, this definition determines
that, given a Perfection Criterion and one distance
or improvement action, we can define a voting
correspondence that selects the R-perfect candidate

as the only winner, when such a candidate exists.
If there is no such a candidate, it selects as winner
all candidates who minimize his distance to
perfection, that is to say, who require the minimal
number of improvement actions to become R-
perfect.

We have already established the perfection
criteria, on reasonable bases of the social election.
What distances or improvement actions seem
reasonable to define in consonance with these
criteria?

Between the multiple improvement criteria that
can be selected, we want to emphasize those that
find their motivation in participation and
monotonicity properties, from the variation of the
elements that determine a situation (X, p).

This implies that the improvement criteria that
we are considering take into account three basic
variations:

a) Modifications in the Voters Preferences. As
we will see later, we can define an elementary
modification in the preference profile and count
for every candidate x how many elementary
modifications we need to convert x in a perfect
candidate, and select as a winner those candidate
that require a minimal number of modifications.

b) Variations in the set of voters. Another
improvement criterion that on a natural way allows
transforming a situation (X, p) with the purpose of
obtaining the fulfilment of a perfection criterion is
the introduction of new voters (or the elimination
of some of them). In this sense, we can count for
every candidate x how many voters (with a specific
preferences) we need to add (or delete) to convert
x in a perfect candidate, and select as a winner
those candidates that require adding (or deleting) a
minimal number of voters.

c) Variations in the set of candidates. Finally we
can consider another improvement criterion
consistent on the introduction of new candidates
dominated on some way, in relation to a particular
candidate, or in the elimination of some of them,
and then we can determine, like in the variation of
the set of voters, the winner candidates.

The improvement criteria based on variations of
the set of voters or candidates have some
limitations. They are not applicable to all the
perfection criteria defined.

In the following and for simplicity we only
concentrate in the first case.

Voters Preferences Modifications.

Estefanía García et al. 351

A first criterion or improvement action is one that,
on a neutral and anonymous way, considers the
minimum improvement that can be done to a
candidate in a preferences profile. That is to say,
what have been called above elementary
interchange, and that in this context we can define
in the following way:

Definition 15 (Direct Elementary Interchange).
Given a situation (X, p) and a candidate x, we call
direct elementary interchange in favour of
candidate x in the preferences profile p to any
improvement in the preferences consisting on
interchanging the candidate x position with the one
of the immediately preceding candidate in voter
preferences of any i∈V.

Thus, given a Perfection Criterion, if we take as
Improvement Criterion to favour the candidates in
the voters preferences, we can select as winners
all those candidates who require a minimum
number of direct elementary interchanges (that is
to say, to its favour) to become R-Perfects
according to the given perfection criterion.

Definition 16 (Direct Elementary Interchange
Criterion, IDEI). Given a situation (X, p) and a R-
Perfection criterion:

a) We denote by i(R, x) the minimum number of
direct elementary interchanges that allow
candidate x to reach the Perfection Criterion based
on relation R.

b) We define the voting correspondence f(I, R)
where I = IDEI as follows:

f (I, R) (X, p) = {x∈X: i(R, x) ≤ i(R, y), ∀y∈X}.

This definition only considers direct elementary

interchanges, that is to say, the measurement used
for each candidate consider only the interchanges
in which this candidate improves his position in
voters preferences and does not consider
interchanges that, affecting only other candidates,
could help a candidate to reach a perfection
criterion.

From this improvement criterion and the

perfection criteria that we have defined, we can
generate some well-known voting methods.

Thus, the combination of the IDEI improvement
criterion with the respect to the RP-Perfection
define the following voting correspondence:

f (IDEI, RP)(X, p) = {x∈X: i(RP, x) ≤ i(RP, y),
∀y∈X}.

that selects as the only winner any candidate who
Pareto-dominates to all the others, whenever it
exists, and if none exists, the candidate who
requires the smaller number of direct elementary
interchanges to become Pareto dominant. And this
voting correspondence is the Borda method as
shown in the following proposition:

Proposition 2
The voting correspondence f(I, R), where R is the RP-
Perfection criterion and I is the IDEI, improvement
criterion, is the Borda method.
Proof:
Let f(M, R) = f (IDEI, RP) and (X, p) a situation with m
voters, where candidate RP-Perfect does not exist.
Method f (IDEI, RP) selects as winner any candidate x
who becomes RP-Perfect in the (X, p') situation,
where profile p' has been obtained from p by
making i(RP, x) direct elementary interchanges
(improvements in candidate x position) so that
i(RP, x) ≤ i(RP, y) ∀y∈X.

We can relate the whole value of i(RP, x) ≥ 0
(null when candidate x Pareto dominates the
others), with the components of the x row in the
Positions Matrix on the following way: i(RP, x)

=
1

(,)·(1)
n

j

r x j j
=

−∑ .

Therefore, f(IDEI, RP) = {x∈X:
1

(,)·(1)
n

j

r x j j
=

−∑ ≤

1
(,)·(1)

n

j
r y j j

=

−∑ ,∀y∈X},

but {x∈X: x∈arg minx∈X
1

(,)·(1)
n

j
r x j j

=

−∑ } =

{x∈X: x∈arg maxx∈X
1

(-) (,)
n

j

n j r x j
=
∑ } =

{x∈X: x∈arg maxx∈X RBORDA(x)}. So that this
method selects as winner any candidate who
maximizes the Borda count. Therefore, f (IDEI, RP))
corresponds with the Borda method. ￭

In the same way, the combination of the IDEI
improvement criterion with the RC1-Perfection
defines the following voting correspondence:

f(IDEI, RC1)(X, p) = {x∈X: i(RC1, x) ≤ i(RC1, y),
∀y∈X}
that is the Dogson method, if we take into account
that a RC1-Perfect candidate is a Condorcet
candidate.

352 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

 Nevertheless, the combination of the IDEI
improvement criterion with the respect to the RC2-
Perfection or RFPM-Perfection criteria allows
defining two new voting correspondences. In the
following section we analyze the voting method
that appears with the RFPM-Perfection criterion,
which will be called Dogdson-like Majoritarian
(DM):
 f(IDEI, RFPM)(X, p) = {x∈X: i(RFPM,, x) ≤ i(RFPM, y),
∀y∈X}.

This voting correspondence selects as a winner
the candidate that appears as the favourite for more
than the half of voters, whenever exists such
candidate, and in other case the candidates
requiring a minimal number of elementary
interchanges in the voter’s preferences to become
the favourite for at least a half of voters.

In the same form, we can combine the perfection
criteria defined with other improvement criteria
that we can define varying the candidate or voter’s
set. A well-known positional method, Plurality
method, can be obtained if we use the Pareto
Domination as the Perfection criterion and a
specific improvement criterion based on deleting a
minimal number of voters. In other way, if we use
the RC1-Perfection criterion combined with this
improvement criterion based on the elimination of
a minimum number of voters, we get the Young
method. And if the RC1-Perfection criterion is
implemented with the introduction of new voters
(in a specific form and with a restricted
preferences) as the improvement criterion, we
obtain the Minmax method. For more details, see
Jimeno [5].

B. A second unifying framework
This framework will not require the full
preferences profile, but just a summary matrix of
the situation, like the comparison matrix or the
victories matrix.
 Given a set of candidates X = {x1, x2 , …, xn}and
a situation (X, p), let Mp be its comparison matrix,
whose entries are p(xi, xj). The reference here will be
the comparison matrices of the unanimous profiles
in which all m voters have the same preferences
order. For an order O = x1x2… xn., the corresponding
comparison matrix will be denoted MU(O), and their
entries are

 if

(,) =
0 if O i j

m i j
p x x

j i
<⎧

⎨ <⎩

In other words, if we order the rows and columns of
MU(O) according to O, every entry above the diagonal

is m and every entry below the diagonal is 0 (we can
say that every diagonal entry is 0 by convention).
 We will construct voting correspondences by
mean of distances or, more generally,
pseudodistances between comparison matrices, in the
following way:
 Let d be a pseudodistance function defined
for every two comparison matrices whose rows
and columns are ordered according to the same
linear order of candidates. Then, we define fd(X,
p) = {x∈X : there exists an order O = x1x2… xn
with x= x1 such that d(Mp, MU(O)) ≤ d(Mp, MU(O’))
for every order O’}.
That is to say, the correspondence fd declares as
a winner of a given situation (X, p) to every
candidate who is at the top of some order O
such that the distance d(Mp, MU(O)) is minimal.

 Therefore, every pseudodistance that can be
defined between n×n matrices produces a voting
correspondence which, in some way, transports to
the voting problem the specificities of the
pseudodistance formula. The use of a distance will
be required to produce voting methods whose
primary output is a ranking of candidates, while
the use of a a pseudodistance will be enough to
produce voting methods whose primary output is a
set of winning candidates

 The main particular cases of voting
correspondences obtained in this way are the
Kemeny and Borda correspondences, both
produced using the 1-norme distance.

Kemeny is the correspondence fd when d
is the 1-norm distance d(Mp, MU(O)) =

1 1

(,) - (,)
n n

i j O i j
i j

p x x p x x
= =
∑∑ , where both matrices

are ordered according to O = x1x2…xn. Indeed, since

1 1
(,) - (,)

n n

i j O i j
i j

p x x p x x
= =
∑∑ = 2 (,))i j

i j
(m - p x x

>
∑ =

2)
i j

(m - K(O)
>
∑ , d(Mp, MU(O)) is minimal when the

Kemeny score of order O, K(O), is maximal.
Borda is the correspondence fd when d is the

pseudodistance defined (from the 1-norm distance)

as d(Mp, MU(O)) = 1 1
1

(,) - (,)
n

j O j
j

p x x p x x
=
∑ , where

both matrices are ordered according to O. Since

1 1
1

(,) - (,)
n

j O j
j

p x x p x x
=
∑ = 1

1
(- (,))

n

j
j

m p x x
=
∑ =

Estefanía García et al. 353

1
1

(,)
n

j
j

nm p x x
=

−∑ , d(Mp, MU(O)) is minimal when

the Borda score of x1, the first candidate in O, is
maximal.

If in these two cases, we replace the comparison
matrix Mp with the victories matrix Vp, we will
obtain, respectively, the Slater and Copeland
correspondences.

Another well-known voting correspondence
obtained in this way is the Simpson-Cramer
Minmax correspondence. It is the correspondence
fd when d is the pseudodistance defined (from the
∞-norm distance) as d(Mp, MU(O)) =

1 11,2,...,
(,) - (,)j O jj n

Max p x x p x x
=

, where both matrices

are ordered according to O. Indeed, since

1 11,2,...,
(,) - (,)j O jj n

Max p x x p x x
=

=

11,2,...,
(- (,))jj n

Max m p x x
=

 = 11,2,...,
(,)jj n

m Min p x x
=

− ,

d(Mp, MU(O)) is minimal when the minimal entry in
the row of x1, the first candidate in O, is maximal.

 It is worth to explore the consequences of
choosing other distances or pseudodistances,
analysing the correspondences so produced. If we
use distances applying to every entry of the
matrices (and thus to every component of Rnxn),
we will get Kemeny-like correspondences, while if
we use pseudodistances applying only to the first
row of the matrices (and thus to just the first n
components of Rnxn), we will get Borda-like or
Minmax-like correspondences.

 In this paper we will explore a correspondence
in an intermediate position between Borda and
Minmax. It is fd(ρ) when d(ρ) is the pseudodistance
defined, from the ρ-norm distance, as

d(ρ)(Mp, MU(O)) =

1
ρρ

1 1
1

(,) - (,)
n

j O j
j

p x x p x x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

where both matrices are ordered according to O =
x1x2… xn, and being nm << ρ <∞ (thus, ρ is a big
positive number as compared to nm).
 The following proposition give us an equivalent
definition of fd(ρ), which has a much simpler and
easy to use expression.

Proposition 3
Given a situation (X, p), with X = {x1, x2 , …, xn}
and comparison matrix Mp. For every xj, let q(xj) =
(qj1, qj2, … , qjn-1) be the vector formed by the

nondiagonal row entries p(xj, xr) of xj ordered in a
nondecreasing way. Then, candidate xi is a winner
of fd(ρ)(X, p) if and only if for every other candidate
xk, q(xi) ≥LEX q(xk) (that is to say, qi1 > qk1 or (qi1 = qk1
and qi2 > qk2) or (qi1 = qk1 and qi2 = qk2 and qi3 > qk3)
or …).
Proof:
Let us first prove the following intermediate result:
 Given two vectors a = (a1, a2, …, an-1) and a’ =
(a’1, a’2, …, a’n-1), with positive integer entries
nonincreasingly ordered and bounded from above by
m (m ≥ ai ≥ ai+1 and m ≥ a’i ≥ a’i+1 ∀i=1,…,n-2), and
being ρ a high enough positive number, ║a║ρ = (a1

ρ
+ a2

ρ +…+ an-1
ρ)1/ρ ≥ ║a’║ρ = (a’1

ρ + a’2
ρ +…+ a’n-

1
ρ)1/ρ if and only if a ≥LEX a’.

 To prove this result, let us compute

p p
lim (-)
p→∞

b b' for the extreme particular case in

which b = (b1, 0, …, 0) and b’ = (b1-r, b1-r, …, b1-r)
where r≥1.

p p
Lim(-)
p→∞

b b' =
1 1

p pp p
1 1lim ((b) -((n-1)(b -r)))

p→∞
 =

1
p

1 1lim ((b)-(n-1) (b -r))
p→∞

 =
1
p

1 1b (b -r) lim (n-1)
p→∞

− =

1 1b (b -r)− = r ≥ 1.
 Now consider the general case for a, a’ in which
a’1 = a1–r.

p p
Lim(-)
p→∞

a a' ≥
p p

lim (-)
p→∞

b a' ≥

p p
lim (-)
p→∞

b b' ≥ 1. Therefore, there is a real

number αn, depending on n, such that for every ρ≥
αn, ║a║ρ > ║a’║ρ. This argument is also valid for
the the general case for a, a’ in which a’1 = a1, …,
a’h= ah, and a’h+1 = ah+1- r, where 1 < h ≤ n-1.
 In order to prove now proposition 3, let ρ be a
positive number such that ρ≥ αn, and let us
compare d(ρ)(Mp, MU(Oi)) where xi is at the top of
the order Oi with d(ρ)(Mp, MU(Ok)) where xk is at the
top of the order Ok.

 d(ρ)(Mp, MU(Oi)) =

1
ρρ

1
(,) - (,)

n

i j Oi i j
j

p x x p x x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

=

1
ρ

ρ

1,
(- (,))

n

i j
j j i

m p x x
= ≠

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

 d(ρ)(Mp, MU(Ok)) =

1
ρρ

1
(,) - (,)

n

k j Ok k j
j

p x x p x x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

=

1
ρ

ρ

1,
(- (,))

n

k j
j j k

m p x x
= ≠

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ .

354 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

 Let us call Di = (Di1, Di2, …, Din-1) and Dk = (Dk1,
Dk2, … , Dkn-1) the vectors ()

1,2,..., ,
 - (,)i j j n j i

m p x x
= ≠

and ()
1,2,..., ,

 - (,)k j j n j k
m p x x

= ≠
, after permuting

their entries in such a way that they are
nonincreasingly ordered. Since d(ρ)(Mp, MU(Oi)) =
║Di║ρ and d(ρ)(Mp, MU(Ok)) = ║Dk║ρ, by the
intermediate result just proved, d(ρ)(Mp, MU(Oi)) >
d(ρ)(Mp, MU(Ok)) if and only if Di ≥LEX Dk, which,
since Max {m – sh}h∈H = m - Min {sh}h∈H, is
equivalent to say q(xi) ≥LEX q(xk).￭
 Observe that we have obtained a correspondence
which is the more natural refinement of Minmax, so
we will call it the Natural Lexicografic Refinement
of Minmax, abbreviated NLRM.

IV. ANALYSIS OF TWO VOTING
CORRESPONDENCES

A. Dogdson-like Majoritarian (DM)
In the previous section we have defined this new

voting correspondence as a voting method that
selects as a winner the candidate who needs a
smaller number of elementary interchanges to
become perfect.

The following proposition proves that the DM
correspondence satisfies Semi-strict Monotonicity
(although not Strict Monotonicity), but not
Positive Involvement and Young´s Consistence
properties, nor Condorcet Criterion.

Proposition 4
The voting correspondence DM:

a) Satisfies Semi-Strict, but not Strict,
Monotonicity.

b) Fails to satisfy Positive Involvement.
c) Fails to satisfy the Condorcet Criterion.
d) Fails to correspond with a positional

method, because fails to satisfy Young’s
Consistency property.

Proof:
a) Let f(I, R)= f (IIED, RFPM)., and (X, p) a situation in
which does not exist a RFPM-perfect candidate. The
correspondence chooses as winners those
candidates who become perfects in the situation
(X, p´), where p´ has been obtained from profile p
when making i(RFPM, X) direct elementary
interchanges, so that i(RFPM, x) ≤ i(RFPM, y), ∀y∈X.

Because, i(RFPM, x) = min y∈X i(RFPM, y), ∀y∈X, if
we improve the candidate x position by means of
an elementary interchange, then if we denote by
i´(RFPM, x) the number of elementary interchanges
needed to convert x in a RFPM-Perfect candidate in
the new situation, i´(RFPM, x) ≤ i(RFPM, x) and on
the other hand, i’(RFPM, y) ≥ i(RFPM, y) ∀y∈X/x.
Therefore, i´(RFPM, x) ≤ min y∈X i(RFPM, y), ∀y∈X ≤
i(RFPM, y) ∀y∈X/x ≤ i`(RFPM, y) ∀y∈X/x, with
which x continues being chosen when improving
their position in the new profile, so that f(IIED, RFMP)
satisfies the Monotonicity property.

Additionally, if a candidate z is not a winner in
the situation (X, p) then i(RFPM, z) > i(RFPM, x) =
min y∈X i(RFPM, y), ∀y∈X, and when we improve
the candidate x position by means of an elementary
interchange, we obtain that i’(RFPM, z) ≥ i(RFPM, z)
> i(RFPM, x) ≥ i’(RFPM, x). This implies that if
z∉f(IIED, RFMP) then z∉f(X, p’x), so that f(IIED, RFMP)
satisfies the Semi-Strict Monotonicity property.

It fails to satisfy strict monotonicity because in
the situation described in (c) the DM winners are
x1 and x3 (both of them need only one elementary
interchange to become RFPM) and improving x1 in
the last winner does not lead to the election of x1 as
the only winner, because x1 and x3 remain as
winners (both of them need again only one
elementary interchange to become RFPM)

b) Let X ={x1, x2 , x3 , x4, x5 , x6, x7}, m = 4 and p
the following profile [x2x7x1x4x3x5x6 (1 voter),
x2x1x4x3x5x6x7 (1 voter),x7x5x1x4x3x6x2 (1 voter) and
x6x3x5x4x1x7x2 (1 voter)].

The winner of DM method is x1, because he only
needs 5 elementary interchanges and x2 y x7 need 6
elementary interchanges. But if in the preference
profile p we add a new voter with preferences v:
x1x2x6x3x4x7x5, the new winner is x2 (only needs 1
elementary interchange in the new voter
preferences, and the winner in the profile p,
candidate x1, needs 3 elementary interchanges in
the profile p+v). DM method fails to satisfy
Positive Involvement.

c) Let X = {x1, x2, x3, x4}, m = 5 and p the
following profile [x3x1x2x4 (1 voter), x1x2x3x4 (1
voter), x1x3x4x2 (1 voter), x4x3x2x1 (1 voter) and
x3x2x4x1 (1 voter)].

The Comparison and Rank Matrices are:

TABLE I
COMPARISON MATRIX

 x1 x2 x3 x4

Estefanía García et al. 355

x1 3 2 3
x2 2 1 3
x3 3 4 4
x4 2 2 1

TABLE II

RANK MATRIX
 1º 2º 3º 4º

x1 2 1 0 2
x2 0 2 2 1
x3 2 2 1 0
x4 1 0 2 2

The x3 candidate is the Condorcet winner, and

nevertheless the DM winners are x1 and x3, both of
them need only one elementary interchange to
become RFPM-Perfects candidates.

So, we have demonstrated that this
correspondence fails to fulfil the Condorcet
Criterion.

d) Let X = {x1, x2, x3, x4}, m = 4 and p the
following profile [x3x2x1x4 (1 voter), x1x2x3x4 (1
voter), x1x2x4x3 (1 voter),x3x2x4x1 (1 voter)]

The winning candidates are x1 and x3, both of
then need an only elementary interchange to get a
first positions majority.

Let us add to the previous profile new m’ = 4
voters with the following profile p´: [x3x2x1x4 (1
voter), x1x2x4x3 (2 voters), x3x2x4x1 (1 voter)].

In this new profile x1 is the one and only winner
because it is the candidate who needs the minimum
number of elementary interchanges (two) to
become winner.

If we add the two profiles in p’’= p + p’, the
winners are {x1, x3}, so we demonstrate that the
External Consistency property is failed to fulfil,
and so DM is not a positional voting
correspondence. ￭

B. Natural Lexicographic Refinement of Minmax
(NLRM).
As we will prove in Proposition 5, the NLRM
correspondence satisfies the Condorcet Criterion and
also all Monotonicity and Positive Involvement
properties, but not the Optimist Participation
properties.

Proposition 5
The voting correspondence NLRM:

a) Satisfies Strict Monotonicity.
b) Satisfies Strict Positive Involvement.

c) Satisfies the Condorcet Criterion.
d) Fails to satisfy Optimist Participation.

Proof:
a) Let x be a winner for the situation (X, p). This

means that, for every other candidate y, q(x, p) ≥LEX
q(y, p), where q(z, p) is the vector formed by the
nondiagonal row entries of z in a nondecreasing
order. If we make an elementary interchange
favourable to x, in the new situation (X, p’x) the
vector q(x, p’x) is the result of adding 1 to a
component of q(x, p). It is obvious that x will be the
only winner for the new situation (X, p’x).

b) Let x be a winner for (X, p), so q(x, p) ≥LEX q(y,
p) for every other candidate y. If we add a new
voter v for whom x is the favourite, in the new
situation
(X, p+v) the vector q(x, p+v) is the result of adding 1
to every component of q(x, p). It is obvious that x
will be the only winner for the new situation (X,
p+v).

c) When there is a Condorcet winner, Minmax
chooses only this candidate, and, since NLRM is a
refinement of Minmax, it has also to choose only this
candidate.
 d) NLRM does not satisfy Optimist Participation
because it satisfies the Condorcet Criterion and, as
proved in Jimeno et al [6], no Condorcet voting
correspondence satisfies Optimist Participation. ￭

TABLE III
METHODS AND PROPERTIES

 Plurality DM Minmax NLRM
Strict

Monotonicity

0

0

0

1
Semi-Strict

Monotonicity

1

1

1

1

Monotonicity

1

1

1

1
Strict Positive
Involvement

1

0

0

1

Semi-Strict
Positive

Involvement

1

0

1

1

Positive
Involvement

1

0

1

1

Strict
Optimist

Participation

0

0

0

0

Semi-Strict
Optimist

Participation

1

0

0

0

Optimist
Participation

1

0

0

0

356 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Table III resumes the fulfilment of the
monotonicity and participation properties by
Plurality and Minmax known methods, and the two
new ones defined in this paper.

V. FINAL REMARKS AND CONCLUSIONS
In this paper we have described two unifying

frameworks, one located in the context of the
preference profiles and based on the idea of
distance, through improvement actions, to a perfect
candidate, and the other located in the context of
the comparison matrices and based on the idea of
distance to the comparison matrices corresponding
to unanimous profiles. Between the many
possibilities that each of these schemes offered to
us, we have chosen a voting method from each of
them and we have analyzed them from the point of
view of their theoretical properties, especially
those of monotonicity and participation.

The first of these voting methods, that we have
called DM, has certain similarities with positional
voting methods. Unfortunately, and as it is
indicated in Proposition 4 and Table III, it does not
have better properties than those already known
for these methods, and it even gets worse in terms
of properties of participation as opposed to some
of the most outstanding as Borda and Plurality.

The second one, called NLRM, is very similar to
the well-known Minmax method (of which it is a
refinement). Indeed, it is because of this fact, that
some of their good properties are derived. In fact,
their monotonicity and participation properties are
even better (at least from the point of view of its
resolutivity) than those of Minmax, as shown in
Proposition 5 and Table III.

Although we are not aware of any practical
application of this or other related methods, like
Minmax, we consider that it is possible to take
advantage of this method in some contexts,
especially those with a small number of candidates
or alternatives where the voters are very familiar
with them.

However, our primary objective has not been
only to obtain new methods with good properties
(objective that still remains open), but also to
analyze the unifying schemes and to illustrate its
possible uses. It is left for future investigations the
search of new concepts of perfection and
improvement, new distances and pseudodistances,
and the exhaustive analysis of those ones already
defined.

ACKNOWLEDGEMENTS
This research has been supported by the

Research Projects SEC 2001-1186 and SEJ 2004-
07875 of Spanish Ministerio de Ciencia y
Tecnología.

REFERENCES
[1] K. J. Arrow and H. Raynaud, Social choice and

multicriterion decisionmaking, MIT Press, Cambridge,
1986.

[2] J. P. Barthelemy and B. Monjardet, "The median
procedure in cluster analysis and social choice theory",
in Mathematical Social Sciences, vol. 1, pp. 235-267,
1981.

[3] D. Bouyssou, Th. Marchant and P. Perny, “Théorie du
choix social et aide multicritère à la decisión”, working
paper, 2003.

[4] D. E. Campbell and S. Nitzan, "Social Compromise and
Social Metrics", Social Choice and Welfare, vol. 3, pp 1-
16, 1986.

[5] J.L. Jimeno, “Propiedades de Participación en los
Métodos de Agregación de Preferencias”, Unpublished
Doctoral Thesis, Universidad de Alcalá, Spain, 2003.

[6] J.L. Jimeno, J. Pérez and E. García, “Some results
concerning No Show Paradoxes”, communication to the
XXVIII Simposio de Análisis Económico, Sevilla
(Spain), 2003.

[7] E Lerer and S. Nitzan, "Some General Results on the
Metric Rationalization for Social Decision Rules",
Journal of Economic Theory, vol. 37, pp 191-201, 1985.

[8] T. Marchant, “Towards a theory of mcdm; stepping away
from social choice theory”, Mathematical Social
Sciences 45, 343–363, 2003.

[9] J. F. Marcotorchino and P. Michaud, Optimization en
analyse ordinale des données, Masson, Paris, 1979.

[10] H. Moulin, “Condorcet's Principle Implies the No Show
Paradox”. Journal of Economic Theory, vol. 45, pp 53-
64, 1988.

[11] J. Pérez, “Propiedades de consistencia en los métodos de
la Decisión Multicriterio Discreta”, Unpublished
Doctoral Thesis, Universidad de Alcalá, Spain, 1991.

[12] J. Pérez, “Theoretical elements of comparison among
ordinal discrete multicriteria methods”, Journal of Multi-
Criteria Decision Analysis 3, 157–176, 1994.

[13] J. Pérez, “The strong No Show Paradoxes are a common
flaw in Condorcet voting correspondences”, Social
Choice and Welfare vol. 18, pp 601-616, 2001.

[14] J. Pérez and S. Barba-Romero, “Three practical criteria
of comparison among ordinal preference aggregating
rules”, European Journal of Operational Research 85,
473–487, 1994.

[15] J.-Ch. Pomerol and S. Barba-Romero, Multicriterion
Decision in Management, Principles and Practice,
Kluwer, Dordrecht, 2000.

[16] H.P. Young, “An axiomatization of Borda's rule”,
Journal of Economic Theory vol. 9, pp 43-52, 1974.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 357

Real time management of a metro rail terminus
Marta Flamini∗ and Dario Pacciarelli∗

∗Dipartimento di Informatica e Automazione, Università Roma Tre
Via Della Vasca Navale, 79, I-00146 Roma Italy

Email: flamini@dia.uniroma3.it, pacciarelli@dia.uniroma3.it

Abstract— This paper addresses a scheduling problem
arising in the real time management of a metro rail
terminus. It mainly consists in routing incoming trains
through the station and scheduling their departures with
the objective of optimizing punctuality and regularity of
train service. This task is presently carried out by a human
operator, called local area manager. The purpose of this
work is to develop an automated train traffic control sys-
tem, able to directly implement most traffic control actions,
without the authorization of the local area manager. To
this aim, a detailed optimization model is necessary, in
order to guarantee that a solution, which is feasible for the
optimization model, is always also physically feasible. The
scheduling problem is modeled as a bicriteria job shop
scheduling problem with blocking constraints, in which
the two objective functions, in lexicographical order, are
the minimization of tardiness/earliness and the headway
optimization. The problem is solved in two steps. In the
first step a fast heuristic builds a feasible solution by
considering the first objective function. In the second step
the regularity is optimized under the constraint that the
first objective function does not deteriorate. Computational
results carried out on a real case shows that the system is
able to manage the terminus very efficently and effectively.

Keywords— Train scheduling, real time, job shop
scheduling, blocking, bicriteria optimization.

I. I NTRODUCTION

RAILWAY traffic optimization is experiencing an
increasing interest both among researchers and

practitioners. Solving problems of practical interest in
this field requires using detailed models, able to rep-
resent real and different railway traffic situations, and
developing efficient algorithms to be used as decision
support system in traffic control operation. Railway
scheduling problems have been studied by using dif-
ferent techniques, including linear programming, integer
or non-linear programming, graph theory and dynamic
programming. Among the published results, we cite the
papers by Dorfman and Medanic [5], Adenso-Diazet al.
[1], Cai et al. [3], Higgins et al. [6], Şahin [10] and the
survey paper of Cordeauet al. [4].

This paper deals with the real time management of
a metro rail terminus. The management and control of
rail operations is usually based on off-line generated
timetables for every train, and consists in operating in
real time with strict adherence to these timetables. When
dealing in particular with a metro rail terminus, it mainly
consists in routing incoming trains through the station
and scheduling their departures with strict adherence to
the off-line timetable. However, when incoming trains
are heavily delayed with respect to the off-line timetable,
it is necessary to reschedule their departure times in
order to provide service continuity and punctuality as
much as possible. To a large extent, this task is carried
out by human operators all over the world. A local area
manager is in charge of setting routes and scheduling
train departures with the objective of pursuing punctual-
ity and regularity of the train service as much as possible.
Computer support, when available, consists in most cases
of a control panel describing the current situation of the
network. On the other hand, there are several attempts to
develop computerized decision support systems allowing
a more efficient and easier management process [1], [5],
[10].

Railway traffic control is particularly important in the
management of metropolitan rail networks, where the
problem is made more difficult because of the smaller
area available and heavy traffic conditions. In this paper
we report on the implementation of scheduling algo-
rithms for a real time Train Management System (TMS),
able to route and schedule train movements through an
underground line terminus. We report in particular on the
results of a research project on the management of rail
traffic at an underground metro rail terminus, in Italy.
The scheduling algorithm developed within the project
produces a plan of movements for all trains circulating in
the terminus, with the objective of optimizing punctuality
and regularity of the train service. One aim of the project
is to move a step further in the direction of automating
the train traffic control process, by enabling the TMS
to implement most traffic control actions, without the
authorization of the local area manager. To this aim,
detailed optimization models are necessary, in order

358 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

to guarantee that a solution, which is feasible for the
optimization model, is always also physically feasible.

Since the punctuality is more important than the
regularity of train service, in this paper the two objective
functions are considered in lexicographical order. An
alternative model for the problem would be to con-
sider the two objective functions jointly. This would
make possible comparing different non-dominated solu-
tions and then choosing a better compromise solution.
However, punctuality is considered more important than
regularity by railway practitioners, since respecting the
off-line timetable would imply automatically respecting
the regularity of train service. Hence, in this paper, a
plan of movements is developed by first considering the
punctuality function only. Then, the plan is improved by
optimizing the regularity of train service, without affect-
ing the punctuality objective function. More precisely,
the overall decision problem is approached by dividing
it into a routing/sequencing problem and a scheduling
problem. The routing/sequencing problem consists in
assigning a path to each train in the station and in solving
conflicts among trains by sequencing their movements
with the objective of optimizing train punctuality. We
model this problem by means of an alternative graph
[7], adapting it to deal with some specific constraints
arising in the rail terminus. The problem is solved with
a fast heuristic, able to find a feasible solution within the
strict time limits necessary for real time purposes. The
scheduling problem consists then in defining an exact
timing for train movements, without changing the routing
and the sequencing, with the objective of improving the
regularity of the service in terms of headway, and without
degrading train punctuality. We show that this second
problem can be solved at optimality with a polynomial
time algorithm.

II. PROBLEM DESCRIPTION: ROUTING/SEQUENCING

The problem consists in defining a schedule in real
time for all the trains circulating in the terminus, plus a
given number of incoming trains. In particular, for each
train it is necessary to define a routing in the terminus,
and a departure time from the terminus in a given time
horizon. The routing problem consists in assigning a path
to each train from its current position, or from the station
entrance, to the terminus exit point.

Figure 1 describes a typical example of an Ital-
ian metro rail terminus. The terminus is divided into
“blocks” of different length, a block being a track
segment between two signals. Within the station a signal
may turn into two colors, say red or green. A red signal
means that the subsequent block is not available, e.g.
occupied by another train. A green signal means that

Fig. 1. The metro rail terminus

the subsequent block section is empty and available. A
train is allowed to enter a block only if the signal is
green. Hence, each block can host at most one train at a
time. Besides this constraint, there are special sequence
of blocks, called “routes” that are considered as single
resources of the network. More precisely, a route Ri is a
sequence of consecutive blocks, and railway safety rules
impose that when a train traverses any block of route Ri,
no other train is allowed to enter any route Rj having
at least one block in common with route Ri. Route Rj
is called “incompatible ” with Ri. The combinatorial
structure of the train scheduling problem is therefore
similar to that of blocking job shop scheduling problem,
a block corresponding to a blocking machine, and a train
corresponding to a job (see, e.g., Mascis and Pacciarelli
[7]).

In order to formulate the problem we distinguish two
sets of resources: a first set is composed by the following
blocks in the terminus:

• the platforms, arrival (B1), exit (B3), both arrival
and exit (B2), where passengers can get in or out
of the train,

• the final tracks (T1, T2, T3), railroad ending blocks,
beyond the platforms,

• one arrival point to the terminus (I),
• one exit point from the terminus (U).

Fig. 2. Incompatibilities between different routes

The second set is the set of available routes: each
route goes from one block to another of the previously
defined set, and the two blocks do not belong to the
route. In the terminus of figure 1 the possible routes are:
R1(from block I to B1, or I-B1), R2(B1-T1), R3(B1-T2),
R4(B1-T3), R5(T3-B3), R6(B3-E), R7(T2-B2), R8(B2-

Marta Flamini and Dario Pacciarelli 359

E), R9(T3-B2), R10(T1-B2), R11(I-B2), R12(T1-B3),
R13(T2-B3). A path for a train is therefore a set of
consecutive routes going from its current position to the
terminus exit point. A path for a train arriving at the
terminus must therefore depart from block I. Then, for
example, the train can move through route R1 (from I to
B1) and stop in platform B1, where passengers can leave
the train. Then the train can move through a different
route, say R2, to the end block T1 and go back to
the exit platform B2, board the passengers, and finally
reach the terminus exit point E: in this case the train
covers the sequence of routes R1, R2, R10, R8. When a
path is assigned to a train, the scheduling phase consists
in assigning to each train a set of consecutive time
windows, associated with the traversing of each route
of the train path. A schedule is feasible if incompatible
time windows do not overlap. Incompatibility constraints
can be expressed as follows: a train can enter a route
R if and only if: (i) it has completed traversing the
previous route in its path,(ii) no other train is traversing
a route incompatible withR. Preemption is not allowed
when traversing a route. Introducing suitable precedence
constraints can solve each conflict deriving from the
traversing of two incompatible routes.

In the example of Figure 2, to trainA are assigned the
routesR7, andR8, to train B the routesR1, andR4,
and finally to trainC is assigned the routeR6. In this
case we have the following pairs of incompatible routes:
(R7(A), R4(B)) and (R8(A), R6(C)). Solving the two
conflicts corresponds therefore to define a precedence
between the traversing of route R7 forA and the
traversing of route R4 forB, and a precedence between
the traversing of route R8 forA and the traversing of
route R6 forC.

A. Objective functions

We consider two different objective functions in lexi-
cographical order: the first one is the minimization of the
sum of total tardiness plus total earliness for all trains
with respect to the off-line timetable. In particular, the
off-line timetable specifies a departure time for each train
from each station. LetOi be the off-line departure time
for train i. A punctuality time window[Oi, Oi + mp] is
associated to traini, wheremp is called thepunctuality
margin for the train. The train is then considered tardy
[early] if it leaves the station afterOi +mp [beforeOi].
If train i leaves the station at timeti, its contribution to
the objective function is then the quantity:

Di =

0 if Oi ≤ ti ≤ Oi + mp

ti − (Oi + mp) if ti ≥ (Oi + mp)
(Oi) − ti if ti ≤ (Oi)

(1)
The first objective function is then

∑k
i=1 Di =

∑k
i=1 max{0; ti − (Oi + mp); (O

i)− ti}, wherek is the
number of trains to schedule.

The second objective function we consider is the min-
imization of the difference between the off-line headway
and the actual headway for all pairs of consecutive trains
leaving the station. The purpose of this objective function
is the improvement of the service regularity in terms of
headway. In other words, provided that a train can leave
the station within the punctuality time window, the exact
departure time is computed by optimizing the headway.

III. SEQUENCINGMODELS

The sequencing problem described in this paper has
been modeled as a blocking job shop problem by using
the alternative graph model of Mascis and Pacciarelli
[7], a generalization of the disjunctive graph of Roy
and Sussman [9]. With this model a set of jobs (trains)
compete for the usage of a set of resources (routes).
Each job has an ordered list of resources to request,
which is represented by a chain. A node in the chain
is called anoperation, and is associated with the usage
of a particular resource for a job. An arc(i, j), between
two consecutive nodesi andj in a chain, is calledfixed
arc, and it represents a precedence constraint, the arc
weight pij indicating the processing time of operation
i. The job cannot start operationj before it completes
processingi.

Since incompatible resources cannot be used at the
same time, whenever two jobs require two incompatible
resources, there is a potential conflict. In this case, a pro-
cessing order must be defined between the incompatible
operations, and we model it by introducing in the graph
a suitable pair ofalternative arcs. Each alternative arc
models a possible precedence between two operations.

The scheduling problem can be therefore formulated
as a particulardisjunctive program, i.e. a linear pro-
gram with logical conditions involving operation “or”
(∨, disjunction), as in Balas (1979). By denoting with
S, n1, . . . , nn, F the set of all operations to be scheduled,
i.e. all the nodes of the chains associated to the trains,
the variables of the problem are the starting times
t1, . . . , tn, tF of operationsn1, . . . , nn, F , respectively,
while operationS is a dummy operation associated to
time zero. AlsoF is a dummy operation, associated with
the completion of all other operations.

360 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

In this paper, we definenok
the operation associated

with the departure time of traink from the station, and
we call Ok its due date, equal to the off-line departure
time of train k = 1, . . . , N . We also callF the set
of all fixed precedence relations,A the set of all pairs
of alternative precedence relations,N the number of
trains to be scheduled, and{no1

, no2
, . . . , noN

} the nodes
associated to the departure time of some train from the
station. Hence, the problem consists in assigning values
to t1, . . . , tn such that all fixed precedence relations, and
exactly one for each pair of the alternative precedence
relations, are satisfied.

Problem 3.1:

min
∑

h=1,...,N max{0; toh
− Oh − mp; O

h − toh
}

s.t.
{

tj − ti ≥ pij (i, j) ∈ F
(tj − ti ≥ aij) ∨ (tk − th ≥ ahk) ((i, j), (h, k)) ∈ A

A feasible solution to problem 3.1 consists in solv-
ing each possible conflict among trains. In terms of
alternative graph formulation it corresponds to selecting
an arc for each alternative pair in such a way that the
resulting graph has no cycles. In fact, a cycle represents
an operation preceding itself, which is not feasible.

The graph composed by all fixed arcs plus the selected
alternative arcs is called aprecedence graph. Given an
acyclic precedence graph, the lengthl(S, i) of the longest
path from the dummy nodeS to any other nodeni gives
then the earliest starting timeti = l(S, i) of operationni

in the feasible solution, i.e. the time at which the train
associated to the node enters the associated resource in
the terminus. We call this quantity theheadti = l(S, i)
of nodei.

We next describe the construction of the alternative
graph implemented in our algorithm. In the routing
phase, a sequence of resources/routes is assigned to each
job/train. In terms of alternative graph, the traversing ofa
single route is represented by three nodes: the first node
and the third node correspond to the train waiting on
the first and on the last blocks of the route, respectively.
These two blocks are associated to platforms, arrival/exit
points or final tracks of the station, where a train can
stop for a while, waiting for the release of the next
resource. The second node corresponds to traversing the
route, which is possible only if all incompatible routes
are empty, as well as the final block of the route. Hence,
the train never stops when traversing a route. The weight
on the outgoing arcs from the first and the third nodes
represents the minimum stopping time for the train on
the two blocks, while the weight on the outgoing arc
from the second node is the route running time.

Fig. 3. A path

For example, in Figure 4 trainA must traverse the
two consecutive routes R5 and R6. The corresponding
alternative graph is shown in Figure 4.

Fig. 4. The chain associated to the path of Figure 3

Here, nodeS represents time zero, arc(S, N1) is
weighted with the current timetnow, and nodeF is a
dummy node representing the end of the chain. Nodes
N1, N3 andN5 are the associated to the train stopping
at blocks T3, B3 and E, respectively.t5 and t6 are
the traversing times of routesR5 and R6, respectively.
Finally, ts1, ts3, and ts5 represent the stopping times at
the final trackT3, the platformB3, and the exit node
E, respectively. The departure time of trainA from the
station is the time at which the train leaves platformB3,
i.e. the starting time of operationnoA

= N4, when the
train enters the route to the exit.

As already observed, conflicts among trains derive
from incompatibility between routes, i.e. between trains
covering the same route and between trains covering
routes with at least one block in common. In Figure 1
the pairs of different incompatible routes are:

• (R1, R2), (R1, R3), (R1, R4), (R4, R5), (R3, R7),
(R4, R9), (R2, R10), (R7, R8), (R9, R8), (R10, R8).
For all these pairs the first block of the first route
coincides with the last block of the second route.

• (R1, R11), (R2, R3), (R2, R4), (R3, R4), (R5, R9).
These are all the pairs of routes starting with the
same block.

• (R9, R10), (R9, R11), (R10, R11), (R6, R8). These
are all the pairs of routes ending with the same
block.

• (R3, R10), (R3, R9). These are all the pairs of
crossing routes, i.e. having one intermediate block
in common.

Since in our model we distinguish the occupancy of
the first, the last blocks of each route and the traversing

Marta Flamini and Dario Pacciarelli 361

of the other intermediate blocks, we also have to intro-
duce the incompatibility between traversing of routes and
block occupancy: a train cannot cover a route if there is
an other train in a block incompatible with the route.
The resulting incompatible pairs in Figure 1 are:

• (R1, B1), (R2, T2), (R3, T2), (R4, T3), (R5, B3),
(R7, B2), (R9, B2), (R10, B2).

An instance of the problem at the current timetnow

is given by the terminus state, i.e. which routes are
available, and the information about the current position
and the off-line timetable of all circulating trains. In
Figure 2 an instance of the problem with three trains
A, B and C in the terminus is given, while Figure 5
shows its alternative graph formulation, once the paths
for the three trains are defined. In this instance, train
A has to leave the station from platformB2 covering
routes R7 and R8; train B has to enter the station
and stop in the final trackT3, covering routesR1 and
R4; train C has to leave the station through routeR6.
Figure 2 represents the paths assigned toA, B, andC,
and, in gray, the tracks they have in common. Hence,
the incompatible route pairs are :(R7(A), R4(B))
and (R6(C), R8(A)). In the alternative graph these
incompatibilities are modeled like in Figure 5.

Fig. 5. The alternative graph for an example with three trains

Incompatibility (R7(A), R4(B)) is modeled with
the pair of alternative arcs(N3, N9), (N10, N2): arc
(N3, N9) corresponds to giving precedence toA over
B, that is trainB cannot enter routeR4 until after A
leaves routeR7. Conversely, with arc(N10, N2) train
A cannot enter routeR7 before trainB leaves route
R4 (enters the final trackT3). A similar discussion
holds or incompatible pair(R6(C), R8(A)), for which
the alternative arcs are drawn with broken lines in Figure
5.

When the alternative graph is formulated as in problem
(3.1), and given the precedence graph associated to any
feasible solution, we have that the longest path in the
graph from nodeS to any nodei equals the starting
time of operationi in a feasible schedule, i.e. the time
at which the train associated to the node enters the

associated resource in the terminus. We call this quantity
the headti of nodei.

IV. ROUTING AND SEQUENCINGPHASE

We next describe the routing algorithm. The main
problem to face when assigning paths to incoming trains
is that a train entering the station from platforms B1
or B2 may affect the departure of earlier trains, due to
the incompatibility between routes. The basic idea of
the routing algorithm is to build a first solution in a
greedy fashion, by assigning to each train a sequence of
routes in such a way that the train can reach the exit
with the smallest possible delay, and without delaying
previously scheduled trains. In other words, in this phase
we associate a routeand a temporary schedule to each
train.

Given the current status of the terminus, and the set of
trains to manage (either within the station or incoming),
the following quantities are computed:

wP
i , waiting time at platformP = E, F, I for train

i: it is the minimum waiting time at platformP
for train i. It may depend on the train status, e.g.
if it is late or not, or during peak/smooth hours.
It is the remaining waiting time if the train is
waiting at the platform attnow. In particular,wE

i

is the waiting time at theexit platform, necessary
for letting passengers to enter the train,wI

i is the
waiting time at theinput platform, necessary for
letting passengers to leave the train, andwF

i is the
waiting time at afinal track, necessary for letting
the driver to rest before a new trip, or at least to
walk from one end to the other of the train and
change train direction.

tPi , traversing time to a relevant pointP = E, F, I for
train i: it is the minimum traversing time for traini
from its current position toP considering the station
empty, i.e. without conflicts, plus the waiting time
at intermediate platforms, if any. In particular,tEi
is the time to theexit point, tFi is the time to a
specific final track, and tIi is the time to a given
input platform.

dP
i = max{tnow + tPi ; Oi + tPi − tEi }, due date at point

P = E, F for train i: this quantity is computed in
real time for each train, and it is the time at which
the train should reach that point of the terminus. In
particular,dE

i = max{tnow+tEi ; Oi} is the due date
at theexitpoint,dF

i = max{tnow+tFi ; Oi+tFi −tEi }
is the due date at the closestfinal track. Clearly,
if train i is waiting in a final track, or between a
final track and the exit, the latter quantity in not
computed.

362 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

In particular:

• if train i is traversing an exit route, it is considered
not controlled anymore by the TMS, simply its exit
time is estimated as the first time at which the route
will be available for future trains;

• if train i is waiting in a final track, or between a
final track and the exit, a due date is associated to
it, dE

i , at which the train should reach the exit point
of the terminus;

• if train i still has to reach the station, or it is in the
station between the input point and a final track,
two due dates are associated to it,dE

i , at which the
train should reach the exit point of the terminus,
and dF

i < dE
i , at which the train should reach a

final track of the terminus.

All the due dates are then ordered for increasing value,
and a partial routing is built for the trains by considering
one train at a time. In particular, when considering a
dF

i value, all possible paths for traini from its current
position to the terminus exit point are considered, and
the arrival timesaT1

i , aT2
i , aT3

i of train i at the three
possible final tracks is computed, taking into account
the incompatibilities with previously scheduled trains.
Then, the route minimizing the quantity|dF

i − aTj
i |, for

j = 1, 2, 3, is assigned to traini, and the corresponding
chain of operations is added to the alternative graph,
together with the precedence constraints necessary to
solve possible conflicts. Similarly, when considering a
dE

i value, all possible paths for traini from its current
position to the terminus exit point are considered, and the
departure timesaB2

i , aB3
i of train i from the two possible

platformsB2 andB3 is computed, taking into account
the incompatibilities with previously scheduled trains.
Then, the route minimizing the quantity|dE

i − aBj
i |, for

j = 2, 3, is assigned to traini, and the corresponding
chain of operations is added to the alternative graph,
together with the precedence constraints necessary to
solve possible conflicts.

In this way, when all the due dates have been consid-
ered, the resulting alternative graph provides a conflict
free plan of operations for all train movements. The head
ti of each nodei is the earliest starting time of the
associated operation, i.e. the earliest time at which the
train can enter the associated resource.

In a last post-processing step, the departure times
of the trains are adjusted in order to improve their
punctuality. In this phase only the nodes associated to
the departure time of each train are considered. To this
aim, let us assume that, after the sequencing phase, the
trains are sequenced in the order1, 2, . . . , N , and let
oj be the node associated to the departure time of train

j from the station. Also, letl(h, k) be the length of the
longest path fromoh to ok in the precedence graph, with
k > h, and letτj ≥ toj

be the new value of the departure
time for train j after the post-processing.

If train i is late, i.e. iftoi
≥ Oi, we fix τi = toi

. In fact,
fixing τi < toi

would violate some precedence constraint,
while τi > toi

would not improve the objective function
for train i, and neither for the other trains.

If train i is early, i.e. if toi
< Oi, postponing its

departure time until after timeOi would improve its
punctuality. On the other hand, delaying the departure
of train i might cause a delay in the departure time of
some other later train. In such cases we delay traini
only if there is an overall improvement in the objective
function. It is quite simple to compute the best departure
time τi for train i on the precedence graph as follows:

τi = min{Oi; min
k=i,...,N

{max{tok
; Ok + mp} − l(i, k)}}

(2)
In fact, if train i leaves the stationǫ time units afterτi

there will be at least one later traink enforced to leave
the station with an additional delayǫ, while delaying the
train from toi

to τi does improve the objective function
for train i without worsening the punctuality for all other
trains.

At the end of the post-processing phase we have an
intermediateschedule addressing the punctuality func-
tion only. In particular, all departure timesτi < toi

or τi ≥ toi
+ mp cannot be anticipated without vio-

lating some precedence constraint and/or worsening the
punctuality function. However, the departure time of all
trains that are scheduled to depart in the time window
Oi ≤ τi < Oi+mp] can be delayed without affecting the
punctuality, i.e. the earliness/tardiness objective function.
More precisely, the departure time of traini can vary in
the time window[τi; τ

max
i], with:

τmax
i = min{Oi+mp; min

k=i,...,N
{max{τk; O

k+mp}−l(i, k)}}

(3)
Note thatτmax

i ≥ τi. In the scheduling phase we use
these margins in order to improve the headway objective
function.

V. SCHEDULING PHASE

Given the alternative graph resulting from rout-
ing/sequencing phase, in the scheduling phase the depar-
ture times of the trains are adjusted in order to improve
the regularity of the train service. The purpose of this
phase is to optimize the headway without affecting the
punctuality and without changing the routing and the

Marta Flamini and Dario Pacciarelli 363

sequencing determined in the previous phase. Hence, the
scheduling problem consists in determining new depar-
ture timesh1, h2, . . . , hN for the trains such that the train
punctuality does not vary, i.e.τi ≤ hi ≤ τmax

i , and the
regularity is optimized, i.e. the quantity

∑

i=1,...,N |(hi−
hi−1) − (Oi − Oi−1)| is minimized. By definition, we
assumeh0 andO0 equal to the real departure time and
the off-line departure time, respectively, of the last train
which left the station beforetnow.

Problem 5.1:

min
∑

i=1,...,N |(hi − hi−1) − (Oi − Oi−1)|
s.t.
τi ≤ hi ≤ τmax

i i = 1, . . . , N

In what follows, we show that this problem can be
solved at optimality with a simple algorithm, which
iteratively updates the valeshi, initially set to hi = τi.

Definition 5.2: A group is a maximal set of consec-
utive trains such thathi − hi−1 ≤ Oi − Oi−1.

The algorithm works with groups of trains, starting
from train 1. If τ1 − τ0 > O1 − O0, there is clearly
no advantage in delaying train 1, since it would worsen
the headway of the first interval by an amount larger or
equal to the improvement in the headway of the second
interval. If τ1−τ0 < O1−O0, it might be useful delaying
train 1 of a quantityδ1 > 0. In order to compute the
maximum value ofδ1, consider the group train 1 belongs
to, composed by the firstk trains. In order to have an
improvementδ1 in the objective function, it is necessary
to delay all the firstk trains by an amountδ1, otherwise
improving the headway of the first train will worsen the
headway of a later train, i.e. it must hold:

δ1 ≤ τmax
i − τi for i = 1, . . . , k. (4)

Consider now traink + 1. By definition of group,
hk+1 − hk > Ok+1 − Ok. Hence, delaying the firstk
trains by an amountδ1 ≤ hk+1 − hk − (Ok+1 − Ok)
would improve both the headway of train 1 and train
k + 1. On the other hand, delaying the firstk trains
more thanhk+1 −hk − (Ok+1 −Ok) would improve the
headway of train 1 and worsen that of traink+1, unless
we also delay traink + 2. Hence, we first sethi = τi,
for i = 1, . . . , N and compute the value:

max δ1

s.t.

δ1 ≤ O1 − O0 − (h1 − h0)
δ1 ≤ τmax

i − hi i = 1, . . . , k.
δ1 ≤ hk+1 − hk − (Ok+1 − Ok)

Then, we sethi = hi + δ1 for i = 1, . . . , k. If
δ1 = O1 − O0 − (h1 − h0), the headway of train 1
is now the best possible in terms of headway, and the
whole procedure can be repeated by substituting train
1 with train 2. If δ1 = hk+1 − hk − (Ok+1 − Ok),
train 1 belongs now to a new larger group of trains,
which includes traink + 1. Hence, we can re-apply the
whole procedure computing a new additional delay for
the trains belonging to this group. Ifδ1 = τmax

j −hj , for
somej ∈ {1, . . . , k}, a further delay for the trains from
1 to j would not improve the overall regularity and/or
would worsen the punctuality function. Hence, the whole
procedure can be repeated by substituting train 1 with
train j + 1.

Figure 6 shows the overall scheduling algorithm. We
assume that the last train left the station at timeh0 = 0,
and that there exists a dummy trainn + 1 such that
hn+1 = +∞. Hence, trainn is always the last train
of a block, and it can be delayed up toτmax

n .

Procedure Scheduling

begin
set int = 1; h0 = 0; hn+1 = +∞; hi = τi for

i = 1, . . . , n
while (int ≤ n) do
begin

while (hint − hint−1 ≥ Oint − Oint−1) do
int = int + 1

let k + 1 be the first intervalk + 1 > int:
hk+1 − hk > Ok+1 − Ok

computemax δint such that:

δint ≤ Oint − O0 − (hint − h0)
δint ≤ τmax

i − hi i = int, . . . , k.
δint ≤ hk+1 − hk − (Ok+1 − Ok)

sethi = hi + δint for i = int, . . . , k
if δint = Oint − O0 − (hint − h0) set int = int + 1
if δint = τmax

j − hj for somej ∈ {int, . . . , k}
set int = j + 1

end
end

Fig. 6. The procedure for headway optimization

Theorem 5.3: The algorithm in Figure 6 optimizes
traffic headway.
Proof. Let us consider the output solutionh1, . . . , hN of
procedure scheduling, and the departure timey1, . . . , yN

of an optimal solution. In order to prove the theorem,
it is sufficient to prove that, if there exists an optimal
solution such thatyi = hi for i = 0, . . . , k − 1, then
there exists an optimal solution such thatyk = hk, for

364 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

k = 1, . . . , N .
Let us consider first the casek = 1. If h1 6= y1, only

three cases are possible:

1) h1−h0 = O1−O0. In this case, fixingy1 = h1 and
letting unchangedyi, i = 2, . . . , N will decrease
the cost for the first interval by the amount|y1−h1|
and cannot increase the cost of the second interval
more then|y1 − h1|. Hence, there is an optimal
solutiony such thaty1 = h1.

2) h1 − h0 < O1 − O0. In procedure scheduling this
case may only occur if there is a trainj ≥ 1 such
that hj = τmax

j , andhi − hi−1 < Oi − Oi−1 for
any i = 1, . . . , j. In this case, the contribution
of the first j intervals to the objective function
is

∑

i=1,...,j Oi − Oi−1 − (hi − hi−1) = Oj −
O0 − τmax

j + h0. Since yj ≤ τmax
j , it must be

∑

i=1,...,j Oi − Oi−1 − (yi − yi−1) ≥ Oj − O0 −
τmax
j + h0. Hence, fixingyi = hi for i = 1, . . . , j

and letting unchangedyi, i = j + 1, . . . , N will
decrease the cost for the firstj intervals at least
by the amountτmax

j − yj and cannot increase the
cost of the(j+1)-th interval more thenτmax

j −yj .
Hence, also in this case there is an optimal solution
y such thaty1 = h1.

3) h1 − h0 > O1 − O0. In procedure scheduling this
case may only occur ifh1 = τ1, and thereforey1 >
h1. In this case, anticipatingy1 to the valueh1 and
letting unchangedyi, i = 2, . . . , N will decrease
the cost for the first interval by the amount|y1−h1|
and cannot increase the cost of the second interval
more then|y1 −h1|. Hence, also in this case there
is an optimal solutiony such thaty1 = h1.

Consider now the casek = 2, . . . , N , and assume
that there exists an optimal solution such thatyi = hi

for i = 1, . . . , k − 1. Also in this case ifhk 6= yk, only
three cases are possible:

1) hk − hk−1 = Ok − Ok−1.
2) hk − hk−1 < Ok − Ok−1.
3) hk − hk−1 > Ok − Ok−1.

By applying the same arguments as in the casek =
1, it follows that in all three cases there is an optimal
solution in whichyk = hk, thus completing the proof.

VI. COMPUTATIONAL RESULTS

This section deals with the performance of the rout-
ing/sequencing algorithm with respect to the punctu-
ality objective function, and with the performance of
the scheduling algorithm with respect to the regularity
objective function. We report in particular on our expe-
rience with a practical case study, concerning the real

time management of rail traffic at an Italian metro rail
terminus (see Figure 1).

All the computational experiments are carried out by
using a detailed simulator of the terminus, equivalent
to the safety system used in the terminus for monitoring
train traffic. Hence, even if the experiments are based on
randomly generated data, the results are quite reliable.
The algorithm is implemented in C++ language, and
executed on a Personal Computer equipped with an Intel
Pentium III− 1 GHz processor.

An instance of the problem is given by several
fixed data and some variable data. Fixed data include
the infrastructure, described in Section II-A, the train
characteristics, and the off-line timetable. Variable data
include the sequence of trains entering the station, which
is randomly generated. For each instance we define a
punctuality marginmp and an input delay for each in-
coming train, chosen as a random variable with uniform
distribution in the[0, md] interval, wheremd is called
the maximum input delay. Note that, due to the random
input delays, the sequence of trains entering the station
can be different from the off-line planned sequence. In
such cases, which also occur in practice due to trains
coming from different origins, the sequencing algorithm
must re-sequence the trains in the off-line order.

We tested our algorithm on 160 instances by varying
the number of trains, and parametersmp andmd. Three
different sets of problem instances were generated.

The first set of instances aims at determining the com-
putation times of the algorithm when varying the number
of trains to schedule. In fact, the real time requirement
imposes strict time limits for computing a new plan of
operations. The set consists of 60 instances obtained by
fixing the punctuality margin valuemp = 120 sec and
the max delay valuemd = 480 sec, and by varying the
number of trainsn in the setn = {5, 10, 15, 20, 25, 30}.
For each value ofn we have considered 10 instances.

Figure 7 shows the computation times of the sequenc-
ing phase and of the scheduling phase of the algorithm,
expressed in seconds. The computation time of both
phases is almost constant for different instances with the
same number of trains, and does not depend significantly
on other paramenteres, such as the marginsmp, md and
by the off-line timetable. In particular, the algorithm
is able to generate a plan of operations in less than 5
seconds for up to 25 trains, thus being suitable for real
time purposes. More in details, for the sequencing phase
time increases almost linearly with the number of trains,
while for the scheduling phase the computation time is
not very sensible to the number of trains, and up to 30
trains it is always smaller than 1 second.

The remaining sets of experiments aim at evaluating

Marta Flamini and Dario Pacciarelli 365

Fig. 7. Computation times (seconds) formd = 480 seconds and
mp = 120 seconds

the performance of the two phases of the algorithm, for
varying mp and md. All the experiments are executed
with reference to the behavior of the terminus during
the critical time interval of transition from smooth to
peak traffic, between 7:30 and 9:15 a.m., corresponding
to 20 incoming trains. The slack included in the off-line
timetable, which can be used to recover input delays,
ranges from 300 seconds in the smooth time period to
60 seconds in the peak hour. The computation times for
the following two sets of experiments never exceed four
seconds for the sequencing phase and one second for the
scheduling phase.

The second set of instances consists of 50 in-
stances obtained by fixing the punctuality margin value
mp = 120 seconds, and by generating 10 random
instances for each value ofmd in the set md =
{180, 240, 300, 360, 480} seconds.

Fig. 8. Earliness/Tardiness formp = 120 seconds

Figures 8 and 9 show the objective function values
for the 50 instances. In particular, the instances are
numbered from 1 to 50 and ordered for increasing total
input delay for each value ofmd. For each instance,
figure 8 shows the average input earliness/tardiness value

Fig. 9. Headway formp = 120 seconds

of incoming trains (referred to as “E/T in”) and the
average output earliness/tardiness value “E/T out” of
outcoming trains, as planned by the routing/sequencing
algorithm. Figure 9 shows, for each instance, the average
input headway value “H in” of incoming trains , the
average output headway value “H seq” of outcoming
trains computed by the routing/sequencing algorithm ,
and the average output headway value of outcoming
trains “H out” computed by the scheduling algorithm.

This set of instances show that the routing/sequencing
algorithm is able to exploit quite effectively the slack
included in the off-line timetable in order to recover train
punctuality. However, since the problem is bi-objective
in nature, pursuing the punctuality objective function is
not sufficient in order to provide a good level of service.
In fact, the output headway after the routing/sequencing
phase is satisfactory formd ≤ 300, which is the usual
behavior of the line, while for larger input delays be-
comes less regular. The scheduling procedure is therefore
necessary in order to improve it. After the scheduling
phase the traffic is quite acceptable formd growing up
to 360 seconds.

Fig. 10. Earliness/Tardiness formd = 480 seconds

366 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Fig. 11. Headway formd = 480 seconds

The third set of instances aims at evaluating the algo-
rithm performance when varying the punctuality margin
mp. We generated 10 random instances obtained by
fixing md = 480 seconds. From each of the 10 instances
we then generated 5 instances by varying the punctuality
margin in the setmp = {10, 30, 60, 120, 240} seconds,
thus obtaining 50 instances grouped in 5 gropus of 10.
The results are shown in Figures 10 and 11.

As expected, the larger flexibility allowed by larger
punctuality margins allows for a better regulation of
rail traffic, both in terms of punctuality and regularity.
The TMS is able to deal with high values of the input
delay, recovering most of it, although the scheduling
algorithm is less performing, at least for small values of
the punctuality margins. Whenmp ≥ md/2, the headway
improves significantly after the scheduling phase. This
behavior is due to the fact that, when a train is scheduled
to depart later than its off-line departure time plus
the punctuality margin, the scheduling algorithm cannot
change its departure time, thus having little means to
improve the regularity of rail traffic.

VII. C ONCLUSION AND FUTURE RESEARCH

This paper addresses the real time scheduling of train
service in a Metro rail terminus. Since the problem is
bi-objective in nature, the train schedules are generated
in two steps. The first step addresses the problem of
routing and sequencing trains through the station with
the objective of optimizing the punctuality, which it is
solved with a fast heuristic. The second step addresses
the problem of scheduling train departures with the
objective of optimizing the regularity of train service,
under the constraint that the first objective function
does not deteriorate. This second problem is solved at
optimality. The computational results, carried out on the
basis of a real case, are quite promising. Unfortunately,
a comparison with the performance of human local area
managers was not possible, due to the real time nature

of the problem. However, our results show that the
scheduling algorithm is able to generate solutions that
are feasible in practice. On the performance side, we
observe that the optimization of punctuality is not always
sufficient in order to guarantee a satisfactory level of
train service. On the other hand, after optimizing the
regularity, the solutions obtained are of good quality.
This demonstrates the ability of the two optimization
algorithms to automate train traffic control operations.

Future research should address the development of
exact algorithms for the routing/sequencing phase and
the comparison of optimal solutions with the solutions
produced by our algorithm, in order to certify the
quality of the solutions obtained. A further interesting
research direction would be to study the problem as
a bicriteria problem, i.e. considering the two objective
functions simultaneously. Clearly, the automated system
has to generate a single plan of operations. However,
the availability of several Pareto optimal solutions would
make possible a better comparison than the lexicograph-
ical order between the two objective functions, and
consequently would make possible to generate a better
compromise solution.

REFERENCES

[1] Adenso-D́ıaz B., Oliva Gonźalez M., Gonźalez-Torre P., 1999.
On-line timetable re-scheduling in regional train services,Trans-
portation Research, Part B, 33, 387–398.

[2] Balas, E. 1979. Disjunctive programming,Annals of Discrete
Mathematics, 5, 3–51.

[3] Cai X., Goh C.J., Mees A.I., 1998. Greedy heuristics for rapid
scheduling of trains on a single track,IIE Transaction,30, 481–
493.

[4] Cordeau J.F., Toth P., Vigo D., 1998. A Survey of Optimiza-
tion Models for Train Routing and Scheduling,Transportation
Science, 32 (4), 380–420.

[5] Dorfman M.J., Medanic J., 2004. Scheduling trains on a railway
network using a discrete event model of railway traffic,Trans-
portation Research, Part B, 38, 81–98.

[6] Higgins A., Kozan E., Ferreira L., 1997. Modelling the Number
and Location of Sidings on a Single Line Railway,Computers
and Operations Research, 3, 209–220.

[7] Mascis A., Pacciarelli D., 2002. Job shop scheduling with block-
ing and no-wait constraints,European Journal of Operational
Research. 143 (3), 498–517.

[8] Pacciarelli D., Pranzo M., Mascis A., 2004.Scheduling Mod-
els for Short-term Railway Traffic Optimisation. Technical Re-
port DIA-94-2004, Dipartimento di Informatica e Automazione,
Universit̀a Roma Tre.

[9] Roy B., Sussman B., 1964.Les probl̀em d’ordonnancement avec
contraintes disjonctives. Note DS No. 9bis, SEMA, Paris.

[10] Şahin İ., 1999. Railway traffic control and train scheduling
based on inter-train conflict management,Transportation Re-
search, Part B, 33, 511–534.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 367

Optimization models for the delay management
problem in public transportation

Géraldine Heilporn, Luigi De Giovanni§ and Martine Labb́e
Universit́e Libre de Bruxelles, Computer Science Department

Bd. du Triomphe CP 210/01, 1050 - Bruxelles, Belgium
{gheilpor, ldegiova, mlabbe}@ulb.ac.be

Abstract— Passengers travelling in public transportation
networks often have to use different lines to cover the
trip from their origin to the desired destination. As a
consequence, the reliability of connections between vehicles
is a key issue for the attractiveness of the intermodal
transportation network and it is strongly affected by some
unpredicable events like breakdowns or vehicle delays.
In such cases, a decision is required to determine if the
connected vehicles should wait for the delayed ones or keep
their schedule. The Delay Management Problem (DMP)
consists of defining the wait/depart policy which minimizes
the total delay on the network. In this work, we present
two equivalent Mixed Integer Linear Programming models
for the DMP, able to reduce the number of variables with
respect to the formulations proposed by literature. The
two models are solved by a Branch and Cut procedure
and by a Constraint Generation approach respectively, and
preliminary computational results are presented.

Keywords— Delay Management, Mixed Integer Linear
Programming, Constraint Generation.

I. I NTRODUCTION

T HE attractiveness of the public transportation net-
work is strongly related to the reliability of in-

termodal connections. But connections imply passen-
ger transfers from one vehicle to another and can
generate important waiting times, in particular when
low frequency lines are taken into account. Missing
a connection, because of a delayed incoming vehicle,
implies waiting for the next one of the same line, thus
remarkably increasing the total travel time.

We define an intermodal public transportation network
as a set of train, metro, tramway and/or bus lines, the
vehicles moving between different stations. Suppose that
a vehicle is delayed. The users of this vehicle who want
to transfer to another vehicle at a station could miss their
connection. In fact, either the other vehicle waits for the

§ The research is part of the project “Analysis and Optimization
of Intermodal Public Transportation Networks in the Brussels Capital
Region” funded by the Brussels-Capital Region in the context of the
Prospective Research for Brussels program.

delayed one and the transfer is allowed, or it does not
wait for the delayed vehicle. If a vehicle waits for the
delayed one, the users travelling on it suffer a delay.
Also, a delay is caused for passengers wishing to get on
this vehicle later on, and possibly for subsequent other
vehicles which will have to wait because of this delay.
On the other hand, if a vehicle departs on time, only the
passengers on the delayed vehicle suffer a delay, but it
might be very high, as the passengers should wait for
the next vehicle of the missed line.

To avoid passengers missing their transfers, one could
force all departing vehicles to wait until the delayed
one has arrived. But, in this case, the delay spreads
out through the network, thus affecting many customers.
On the other hand, if all vehicles depart on time, the
number of affected passengers is minimized but they will
suffer greater delays as they miss their connections. As
a consequence, the best decision is generally to force
only a subset of the vehicles to wait for the delayed
ones. The delay management problem (DMP) consists in
determining how the other vehicles of the network should
react (to wait or not to wait) in order to minimize the
sum of delays of all the passengers at their destinations.

Let S be the station set,V be the vehicle set, and
suppose vehiclei arrives at stationk with a delayD.
Further, letA be the set of effectively used paths by
the passengers, each path being defined as a sequence of
direct rides between pairs of stations. We will consider
a time horizonT which is the scheduled time interval
between the stops of two vehicles of the same line at
a given station. We consider thatT is identical for all
vehicles of the network. Finally, we supposeD < T .

We represent the change from vehiclei ∈ V to vehicle
j ∈ V at stationl ∈ S by the triplet (i, j, k) and we
call it a connection. Suppose that a delayD occurs at
a stationk for the vehiclei. For the vehiclesj ∈ V
for which a connection(i, j, l) is possible,l ∈ S being
any station after stationk, there are two possibilities:
either vehiclej waits for the delayed vehiclei, allowing

368 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

travellers on vehiclei to change to vehiclej at stationl,
or j leaves on time. In the latter case, the users of vehicle
i needing to change to vehiclej at stationl have to wait
for the next vehicle of the same line (asj). If vehicle j
waits for vehiclei, we say the connection is maintained;
otherwise it is suppressed. Of course, if vehiclej ∈ V
waits for vehiclei at stationl ∈ S, then it becomes a
delayed vehicle too. Thus we also have to decide what
the vehiclesj′ ∈ V should do, where the vehiclesj′ are
those for which a connection(j, j′, l′) is possible,l′ ∈ S
being any station afterl on vehiclej’s trip, and so on.

We also consider the possibility of reducing the de-
lays: a slack time is defined for each stop of a vehicle at
a station, for each direct ride of a vehicle from a station
to the next one, and for each change from a vehicle to
another at a station. For example, if we consider that at
least one minute is necessary to change from vehiclei to
vehicle j at stationk, and that the scheduled departure
time of vehiclej is three minutes after the scheduled
arrival time of vehiclei to stationk, the slack time is
equal to two minutes.

In this paper, we consider the delay management
problem from the passenger’s point of view, so that we
want to minimize the sum of passenger delays at their
destinations.

This problem has been the object of a few papers,
mainly by Schoebel. In [11], she presents three equiv-
alent mixed integer models with one criteria. In the
first two ones (which are also presented in [10]), she
considers exactly the same problem as the one we
discuss here. In the third model, she uses Event-Activity
Networks [2], i.e. she considers a set of events and a
set of activities that link these events. An event is the
arrival or the departure of a given vehicle to or from a
given station. An activity corresponds to either a direct
ride of one vehicle from a given station to the next
one, or a stop of a vehicle at a given station, or a
change from one vehicle to another one at a given station.
She minimizes the sum of delays of passengers at each
activity. Furthermore, Schoebel presents in [11] a fourth
mixed integer model, which generalizes the previous
ones. Indeed, she considers there could be more than
one initial delays, each of them causing some delays on
a part of the network.

Schoebel and al. also proposes (see [6], [11]) some
bicriteria models, minimizing the sum of delays of all ve-
hicles at all stations as well as the number of suppressed
connections. Finally, Schoebel presents in [11] a very
general bicriteria model, whose goal is to minimize, (i)
the number of users who cannot change from one vehicle
to another (because of a suppressed connection), and, (ii)

the sum of delays that all the other users experience at
their destinations. This model generalises all the previous
ones. Scholl [12] and Kliewer [8] have also considered
this problem, but they minimize the total waiting time of
the users. Scholl’s model does not include slack times,
thus the initial delay cannot be reduced. Ginkel [5], [6]
has presented the same bicriterial model as Schoebel, and
has proposed to solve it by Event-Activity Networks [2].

A problem closely related to the DMP is presented in
[1], where the impact of delays on the vehicle schedules
(rather than the passenger comfort) is analyzed. A Integer
Programming Model is presented where the decision
variables establish if a delayed vehicle has to perform the
following scheduled task or skip it. The slacks times are
taken into account, while the changing activities and the
missed connections are neglected. A heuristic procedure
is proposed, based on backtracking for exploring the
solutions space, that reduces the search by means of the
elimination of certain branches which are not likely to
generate good solutions. The evaluation of the quality
of each obtained solution is made on the basis of the
priority of each service, the passengers transported and
the delays that these passengers have to suffer. The best
results are offered to the traffic controller so that, using
what-if tools, he or she may choose the alternative that
he considers the most adequate from among these.

The subject of the DMP was brought up by two large
traffic associations serving the states Rheinland-Pfalz and
the Saarland (both in Germany). Public transportation
companies are interested in analyzing the consequences
of delays or changes in the schedule. On a regional train
line in Rheinland-Pfalz, the 40km longLautertalbahn
leading from Kaiserslautern to Lauterecken,Deutsche
Bahn installed an automatic system informing the bus
drivers waiting at the stations about the exact arrival
times of the incoming trains. Based on this information,
the DMP determine whether the drivers should wait for
a delayed train or depart on time, see Schoebel [11].

In Brussels (Belgium), the DMP concerning the con-
nections metro-tram, metro-bus and tram-bus during the
off-peak hours is an important issue for the public
transport company STIB because it is considered as an
important factor influencing the quality of service.

In this paper, we propose two new compact models
for the DMP. In Section 2, we present a new graph
interpretation, from which we derive a first model for the
DMP containing three types of variables. We show that
this model can be seen as a simplification of Schoebel’s
linear mixed integer model presented in [10]. In the
third section, we further reduce the number of variables,

Géraldine Heilporn et al. 369

and obtain a second equivalent model. The first and the
second models are solved by a standard MILP solver
and by a constraint generation approach respectively. The
procedures and some preliminary results are presented
in the fourth section. Finally, the fifth section is devoted
to some concluding remarks and suggestions for further
research on DMP.

II. A NEW MODEL FOR THEDMP

In this section, we present a new model for the DMP,
exploiting a simple network graph representation based
on the Event-activity-networks concept (see [2]).

Let Ri ⊆ S × S be the set of vehiclei’s rides from
a station to the next one, andSi ⊆ S the set of stations
where vehiclei stops. Furthermore, letCa ⊆ V ×V ×S
be the connection set on patha, with C = ∪a∈ACa.

We define the ”Arr-Arr graph” as a directed graph
G = (N, E), where each node corresponds to an arrival
of a vehicle at a station. The arcs correspond either to a
vehicle direct ride, or to a connection ride, from a station
to the next one. Thus we have:

• N = {(i, k)arr : i ∈ V, k ∈ Si} ⊆ V × S,
• E = {((i, k)arr, (i, l)arr) : (k, l) ∈ Ri} (direct ride

from k to l)
∪{((i, k)arr, (j, l)arr) : (i, j, k) ∈ C} (connection

ride from k to l).
We also associate weightsslackuv to the arcs(u, v) ∈ E.
They represent the times that can be saved on those arcs,
and we associate variablesdu to the nodesu ∈ N which
correspond to the arrival delays at these nodes.

We illustrate this definition of the Arr-Arr graph with
the example network depicted in Figure 1. We have two
vehicles i, j and five stationsh, k, l, m, n. So the
nodes of the Arr-Arr graph for this network are(i, k)arr,
(j, n)arr, (i, l)arr and (j, k)arr. The vehicle direct
rides are ((i, k)arr, (i, l)arr) and ((j, k)arr, (j, n)arr),
and the connection rides are((i, k)arr, (j, n)arr) and
((j, k)arr, (i, l)arr). The related Arr-Arr graph is repre-
sented in Figure 2.

Note that this graph representation can be seen as a
simplification of the graph representation used in [5],
[10].

Let arcC be the connection arcs set, in other words
the set of arcs of type((i, k)arr, (j, l)arr), arcCa being
the set of connection arcs on patha. We also callarcDA
the non connection arcs set, i.e. the set of arcs of type
((i, k)arr, (i, l)arr). Furthermore, letpa be the number
of passengers ona, and va the last node on patha.
Finally, we define a boolean variableza that says if all
connections on patha are maintained or not:

�

�

�

�

�

����	
��

����

����

�		�

����

��

��

���

��

��

�

���

���

��	����

��	����

�������

����

	

	
�

Fig. 1. An example of public transportation network.

������ ������

������ ������

��

����

��
���

���

��� ���

Fig. 2. Arr-Arr graph of the network of Figure 1.

za =

{

1 if all connections on patha are maintained,

0 otherwise,

and a variableua which represents the delay at the last
node of patha if za = 1 and is0 otherwise:

ua =

{

dva
if all connections on patha are maintained,

0 otherwise.

Suppose that there is an initial delay at node1. The
DMP can be formulated as follows:

(MILP1) min
∑

a∈A pa[(1 − za)T + ua]
s.t.:

d1 = D (1)

di − dj ≤ slackij ∀(i, j) ∈ arcDA (2)

di − dj + Mijza ≤ slackij + Mij

∀a ∈ A, (i, j) ∈ arcCa (3)

Tza − ua + dva
≤ T ∀a ∈ A (4)

di ≥ 0 ∀i ∈ N (5)

ua ≥ 0 ∀a ∈ A (6)

za ∈ {0, 1} ∀a ∈ A, (7)

370 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

whereMij = slackij + T .

The objective is to minimize the total sum of passen-
ger delays, once they have arrived at their destinations.
Note that a delay ofT is considered for passengers
missing at least one connection on their paths (they have
to wait for the next vehicle). Constraint (1) gives the
initial delay. Constraint (2) says that the delay at the
end of a direct ride must be greater or equal to the delay
at the beginning of this ride, minus perhaps the time that
can be saved thanks to the slack on this ride. Constraint
(3) says that, if all connections are maintained on path
a, we must have the same constraint on the delays for
connection rides as the one for the direct rides. If at
least one connection is not maintained on patha, this
constraint is redundant (thanks to constantMij definition
and the assumptionD < T). Constraint (4) says that if
all connections on patha are maintained,ua is greater
or equal to the delay at the last node of patha (equal
thanks to the objective function). Constraint (5) says that
the delay at a node is always greater or equal to zero.

In [10], Schoebel presents the following linear mixed
integer problem for the DMP:

(MILP) min
∑

a∈A pa[(1 − za)T + ua]
s.t.:

d1
arr,1 = D (8)

dk
arr,i ≤ dk

dep,i + slackk
i ∀i ∈ V, k ∈ Si (9)

dk
dep,i ≤ dl

arr,i + slackkl
i

∀i ∈ V, k, l ∈ Si : (k, l) ∈ Ri (10)

Mk
ij(za − 1) ≤ dk

dep,j + slackk
ij − dk

arr,i

∀a ∈ A, (i, j, k) ∈ Ca (11)

ua ≥ dka

arr,ia
− T (1 − za) ∀a ∈ A (12)

dk
arr,i ≥ 0 ∀i ∈ V, k ∈ Si (13)

dk
dep,i ≤ T ∀i ∈ V, k ∈ Si (14)

ua ≥ 0 ∀a ∈ A (15)

za ∈ {0, 1} ∀a ∈ A (16)

whereMk
ij = slackk

ij + T .
dk

dep,i is the departure delay of vehiclei from station
k, anddk

arr,i is the arrival delay of vehiclei to stationk.
ia is the last vehicle on patha, andka is the last station
on patha. Furthermore, the slack times areslackk

i for
the stop time of vehiclei at stationk, slackkl

i for the trip
of vehiclei from stationk to the next onel, andslackk

ij

for the change from vehiclei to vehiclej at stationk.

We show that models (MILP) and (MILP1) are equiv-
alent, i.e. they are both valid formulations of the DMP

and the optimal values of their LP relaxations are equal.
Indeed, let FS be the set of all feasible solutions of
(MILP), and FS1 be the set of all feasible solutions
of (MILP1). Then FS1 is the projection of FS on the
subspace of variablesza, ua, d

k
arr,i : i ∈ V, k ∈ Ri, a ∈

A.

PROPOSITION1 Model (MILP1) is equivalent to model
(MILP).

Proof: First, let us show that constraints (14)
are not necessary. Indeed, if we suppress them,dk

dep,i is
no more bounded. But thedk

dep,i are used to determine
the values of thedk

arr,i variables, and thus the values of
the dka

arr,ia
variables. As those last variables occur in the

objective function we want to minimize, we ever choose
thedk

dep,i values as small as possible. Sinced1
arr,1 = D <

T , the constraints (9), (10) and (11) from (MILP) and
the above argumentation show that we always choose the
dk

dep,i values such thatdk
dep,i < T .

Second, we show how we can suppress the variables
dk

dep,i by projecting the (MILP) feasible domain on the
subspace of theza, ua, d

k
arr,i : a ∈ A, i ∈ V, k ∈ Si

variables. By constraints (9) and (10) of (MILP), we
know that:

dk
arr,i − slackk

i ≤ dk
dep,i ≤ dl

arr,i + slackkl
i

∀i ∈ V, k, l ∈ Si : (k, l) ∈ Ri.

Thus we also have:

dk
arr,i − slackk

i ≤ dl
arr,i + slackkl

i

∀i ∈ V, k, l ∈ Si : (k, l) ∈ Ri.

In the same way, by constraints (10) and (11), we
have:

dk
arr,j − slackk

ji + Mk
ji(za − 1) ≤ dl

arr,i + slackkl
i

∀a ∈ A, (j, i, k) ∈ Ca, l ∈ Si : (k, l) ∈ Ri.

By applying the Fourier-Motzkin principle (see e.g.
[9]), we obtain the following model:

(MILP’) min
∑

a∈A pa[(1 − za)T + ua]

Géraldine Heilporn et al. 371

s.t.:

d1
arr,1 = D (17)

dk
arr,i − slackk

i ≤ dl
arr,i + slackkl

i

∀i ∈ V, k, l ∈ Si : (k, l) ∈ Ri (18)

dk
arr,j − slackk

ji + Mk
ji(za − 1) ≤ dl

arr,i + slackkl
i

∀a ∈ A, (j, i, k) ∈ Ca, l ∈ Si : (k, l) ∈ Ri (19)

ua ≥ dka

arr,ia
− T (1 − za) ∀a ∈ A (20)

dk
arr,i ≥ 0 ∀i ∈ V, k ∈ Si (21)

ua ≥ 0 ∀a ∈ A (22)

za ∈ {0, 1} ∀a ∈ A (23)

As (MILP’) is the projection of (MILP), their optimal
values are identical.

We can easily see that each variabledk
arr,i corresponds

to a variabledn : n ∈ N (see above). Moreover, let the
slackij : (i, j) ∈ E be equal toslackk

i + slackkl
i for the

(i, j) in arcDA, and toslackk
ij + slackkl

j for the (i, j)
in arcC. If we change those notations in the (MILP’),
we obtain model (MILP1).

As (MILP1) does not consider departure delay variables,
it is useful to show that no vehicle is allowed to leave
before the scheduled departure time, which was ensured
in (MILP) by constraints (13).

PROPOSITION2 There exists an optimal solution of
(MILP1) in which the vehicles never leave a station
before the scheduled departure time.

Proof: By contradiction, we suppose that, in an
optimal solution, a vehicle has to leave a station before
the scheduled depart time. Even if the slack times are
zero, this means that the vehicle arrives at the next station
before the scheduled arrival time, and that we will have
a variabledi < 0. But, this is in contradiction with
constraint (5) from (MILP1).

III. R EDUCING THE NUMBER OF VARIABLES

Here we propose another model which involves vari-
ablesza andua only. Consider the following model:

(MILP2) min
∑

a∈A pa[(1 − za)T + ua]

s.t.:

Tza′ − ua′ +
∑

(i,j)∈arcCa

Mijza′′(i,j)

≤ T − D +
∑

(i,j)∈Ea

slackij +
∑

(i,j)∈arcCa

Mij ,

∀a, a′, a′′(i, j) ∈ A so that the first node on path

a is 1,va′ = va and (i, j) ∈ arcCa ∩ arcCa′′ (24)

ua ≥ 0 ∀a ∈ A (25)

za ∈ {0, 1} ∀a ∈ A, (26)

whereEa is the set of arcs on patha.
We show that models (MILP1) and (MILP2) are

equivalent. Indeed, we suppress the arrival delay vari-
ables from (MILP1) by projecting the polyhedron asso-
ciated to the LP-relaxation of (MILP1) on the space of
the other variablesza, ua : a ∈ A of the problem. We
then obtain (MILP2).

PROPOSITION3 Let FS1 be the (MILP1) feasible solu-
tions set, and FS2 the (MILP2) feasible solutions set.
Then FS2 is the FS1 projection on the subspace of the
za, ua : a ∈ A variables, that is to say: FS2 = {(za, ua)
s.t. there exists di with (za, ua, di) ∈ FS1}.

Proof: Starting from the (MILP1), we apply
Fourier-Motzkin elimination todi : i ∈ N variables.
In other words we project the (MILP1) feasible domain
on the subspace of theza, ua : a ∈ A variables.

For each arc(i, j) from graphG = (N, E), we define:

lij =

mina∈A:(i,j)∈arcCa
(slackij + Mij(1 − za)),

if (i, j) ∈ arcC

slackij , if (i, j) ∈ arcDA

These weights on the arcs allow us to evaluate the
delay at each node. Indeed, if(i, j) ∈ arcDA, we have,
thanks to constraint (2):

dj ≥ di − slackij .

In the same way, if(i, j) ∈ arcC, constraint (3) says :

dj ≥ di−slackij−Mij(1−za) ∀a ∈ A : (i, j) ∈ arcCa,

thus we have :

dj ≥ di − min
a∈A:(i,j)∈arcCa

(slackij − Mij(1 − za)).

Consequently, for each arc(i, j) of the graph, we have:

dj ≥ di − lij .

372 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Let us now concentrate on a patha whose first node is
1, and suppose its nodes are called1, 2, ..., va. We know,
from (MILP1), thatd1 = D et d2 ≥ d1 − l12. If we put
together these two inequalities, we obtain:

d2 ≥ D − l12.

As we also know thatd3 ≥ d2 − l23, we have:

d3 ≥ D − l12 − l23.

If we continue like this up todva
, and if we callEa

the set of arcs on patha, we obtain:

dva
≥ D −

∑

(i,j)∈Ea

lij .

It is clear that these arguments are valid for all paths
a whose first node is1. In addition, it is not necessary
to consider other paths. Indeed, suppose we have a path
a′ such thatva′ = va and whose first node is not1. Two
situations can happen:

• if there is no intersection between this patha′ and
paths whose first node is1, then the delay at each
node of patha′ is zero;

• if the path a′ has at least one common part with
paths whose first node is1, then thea′ nodes which
are before the first intersection with paths whose
first node is1 do not have any delay, and the delays
at the othera′ nodes are the same as those on paths
whose first node is1. Thus we can write:

dva′
= dva

≥ D −
∑

(i,j)∈Ea

lij .

Thus the following inequality :

dva
≥ D −

∑

(i,j)∈Ea

lij ∀a ∈ A whose first node is1

(27)
can replace constraints (2) and (3).
Furthermore, if we put together inequality (27) and

constraint (4), we have:

D −
∑

(i,j)∈Ea

lij ≤ dva
≤ T (1 − za′) + ua′

for eacha, a′ ∈ A so thata first node is1 andva′ = va.
By applying Fourier-Motzkin elimination, the follow-

ing inequality replaces constraints (27) and (4):

D −
∑

(i,j)∈Ea

lij ≤ T (1 − za′) + ua′

∀a, a′ ∈ A so thata first node is1 andva′ = va. (28)

Summarizing, we obtain the following model:
min

∑

a∈A wa[(1 − za)T + ua]
s.t. :

D −
∑

(i,j)∈Ea

lij ≤ T (1 − za′) + ua′

∀a, a′ ∈ A so thata first node is1 andva′ = va. (29)

ua ≥ 0 ∀a ∈ A (30)

za ∈ {0, 1} ∀a ∈ A. (31)

Let us now replace the termslij using their definition.
First, note that:

min
a∈A:(i,j)∈arcCa

(slackij + Mij(1 − za))

= slackij + Mij − max
a∈A:(i,j)∈arcCa

Mijza,

and let us definẽzi,j = maxa∈A:(i,j)∈arcCa
za.

Thus we can write the model above as:
min

∑

a∈A wa[(1 − za)T + ua]
s.t.:

Tza′ − ua′ +
∑

(i,j)∈arcCa

Mij z̃i,j

≤ T − D +
∑

(i,j)∈Ea

slackij +
∑

(i,j)∈arcCa

Mij

∀a, a′ ∈ A so thata first node is1 andva′ = va. (32)

ua ≥ 0 ∀a ∈ A (33)

za ∈ {0, 1} ∀a ∈ A. (34)

Unfortunately, because of the terms̃zi,j , this model
is not linear. However, if we look at an inequality of
type (32), we see that if this inequality is true with the
corresponding̃zi,j for each(i, j) ∈ arcCa, it is also true
with, for each(i, j) ∈ arcCa, the za : (i, j) ∈ arcCa

that are by definition smaller or equal tõzi,j .
Consequently we can transform the model above to

obtain (MILP2).

COROLLARY 1 The (MILP1) and (MILP2) optimal val-
ues are identical.

It is interesting to note that model (MILP2) has the
following interpretation. Focussing on patha′ and on
variableua′ , constraint (24) can be written as:

ua′ ≥ T (za′ − 1) + D −
∑

(i,j)∈Ea

slackij

+
∑

(i,j)∈arcCa

Mij(z̃i,j − 1)

for all pathsa s.t. the first node ofa is 1 andva′ = va.

Géraldine Heilporn et al. 373

If za′ = 0, the constraint is redundant, and the
contribution of patha′ in the objective function is given
by T .

If za′ = 1, we have:

ua′ ≥ D −
∑

(i,j)∈Ea

slackij +
∑

(i,j)∈arcCa

Mij(z̃i,j − 1)

for all pathsa s.t. the first node ofa is 1 andva′ = va.

We consider a “primary network” given by the path
a and we refer the delay ona′ to this primary network.
Two situations can happen:

• If all connections on the primary network must
be maintained, the delay fora′ passengers is the
same as that fora passengers (we recall that, by
definition of the Arr-Arr graph, having the same
destination node implies arriving at the same sta-
tion with the same vehicle). Indeed, in this case
∑

(i,j)∈arcCa
Mij(z̃i,j − 1) = 0 causing ua′ ≥

D−
∑

(i,j)∈Ea
slackij , which is the delay at patha

destination.
• On the contrary, if at least one connection on the

primary network is not maintained, then patha does
not have any influence on the delay ona′. Hence,
the constraint is redundant.

IV. A PPLICATION

Model (MILP1) has been implemented using AMPL
(see [4]) and solved using Cplex 8.1 (see [7]).

Note that model (MILP) has not been implemented
in order to compare results with that of (MILP1) or
(MILP2). Indeed, the formulation of (MILP) is almost
the same as the one for (MILP1), except that it has
a larger number of variables (corresponding to the
departure delay variables) and some additional con-
straints (corresponding to the redundant constraint we
have suppressed). Since both formulations provide the
same LP-relaxation optimal value, it seems obvious that
results obtained from (MILP1) are better in terms of
computational times than those we would have obtained
from (MILP). Further, this has been confirmed through
preliminary computational experiments.

As model (MILP2) contains an exponential number of
constraints, a direct implementation is not appropriate
and a constraint generation approach is proposed. We
start solving the (MILP2) with only constraints (25)
and (26). Generally, the solution obtained will not be
feasible, as some constraints (24) might be violated. We
then select a subset of the violated constraints and we add
them to the model. The constraints adding procedure is

repeated, until a solution is found which does not violate
any constraints: this solution is also optimal for (MILP2).

For the sake of the constraint generation procedure,
it is sufficient to generate inequalities (32) instead of
inequalities (24). From (32), given the optimal solution
z∗, u∗ of the current model, a violated inequality exists
if

D −
∑

(i,j)/∈arcCa

slackij

−
∑

(i,j)∈arcCa

[slackij + Mij(1 − z̃∗i,j)]

> T (1 − z∗a′) + u∗

a′

for somea, a′ ∈ A so thata first node is1 andva′ =
va. By definition of lij , this corresponds to

D −
∑

(i,j)∈Ea

lij > T (1 − z∗a′) + u∗

a′ (35)

The termdva
= D−

∑

(i,j)∈Ea
lij represents the delay

at the last node of patha, for the givenz∗ and can be
evaluated using a breath-first visit of the Arr-Arr graph
(delay propagation on acyclic network).

The separation procedure computes the node delays
and then check for a path satisfying condition (35), as
from the following procedure.

1) For each(i, j) ∈ arcC, determine the variablẽz∗i,j .
2) For each node of the Arr-Arr graphv ∈ V ,

compute the delayd∗v according to the valuesu∗

and z̃∗ (breath-first visit of the Arr-Arr graph).
3) For each patha ∈ A whose first node is 1
4) For each patha′ whose last node isva′ = va

5) If d∗va
> T (1−z∗a′)+u∗

a′ then inequality (32)
is violated fora, a′.

6) Go to the next patha′.
7) Go to the next patha.

Step 1 runs inO(|arcC||A|) time: for each connec-
tion, all the paths involving the connection itself are
considered. Step 2 consists of a breath first visit of the
Arr-Arr graph, whose complexity isO(|E|). Steps from
3 to 7 run inO(|A|2). In terms of the DMP input, i.e. the
vehicle setV , the station setS and the passenger path
set A, we can state|arcC| = O(|V |2|S|) and |E| =
O(|S|2 + |V |2|S|). It follows that the overall complexity
of the separation procedure isO(|V |2|S||A|+|S|2+|A|2)
and then polynomial.

At each iteration of the constraint adding procedure,
all the violated inequalities generated by step 5 are added
(computational results put in evidence that this is better
than adding a subset of violated constraints).

374 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE I

INSTANCE SUMMARY.

|N | |arcDA| |arcC| |A| Num.
16 - 20 11 - 16 3 - 11 62 - 132 28
25 - 40 20 - 33 3 - 14 99 - 549 88
59 - 101 55 - 93 10 - 22 1821 - 6366 12

Note that the constraint generation approach can be
applied to both (MILP2) and its linear relaxation. In the
former case, we obtain the optimal solution to the DMP,
in the latter case the procedure should be integrated in
a Branch and Bound framework.

The AMPL implementation of (MILP1) and the con-
straint generation approach for (MILP2) have been
tested on the instances described in Table I, derived
as subnetworks of the intermodal public transportation
network around Brussels in Belgium. For each class,
the minimum and the maximum cardinality of the set
describing the DMP are given, together with the number
of instances, in the last column. The slack times have
been randomly generated as integer number between
zero and three minutes. Initial delays D of 12, 20, 25
and 28 minutes have been considered for each instance
and a time horizon T of 30 minutes. The number of
passengers on each path has been obtained as follows:
first we have randomly generated the origin/destination
matrix; after that, we have used a logit function (see
e.g. [3]) to distribute any entry of the matrix among the
paths having the same origin and the same destination,
this function taking in account the number of connection
arcs and the total length of each path.

The results obtained on a 3 GHz Pentium IV processor
are summarized in Table II. The first two columns give
the instance size and the initial delay. The third and the
fourth columns give the time spend to solve the linear
relaxation of (MILP1) and (MILP2). Column 5 shows
the percentage of time spent by the separation procedure.
Columns 6 and 8 give the same information with respect
to the original (MILP1) and (MILP2), including the
integrality constraints. Columns from 9 to 11 give some
statistics on the solution values: column 9 gives the
percentage of maintained connections, column 10 refers
to the percentage of instances containing suppressed
connections and column 11 reports the percentage of
suppressed connection within those instances. The last
column show the integrality gap.

Both Cplex directly applied to (MILP1) and the con-
straint generation procedure applied to (MILP2) are able
to solve the instances in a very reasonable amount of
time: less than one second, both for the linear relaxation
and the integer program. Indeed, Cplex opens a very

0

0.2

0.4

0.6

0.8

1

1.2

11-20

(12)

11-20

(20)

11-20

(25)

11-20

(28)

21-40

(12)

21-40

(20)

21-40

(25)

21-40

(28)

41- (12) 41- (20) 41- (25) 41- (28)

MILP1

MILP2

Fig. 3. Performance evaluation: linear relaxation.

0

0.2

0.4

0.6

0.8

1

1.2

11-20

(12)

11-20

(20)

11-20

(25)

11-20

(28)

21-40

(12)

21-40

(20)

21-40

(25)

21-40

(28)

41-

(12)

41-

(20)

41-

(25)

41-

(28)

MILP1

MILP2

Fig. 4. Performance evaluation: integer program.

small number of branch and cut nodes when applied to
(MILP1) and often closes the gap at the root node, using
the built-in cuts. Also, six constraint generation iterations
are sufficient in average to solve the linear relaxation of
(MILP2), and four to solve the related integer program
(we recall that in this case the Cplex branch and cut
procedure is applied at each iteration).

The comparison between the performance of the two
proposed models and related methods is highlighted in
Figures 3 and 4: they show, for different instance classes,
the frequency one method has been able to find the
optimal solution faster (or within the same computational
time) than the others. We can observe that MILP1
performs better for small instances, while the constraint
generation approach tends to be better with instances of
increasing size, despite of the fact that the the majority of
the time is spent by the separation procedure. Actually,
just a few iterations provide the optimal (relaxed or
integer) solution: a very small subset of constraints (24)

Géraldine Heilporn et al. 375

TABLE II

COMPUTATIONAL RESULTS.

Inst. D LR IP gap
MILP1 MILP2 % sep. MILP1 MILP2 % sep. % z=1 p(z=0) % z=0

16-20 12 0.00 0.04 9.1% 0.01 0.01 0.0% 98.33% 16.67% 10.00% 11.67%
16-21 20 0.00 0.05 6.7% 0.01 0.03 11.1% 96.17% 33.33% 11.50% 6.55%
16-22 25 0.00 0.05 12.9% ‘ 0.04 0.0% 96.17% 33.33% 11.50% 4.82%
16-23 28 0.00 0.05 13.8% 0.01 0.03 5.0% 96.17% 33.33% 11.50% 3.51%
25-40 12 0.00 1.07 1.4% 0.03 0.64 1.6% 99.64% 4.55% 8.00% 3.16%
25-41 20 0.00 0.68 1.6% 0.02 0.81 0.9% 99.24% 4.76% 16.00% 1.16%
25-42 25 0.00 0.83 1.4% 0.03 0.72 1.0% 98.52% 4.76% 31.00% 0.85%
25-43 28 0.00 0.72 1.4% 0.03 0.70 1.2% 98.52% 4.76% 31.00% 0.81%

55-101 12 0.15 0.14 76.2% 0.45 0.14 76.7% 100.00% 0.00% - 0.00%
55-102 20 0.15 0.15 68.9% 0.46 0.16 75.5% 100.00% 0.00% - 0.00%
55-103 25 0.15 0.15 72.7% 0.41 0.14 69.8% 100.00% 0.00% - 0.00%
55-104 28 0.15 0.14 72.1% 0.39 0.14 76.2% 100.00% 0.00% - 0.00%

is added and considerably smaller problems have to be
solved.

Concerning the value of the optimal solutions, we
observe that, in most cases, all the connections are
maintained. Moreover, in the instances where some con-
nections are suppressed, it only concerns a small number
of paths (from 10 to 30%, depending on the amount of
the initial delay).

V. CONCLUSIONS

This paper has presented two new MILP formulations
for the Delay Management Problem. The first formu-
lation (MILP1) is based on a new graph interpretation
of the DMP, which allows us to reduce the number
of variables and constraints with respect to equivalent
models presented by literature. The second equivalent
model (MILP2) further reduces the number of variables,
by projecting out all the variables explicitly related to
node delays. The cost to pay is the increasing num-
ber of constraints, which are exponentially many. The
computational results presented in this paper show that
the trade off between the number of variables and
the number of constraints tends to privilege (MILP2)
and the related constraint generation procedure when
facing instance of greater size, similar to real public
transportation networks. This suggests to further improve
the solution approach based on (MILP2), in particular by
enhancing the separation procedure (which takes most of
the computational time and is presently based on path
enumeration) and by integrating it in a Branch and Cut
context.

Also note that both models (MILP1) and (MILP2),
together with the related solution approaches, can be
easily extended to the case of multiple initial delays.
As the related model size increases, this also suggests to

adopt (and improve) constraint generation based solution
methods.

From the public transportation network point of view,
the results show that there is room for improving the
connection protocols currently adopted by the carriers. In
fact, the decisions about the suppression of a connection
is mostly based on a threshold delay of the incoming
vehicles. Results show that, at least from the passengers
point of view, this is not always the best decision: most
of connection should be maintained even under large
vehicle delays, as this leads to smallest total passenger
delays, thus considerably increasing the attractiveness of
public transportation networks.

REFERENCES

[1] B. A DENZO-DIAZ , M. OLIVA -GONZALEZ, and P. GONZALEZ-
TORRE, “On-line timetable re-scheduling in regional train ser-
vices,” Transportation Research, vol. 33B, pp. 387–398, 1999.

[2] S. ELMAGHRABY , Activity Networks. Wiley Interscience
Publication, 1977.

[3] A. FOTHERINGHAM and M. O’KELLY , Spatial Interaction
Models: Formulations and Applications. Kluwer Academic
Publishers, 1989.

[4] R. FOURER, D. GAY , and B. KERNIGHAN, “A modeling lan-
guage for mathematical programming,”Management Science,
vol. 36, pp. 519–554, 1990.

[5] A. G INKEL , “Event-activity networks in delay management,”
Master’s thesis, Universität Kaiserslautern, 2001.

[6] A. G INKEL and A. SCHÖBEL, “The bicriterial delay manage-
ment problem,” Universiẗat Kaiserslautern, Tech. Rep., 2002.

[7] ILOG, “http://www.ilog.com/products/cplex.”
[8] N. K LIEWER, “Mathematische Optimierung zur Unterstützung

kundenorientierter Disposition im Schienenverkehr,” Master’s
thesis, Universiẗat Paderborn, 2000.

[9] R. MARTIN, Large scale linear and integer optimization.
Kluwer Academic Publishers, 1999, p. 39à 46.

[10] A. SCHÖBEL, “A model for the delay management problem
based on mixed-integer-programming,”Electronic Notes in The-
oretical Computer Science, vol. 50, no. 1, 2001.

[11] ——, “Customer-Oriented Optimization in Public Transporta-
tion,” 2003, Habilitation thesis.

376 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

[12] S. SCHOLL, “Anschlusssicherung bei Verspätungen imÖPNV,”
Master’s thesis, Universität Kaiserslautern, 2001.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 377

A Metaheuristic Approach
for the Vertex Coloring Problem

Enrico Malaguti∗, Michele Monaci† and Paolo Toth∗
∗Dipartimento di Elettronica, Informatica e Sistemistica,University of Bologna

Viale Risorgimento, 2 - 40136 - Bologna (Italy)
Emails: emalaguti@deis.unibo.it, ptoth@deis.unibo.it

†Dipartimento di Ingegneria dell’Informazione, University of Padova
Via Gradenigo, 6/A - 35131 - Padova (Italy)

Email: monaci@dei.unipd.it

Abstract— Given an undirected graph, the Vertex Color-
ing Problem (VCP) requires to assign a color to each vertex
in such a way that colors on adjacent vertices are different
and the number of colors used is minimized. In this paper
we propose a preliminary version of the metaheuristic
Algorithm MMT for VCP. The proposed approach per-
forms two phases: the first applies in sequence fast greedy
heuristics and a Tabu Search procedure, while the second
one is a post-optimization phase based on the Set Covering
formulation of the problem. Computational results on the
DIMACS set of instances show that the algorithm is able
to produce high quality solutions in a reasonable amount
of time.

Keywords— Vertex Coloring, Set Covering, Metaheuris-
tic, Tabu Search.

I. I NTRODUCTION

G IVEN an undirected graphG = (V, E), the Vertex
Coloring Problem (VCP) requires to assign a color

to each vertex in such a way that colors on adjacent
vertices are different and the number of colors used is
minimized.

Vertex Coloring is a well known NP-hard problem (see
Garey and Johnson [20]) with real world applications
in many engineering fields, including scheduling [25],
timetabling [12], register allocation [10], frequency as-
signment [19] and communication networks [33]. This
suggests that effective algorithms would be of great
importance. Despite its relevance, few exact algorithms
for VCP have been proposed, and are able to solve
consistently only small instances, with up to 100 vertices
for random graphs [13], [22], [30], [31]. On the other
hand, several heuristic and metaheuristic algorithms have
been proposed which are able to deal with graphs of
hundreds or thousands of vertices. We review below,
after some useful definitions, the most important classes
of known heuristics and metaheuristics proposed for
VCP.

Let n andm be the cardinalities of vertex setV and
edge setE, respectively; letδ(v) be the degree of a
given vertexv. A subset ofV is called an independent
set if no two adjacent vertices belong to it. A clique of
a graphG is a complete subgraph ofG. A k coloring
of G is a partition ofV into k independent sets. An
optimal coloring ofG is a k coloring with the smallest
possible value ofk (the chromatic number χ(G) of
G). Thechromatic degree of a vertex is the number of
different colors of its adjacent vertices.

The first approaches to VCP are based on greedy
constructive algorithms. These algorithms sequentially
color the vertices of the graph following some rule for
choosing the next vertex to color and the color to use.
They are generally very fast but produce poor results,
which can be very sensitive to some input parameter, like
the ordering of the vertices. Beyond the simple greedy
sequential algorithm SEQ, the best known techniques are
themaximum saturation degreeDSATUR and theRecur-
sive Largest FirstRLF procedures proposed by Brèlaz
[5] and by Leighton [25], respectively (see section II-B
for a short description of these algorithms). Culberson
and Luo [11] proposed theiterated greedy algorithmIG
which can be combined with various techniques. In [4]
Bollobàs and Thomason proposed the algorithm MAXIS
that recursively selects the maximun independent set
from the set of uncolored vertices.

Many effective metaheuristic algorithms have been
proposed for VCP. They are mainly based on simulated
annealing (Johnson, Aragon, McGeoch and Schevon
[22] compared different neighborhoods and presented
extensive computational results on random graphs; Mor-
genstern [29] proposed a very effective neighborhood
search) or Tabu Search (Hertz and De Werra [21];
Dorne and Hao [15]; Caramia and Dell’Olmo [7] pro-
posed a local search with priorities rules, inspired from
Tabu Search techniques). Funabiki and Higashino [17]

378 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

proposed one of the most effective algorithms for the
problem, which combines a Tabu Search technique with
different heuristic procedures, color fixing and solution
recombination in the attempt to expand a feasible partial
coloring to a complete coloring. Hybrid algorithms in-
tegrating local search and diversification via crossover
operators were proposed (Fleurent and Ferland [16];
Galinier and Hao [18] proposed to combine an effective
crossover operator with Tabu Search), showing that di-
versification is able to improve the performance of local
search.

As a general observation, two main strategies can be
identified in the literature, which correspond to different
formulations of the problem. The first strategy tackles
the problem in the most natural way, trying to assign
a color to each vertex. This leads to fast greedy algo-
rithms but seems to produce poor results. The second
strategy tackles the problem of feasibly coloring the
graph by partitioning the vertex set into independent
sets. Algorithms based on this strategy build different
color classes by identifying different independent sets in
the graph, and try to cover all the vertices by using the
minimum number of independent sets, i.e. by solving the
Set Partitioning Problem (or the Set Covering Problem)
associated with the identified independent sets.

A. Set Covering Formulation

Several combinatorial optimization problems can be
formulated as large-size Set Covering (or Set Partition-
ing) problems; this happens for all those problems in
which one is required to partition a given set of items
into subsets having special features and minimizing the
sum of the cost associated with the subsets. This can
be done not only for VCP (see Merhotra and Trick [27])
but, for instance, for Bin Packing Problems [28], Vehicle
Routing Problems [24], Crew Scheduling Problems [3],
[6], [26], [32] as well.

We derive a Set Partitioning Formulation for VCP
and show how it can be easily transformed into a Set
Covering Formulation. LetS be the family of all the
Independent Sets of G. Each independent set (column)
s ∈ S has associated a binary variablexs having value 1
iff all the vertices ofs receive the same color. VCP can
be formulated as the following Set Partitioning Problem:

min
∑

s∈S

xs (1)

∑

s:i∈s

xs = 1 ∀i ∈ V (2)

xs ∈ {0, 1} (s ∈ S) (3)

Objective function (1) asks to minimize the total
number of independent sets (and hence of colors) used.
Constraints (2) state that for every vertexi in the
graph, there must exist exactly one selected independent
set which contains the vertex. Constraint (3) impose
variablesxs to be binary. We can now replace constraints
(2) with (4) and obtain a Set Covering Formulation for
the problem.

∑

s:i∈s

xs ≥ 1 ∀i ∈ V (4)

Indeed, if a solution selects more than one independent
set which contains the same vertex, a feasible solution
of the same value can be obtained removing the vertex
from all except one of these independent sets. In others
words if a vertex is assigned more than one color, a
feasible solution of the same value can be obtained
using any one of these colors for the vertex. The set
covering formulation allows us to consider a smaller (but
still exponential in the worst case) number of variables,
since we can define S as the family of allmaximal
independent sets in the graph G. The advantage of the Set
Covering (or Set Partitioning) formulation, w.r.t different
proposed formulations, is that it avoids symmetries in
the solution and its continuous relaxation leads to tighter
lower bounds. The main drawback is that the number of
maximal independent sets (i.e. the number of columns)
can grow be exponentially with the cardinality of vertex
set V.

II. T HE HEURISTIC ALGORITHM MMT

This paper proposes a preliminary version of the MMT
algorithm, which performs 2 phases after an initialization
step. During the initialization some fast lower bounding
procedures are applied to derive a lower bound (LB)
for the problem; in the first phase we do not use an
explicit algorithm to generate columns, but we apply in
sequence some fast greedy heuristics from the literature,
possibly considering different parameter sets. Indeed,
each feasible independent set in any heuristic solution
of the original problem corresponds to a column of S. It
is known that the solution found by a greedy algorithms
for VCP depends on the order in which vertices are
given in input. Since the column generation phase is
aimed at generating a large set of different columns,
in our approach greedy procedure are applied several
times, in an iterative way, perturbing the order of vertices
so that different columns are generated. After that, an
effective Tabu Search algorithm, based on the concept
of partitioning the vertex set into independent sets, is
executed. This algorithm works in decision version (i.e.,

Enrico Malaguti et al. 379

given as input the numberk of colors to use, it looks
for a k coloring in the graph G), trying to improve
on the best valued solution found by the greedy proce-
dures previously executed. Sometimes the Tabu Search
algorithm is able to find a provably optimal solution;
in any case, this algorithm often improves the best in-
cumbent solution. During phase 1 (Column Generation),
a very large number of independent sets (columns) is
produced. When optimality of the incumbent solution
is not proved, such columns are stored in the family
S ′, which represents a subfamily of the familyS of all
the maximal independent sets of the graph. The second
phase (Column Optimization) considers the Set Covering
Problem (SCP) associated with the columns inS ′ and
heuristically solves it through the Lagrangian heuristic
algorithm CFT proposed by Caprara, Fischetti and Toth
[6], improving many times the best incumbent solution.

The main drawbacks of this approach are evident:

• a lot of independent sets which are not maximal are
generated;

• the same independent set can be generated at differ-
ent times, thus producing many redundant columns.

The first problem is structural to our approach, since
we extract independent sets from feasible colorings. This
drawback is solved by applying a greedy procedure to
complete independent sets to maximal independent sets.
As to the second problem, a hashing technique is used
in order to avoid to store identical columns(see Monaci
and Toth [28] for more details).

Both phases can be stopped as soon as a solution
which is proven to be optimal is found, i.e., if the cost of
the best solution found so far is equal to a lower bound
for the original problem.

The overall algorithm MMT is structured as follows:

begin
Initialization Step

1. Compute lower boundLB;
2. SetS ′ = ∅;
Phase 1: Column Generation

3. Apply greedy heuristics, updateUB andS ′;
4. if LB = UB stop;
5. k := UB − 1;
6. while k ≥ LB
7. apply the Tabu Search Algorithm;
8. updateUB andS ′;
9. if no feasible solution of value k

has been foundthen break;
10. k := k − 1
11. endwhile;
Phase 2: Column Optimization

12. apply heuristic algorithm CFT to the Set Covering

instance corresponding to subfamilyS ′ with
a given time limit (possibly updating UB);

end.

A. Initialization Step: Lower Bounding

As lower boundLB we use the cardinality of a
maximal cliqueK of G.

Although this is the simplest lower bound for the
problem, the execution of our algorithm does not depend
on LB. Thus, stronger lower bounds could affect only
the stopping criterion of the algorithm. However, the
computing times of our algorithm on the test bed of
instances considered (see Section IV) are quite small,
and would be not reduced by computing better lower
bounds (which would be large time consuming, see for
instance Caramia and Dell’Olmo [8], [9]).

We computeLB as the maximum cardinality of the
maximal cliques ofG obtained by executing several
times (say 10), with different random orderings of the
vertices, the following greedy algorithm, which defines
a maximal cliqueK. Let vi be the i-th vertex of the
considered ordering, LB the incumbent value of the
lower bound andη(vi) the number of vertices inK that
are adjacent tovi. While the incumbent cliqueK can
be expanded (line 2), we insert inK the first vertex
of maximum degree of the considered ordering, if this
insertion will improve on the best incumbentLB:

begin
1. K = ∅;
2. while (|K| = maxi:vi∈V \K η(vi))
3. j = min(arg maxi:vi∈V \K and δ(vi)≥LB η(vi));
6. if no suchj existsthen break;
4. K := K ∪ {vj}
7. end while;
end.

B. Phase 1: Heuristic Generation

It is known that the solution found by a greedy algo-
rithm for VCP depends on the order in which vertices
are given in input. In our approach we perform several
iterations (say 500) of the greedy procedures SEQ,
DSATUR, RLF [22] with different random orderings of
the vertices.

SEQ is the simplest greedy algorithm for VCP. As-
sume that the vertices are labelledv1, ..., vn. Vertex
v1 is assigned to the first color class, and thereafter,
vertexvi (i = 1, ..., n) is assigned to the lowest indexed
color class that contains no vertices adjacent tovi.
Generally, algorithm SEQ does not procedure solutions
of high quality; however, this algorithm is very fast and

380 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

it generates independent sets that are useful in phase 2
of the algorithm.

DSATUR [5], [22] is similar to SEQ, but dynamically
chooses the vertex to color next, picking the first vertex
that is adjacent to the largest number of distinctly col-
ored vertices (i.e. the vertex with maximum chromatic
degree).

The Recursive Largest First(RLF) algorithm [22],
[25] colors the vertices one class at a time, in the
following greedy way. LetC be the next color class to
be constructed,V ′ the set of uncolored vertices that can
legally be placed inC, andU the set (initially empty)
of uncolored vertices that cannot legally be placed inC.

• Choose the first vertexv0 ∈ V ′ that has the
maximum number of adjacent vertices inV ′. Place
v0 in C and move all the verticesu ∈ V ′ that are
adjacent tov0 from V ′ to U .

• While V ′ remains nonempty, do the following:
choose the first vertexv ∈ V ′ that has the maximum
number of adjacent vertices inU ; add v to C and
move all the verticesu ∈ V ′ that are adjacent tov
from V ′ to U .

C. Phase 1: Tabu Search Algorithm

To find high quality columns and improve on the
solutions found by the greedy heuristics, we use a Tabu
Search procedure, a metaheuristic technique that showed
a very good experimental behavior on hard combinatorial
optimization problems.

A local search procedure can be seen as the result of
three main components:

• the definition of a solutionS;
• the solution evaluating functionf(S);
• the solution neighborhoodN(S).

In the simple local search procedures, given a solution
S the algorithm explores its neighborhoodN(S) and
moves to the best (according to the evaluating function
f(S)) improving solutionS′ ∈ N(S). If a solutionS is
the best of its neighborhood, i.e. it is a local optimum, the
local search algorithm is not able to move and the search
is stopped. In Tabu Search procedures, to avoid local
optimum traps, the algorithm moves to the best solution
S′ in the neighborhood, even if it is not improving the
current solution. To avoid cycling, some attributes of
solution S′ are stored in aTabu List; for a specified
number of iterations (the so calledTabu Tenure) a solu-
tion which presents tabu attributes is declared tabu and
is not considered, except in the case it would improve
the best incumbent solution (aspiration criterion). Most
of the Tabu Search algorithms proposed so far for VCP
move between infeasible solutions, i.e. they partition the

set V in subsets which are not necessary independent
sets, trying to reduce the number of infeasibilities in
every subset. Following an idea by Morgenstern [29], we
propose a Tabu Search procedure which moves between
partial feasible colorings, i.e. solutions in which each
vertex subset is an independent set but not all vertices
are assigned to subsets. In [29] Morgenstern defines
the Impasse Class Neighborhood, a structure used to
improve a partialk coloring to a complete coloring of
the same value. TheImpasse Classrequires a target value
k for the number of colors to be used. A solutionS is a
partition of V in k + 1 color classes{V1, ..., Vk, Vk+1}
in which all classes, but possibly the last one, are
independent sets. This means that the firstk classes
constitute a partial feasiblek coloring, while all vertices
that do not fit in the firstk classes are in the last one.
Making this last class empty gives a complete feasible
k coloring. To move from a solutionS to a new solution
S′ ∈ N(S) one can randomly choose an uncolored
vertexv ∈ Vk+1, assignv to a different color class, say
h, and move to classk + 1 all verticesv′ in classh that
are adjacent tov. This assures that color classh remains
feasible. Classh is chosen by comparing different target
classes by mean of the evaluating functionf(S). Rather
than simply minimizing| Vk+1 | it seems a better idea
to minimize the value:

f(S) =
∑

w∈VK+1

δ(w) (5)

This forces vertices having small degree, which are
easier to color, to enter classk+1. Morgenstern uses this
idea, together with a procedure for the recombination of
the solutions, to build a simulated annealing algorithm.
We use the same idea within a Tabu Search approach.
At every iteration we move from a solutionS to the best
solution S′ ∈ N(S) (even if f(S) < f(S′)). To avoid
cycling, we use the following tabu rule: a vertexv cannot
take the same colorh it took at least one of the last T
iterations; for this purpose we store in a tabu list the pair
(v, h). While pair (v, h) remains in the tabu list, vertex
v cannot be assigned to color classh. We also use an
Aspiration Criterion: a tabu move can be performed if
it improves on the best solution encountered so far. A
Tabu Search algorithm based on the same neighborhood
structure was experimented by Blöchliger and Zufferey
[2]: in this work the next vertex to color is not chosen
randomly, but selected so that it, entering the best color
class, produces the best solution in the neighborhood.
This approach explores the all neighborhood reducing at
the same time the randomness introduced in the search.
Thus, to maintain some randomness, the authors use an
evaluating function that simply minimizes| Vk+1 |.

Enrico Malaguti et al. 381

Our Tabu Search algorithm takes in input:

• graphG(V, E);
• the target valuek for the coloring;
• a feasible partialk coloring;
• the maximum numberL of iterations to be per-

formed ;
• the tabu tenureT .

If the algorithm solves the problem withintabuiter
iterations it gives on output the feasible coloring of value
k, otherwise it gives in output the best scored partial
coloring found during the search.

Let S be the current solution andS∗ the best in-
cumbent solution. The Tabu Search algorithm works as
follows:

begin
1. initialize a solutionS = {V1, ..., Vk, Vk+1};
2. S∗ := S;
3. tabulist := ∅;
4. for (iterations = 1 to L)
5. randomly select an uncolored vertexv ∈ Vk+1;
6. for each j ∈ {1, ..., k} (exploreN(S))
7. V

′

j := Vj \ {w ∈ Vj : (v, w) ∈ E} ∪ {v};
V

′

k+1 := Vk+1 \ {v} ∪ {w ∈ Vj : (v, w) ∈ E};
8. Sj = S \ {Vj , Vk+1} ∪ {V

′

j , V
′

k+1}

9. end for;
10. h := arg minj:(v,j)/∈tabulist or f(Sj)<f(S∗) f(Sj);
11. if no suchh existsthen

h := arg minj∈{1,...,k} f(Sj);
12. S := Sh;
13. insert(v, h) in tabulist,

(v, h) is tabu forT iterations;
14. if f(S) < f(S∗) then S∗ := S;
15. if Vk+1 = ∅ then return S∗

16. end for;
17. return S∗

end.

At line 10 we try to select the best color class which
improves on the best solution so far or does not represent
a tabu move. If all moves are tabu, at line 11 we simply
select the best color class.

Our Tabu Search algorithm is very simple and requires
as parameter to be experimentally tuned only the tabu
tenureT . At the same time it has a good experimental
behavior, since it is often able to find good solutions in
very short computing times (see section IV-A). All exper-
iments were performed starting the computation with the
best solution found by the greedy algorithms previously
executed. Preliminary computational experiments (refer
to the full paper for a deeper analysis) show that the
algorithm generally needs a small number of iterations

to solve the problem, and when this does not occur,
seldom the algorithm is able to solve the problem even
if a bigger number of iterations is allowed. In particular
it seems that the Tabu Search is not able to move from a
region of the solution space to explore the whole solution
space. This behavior can be explained by the aggressive
strategy adopted, which should make the Tabu Search
much useful if initialized with a good quality solution
or combined with a suitable diversification strategy.

III. PHASE 2: COLUMN OPTIMIZATION

If the incumbent solution found in phase 1 is not
proved to be optimal, phase 2 is executed in order to
improve the value of the solution. This phase is based
on the Integer Linear Programming formulation of VCP
presented in Section I-A, which is solved through the
heuristic algorithm CFT [6]. This iterative algorithm
can handle very large Set Covering instances, producing
good (possibly optimal) solutions within a reasonable
amount of computing time. Moreover, algorithm CFT
computes an “internal” lower bound (not valid for VCP)
on the value of the optimal solution of the corresponding
Set Covering instance and its execution can be stopped
as soon as this lower bound equals the value of the best
incumbent solution for VCP. Of course optimality for
SCP does not imply optimality for the original problem,
because we do not enumerate all the independent sets of
G.

Generally the global number of independent sets
(columns) generated in phase 1 is very large and could
ask for excessive memory requirements and computing
time to perform the hashing. Hence we decided to
consider as candidate for insertion inS ′ only the inde-
pendent sets generated by the initial greedy algorithms
and those corresponding to the feasible solutions found
by the Tabu search algorithm.

Computational experiments showed that this choice,
that privileges independent sets corresponding to solu-
tions which tend to have high diversity each other (on
the complete set of instances, approximately 50% of the
independent sets generated are stored inS ′ after the
execution of the hashing procedure), did not affect the
effectiveness of phase 2 while reducing considerably the
computation time and avoiding memory problems.

IV. COMPUTATIONAL ANALYSIS

The Tabu Search algorithm described in section II-
C was coded in ANSI C and compiled with full op-
timization option; all other procedures, including algo-
rithm CFT [6], were coded in ANSI FORTRAN77 and
compiled with full optimization option. The programs

382 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

were run on a PIV 2.4MHz with 512MB RAM under
Windows XP and tested on theDIMACS benchmark
graph instances[1], [23]. These instances correspond
to different graph types used for evaluating the per-
formance of VCP algorithms. In particular this set
of instances contains random graphs (DSJCn.x), geo-
metric random graphs (DSJRn.x and Rn.x[c]), “quasi-
random” graphs (flatn x 0), artificial graphs (len x
and latinsquare10), graphs from real life applications
(school1 and school1nsh). All the computing times
reported in this section are expressed in seconds of a
PIV 2.4GHz. To allow a meaningful - although approx-
imate - comparison on results obtained with different
machines a benchmark program (dfmax), together with
a benchmark instance (r500.5), are available. Computing
times obtained on different machines can be scaled
w.r.t. the performance obtained on this program (our
machine spent 7 seconds user time). To perform our
computational experiments we selected the subset of
DIMACS instances considered by the papers describing
the most effective heuristic algorithms for VCP.

A. Performance of the Overall MMT Algorithm

In this section we report the experimental results
obtained with the preliminary version of the MMT
Algorithm . Since our algorithm uses random numbers,
we performed 4 runs with 4 different seeds for the
random number generator. The corresponding computa-
tional results are reported in Table I. Since the overall
algorithm works in optimization version, it always gives
on output a feasible solution and it does not require
a target valuek as input. In all the experiments, the
Tabu Search was initialized with the best solution found
in phase 1, the tabu tenure for every pair(v, h) was
composed by a constant component of 30 and a random
component with uniform distribution between 0 and 10
(an ad hoc tuning of this parameter for each instance
did not produce considerable improvements in the best
solutions obtained, so we preferred to use a value which
gave robust behavior on all the set of instances), the
number of Tabu Search iterations was 10000 timesn for
each considered graph. The time limit of phase 2 was
set equal to 100 seconds. For every instance, we report
the best known solution value ever found in the literature
(in bold when it corresponds to the optimal value), the
lower boundLB computed during the initialization, the
average solution value after phase 1, the best solution
value after phase 1, the average solution value after phase
2, the best solution value after phase 2 (these values are
reported only if optimality is not proven during phase 1
and phase 2 is executed) and the average total computing
time.

When optimality is not proven in phase 1 (i.e. when
the solution value after phase 1 is greater than LB)
and phase 2 does not improve the incumbent solution,
the Tabu Search algorithm has performed one useless
iteration up to the iteration limit, spending an important
amount of computing time, after the last successful
iteration; e.g. for instance DSJC125.1 the final solution is
found on average after less than 1 second, but optimality
is not proven and 4 seconds are spent trying to improve
on this solution. On the contrary, when phase 2 improves
the solution or optimality is proven in phase 1 (which
happens for all the le4505x, le45015x instances and for
school1), the time of the last improvement corresponds
to the total computing time.

The main aspect turning out from Table I is the
effectiveness of phase 2, which 8 times is able to improve
the solution of phase 1. In particular phase 2 brings the
MMT Algorithm to solve for the first time, to proven op-
timality, instance r1000.5. In synthesis, algorithm MMT,
on the complete set of the 42 considered instances, 1 time
improves on the best known solution in the literature, 31
times finds the best known solution in the literature and
for 10 instances finds a worse solution.

B. Comparison with the most effective heuristic algo-
rithms

In Tables II we compare the performance of our
algorithm with the heuristic algorithms that, to the best
of our knowledge, represent the state of the art for VCP.
For every considered instance, we report the value of the
best known solution found in the literature (in bold when
it is the proven optimal value). All these solutions were
found by the algorithms considered in our comparison.
We report in Table II the computational results of:

• The Impassealgorithm by Morgenstern [29], which
is actually composed by tree different algorithms
based on the idea ofImpasse Class Neighborhood.
These algorithms work in decision version and
require as input the target valuek for the coloring
and a couple of other parameters that are tuned
for every instance. For each instance considered in
[29] we report the smallest value ofk for which
no failure occurred over 5 runs and the average
running time to solve the instance, scaled w.r.t the
benchmark problem.

• The HCA (Hybrid Coloring Algorithm) by Galinier
and Hao [18]. HCA requires as input the target
value k for the coloring and a couple of others
parameters that are tuned for every instance. For
each instance considered in [18] we report the
smallest value ofk for which there was at least one

Enrico Malaguti et al. 383

TABLE I

PERFORMANCE OF THEALGORITHM MMT.

Instance name n m best (χ) LB avg k bestk avg k bestk avg total
phase 1 phase 1 phase 2 phase 2 time

DSJC125.1 125 736 5 4 5.00 5 5.00 5 5
DSJC125.5 125 3891 17 9 17.00 17 17.00 17 108
DSJC125.9 125 6961 44 32 44.00 44 44.00 44 110
DSJC250.1 250 3218 8 4 8.00 8 8.00 8 9
DSJC250.5 250 15668 28 10 29.00 29 29.00 29 51
DSJC250.9 250 27897 72 36 72.75 72 72.75 72 96
DSJC500.1 500 12458 12 5 13.00 13 13.00 13 60
DSJC500.5 500 62624 48 11 51.25 51 51.25 51 202
DSJC500.9 500 112437 127 44 130.00 129 128.00 128 661
DSJC1000.1 1000 49629 20 5 21.00 21 21.00 21 150
DSJC1000.5 1000 249826 83 12 92.50 92 92.50 92 1104
DSJC1000.9 1000 449449 224 52 271.75 263 225.00 225 4419
DSJR500.1 500 3555 12 12 12.00 12 0

DSJR500.1C 500 121275 85 69 87.25 85 85.00 85 434
DSJR500.5 500 58862 122 121 124.00 124 122.00 122 416
le45015a 450 8168 15 15 15.00 15 12
le45015b 450 8169 15 15 15.00 15 12
le45015c 450 16680 15 15 15.00 15 22
le45015d 450 16750 15 15 15.00 15 23
le45025c 450 17343 26 25 26.00 26 26.00 26 134
le45025d 450 17425 26 25 26.00 26 26.00 26 134
le4505a 450 5714 5 5 5.00 5 7
le4505b 450 5734 5 5 5.00 5 0
le4505d 450 9757 5 5 5.00 5 0
r125.1 125 209 5 5 5.00 5 0
r125.1c 125 7501 46 44 46.00 46 9
r125.5 125 3838 36 36 36.00 36 1
r250.1 250 867 8 8 8.00 8 0
r250.1c 250 30227 64 59 64.00 64 53
r250.5 250 14849 65 65 66.00 66 65.00 65 50
r1000.1 1000 14378 20 20 20.00 20 16
r1000.1c 1000 485090 98 73 98.25 98 98.00 98 1979
r1000.5 1000 238267 237 234 238.0 238 235.00 234 2298
school1 385 19095 14 14 14.00 14 0

school1nsh 352 14612 14 14 14.00 14 0
latin square10 900 307350 99 90 108.75 108 101.75 101 1435
flat30020 0 300 21375 20 10 20.00 20 40
flat30026 0 300 21633 26 10 26.00 26 42
flat30028 0 300 21695 28 10 31.75 31 31.75 31 70
flat100050 0 1000 245000 50 13 50.00 50 50.00 50 1024
flat100060 0 1000 245830 60 12 60.00 60 60.00 60 1107
flat100076 0 1000 246708 83 12 91.25 91 91.25 91 1086

successful run over 10 (or 5) runs (succ.), and an
approximate average running time for the successful
runs (we divided the reported time, obtained on an
UltraSPARC-IIi 333MHz with 128MB RAM, for
which the authors do not report the performance
on the benchmark problem, by 6, following the
performance ratio reported by Dongarra [14] for
machines similar to those used in [18] and in our
experiments). We report also the best solution val-
ues found during the complete set of computational
experiments performed on the algorithm (for which
the computing times and the number of successful

runs are not given).
• The PC (Partialcol) and RPC (React-Partialcol) al-

gorithms by Bl̈ochliger and Zufferey [2] are Tabu
Search algorithms, based on the idea ofImpasse
Class Neighborhood[29], which implement a dy-
namic and reactive tabu tenure, respectively, and
require as input parameter only the target valuek
for the coloring. For each instance considered in [2]
we report the smallest value ofk for which there
was at least one successful run over 10 runs (succ.)
of each of the two algorithms, and an approximate
average running time for the successful runs of the

384 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

best algoritmh (considering as best the algorithm
which finds the best solution value, breaking ties
by considering first the number of successful runs
and then the computing time). The computational
experiments were carried out on different Linux sys-
tems mostly running on a PIV 2GHz with 512MB
RAM, whose performance is similar (and directly
comparable) to that of the machine used in our
experiments.

• The MIPS-CLR (MInimal-state Processing Search
algorithm for the graph CoLoRing problem) by
Funabiki and Higashino [17]. This algorithm works
in optimization version but requires as input the
target valuekinit for the coloring, together with
some other parameters whose values are tuned for
hard instances. If the algorithm is not able to solve
the problem withkinit colors, it dynamically modi-
fies this target value. We report the results obtained
giving the target valuekinit as external input, the
best value (bestk) found over the 5 runs, the average
solution value (avgk) and the average running time
approximately scaled w.r.t the benchmark problem
(we run the benchmark problem on a machine
similar to the one used in [17], which spent 17
seconds user time to solve the benchmark problem).

• The MMT algorithm, whose performance is sum-
marized reporting the best value (bestk) over 4
runs, the average value ofk (avgk) and the average
computing time up to the time limit or to proven
optimality.

To compare with a single index the performance of the
different algorithms considered in this paper, we compute
the average ratio between the solution value and the
best known solution value from the literaturek/best.
This ratio always refers to the best results reported, for
the corresponding instance, in the associated paper (i.e.
k for Impasse [29], HCA [18] and PC-RPC [2], bestk
for MIPS-CLR [17]) and the best solution value found
by the Tabu Search algorithm, and algorithm MMT.
Since Morgenstern [29], Galinier and Hao [18] and
Blöchliger and Zufferey [2] did not consider the entire
set of instances, in Table III we compare our results
with those of the other algorithms on the common subset
of instances. Tables II and III confirm the effectiveness
of this preliminary version of algorithm MMT which
produces, within acceptable computing time, solutions
slightly worse (in particular for random instances) than
those of the most effective algorithms for VCP. However,
it has to be pointed that algorithm MMT does not require
a fine tuning of many parameters, as is the case for most
of the algorithms for VCP in the literature.

V. CONCLUSIONS

In this paper we presented the two phases metaheuris-
tic algorithm MMT for the Vertex Coloring Problem.
The first phase of MMT applies in sequence fast greedy
heuristics and a Tabu Search procedure; the second phase
is a post optimization phase based on the Set Covering
formulation of the problem.

Extensive computational experiments performed on 42
hard instances from the well known DIMACS bench-
mark graph instances show the effectiveness of the
approach and the capacity of phase 2 of improving the
solution of phase 1 in 8 instances. In particular phase 2
brings the MMT Algorithm to solve for the first time,
to proven optimality, instance r1000.5. The best known
solution values are still found in 31 of the remaining 41
instances.

The main deficiency of our approach is that, when
optimality is not proven, the Tabu Search algorithm
continues the computation up to the iteration limit, even
if the problem is yet solved or the search region has
been deeply explored. In particular it seems that the Tabu
Search is not able to move from a region of the solution
space to explore the whole solution space. Thus, future
work will deal with the development of new effective
procedures to diversify the search performed by the Tabu
Search.

ACKNOWLEDGEMENTS

The authors would like to thank Luca Agostini for his
help in programming.

REFERENCES

[1] Ftp://dimacs.rutgers.edu/pub/challenge/graph/.
[2] I. Bl öchliger and N. Zufferey, “A reactive tabu search using par-

tial solutions for the graph coloring problem,” Ecole Polytech-
nique F́ed́erale de Lausanne (EPFL), Recherche Opérationnelle
Sud-Est (ROSE), CH-1015 Lausanne, Switzerland, Tech. Rep.
04/03, 2004.

[3] L. Bodin, B. Golden, A. Assad, and M. Ball, “Routing and
scheduling of vehicles and crews: the state of the art,”Comput-
ers and Operations Research, vol. 10, pp. 63–211, 1983.

[4] B. Bollobàs and A. Thomason, “Random graphs of small order,”
Annals of Discrete Mathematics, vol. 28, pp. 47–97, 1985.

[5] D. Brèlaz, “New methods to color the vertices of a graph,”
Communications of the ACM, vol. 22, no. 4, pp. 251–256, 1979.

[6] A. Caprara, M. Fischetti, and P. Toth, “A heuristic method for
the set covering problem,”Operations Research, vol. 47, pp.
730–743, 1999.

[7] M. Caramia and P. Dell’Olmo, “A fast and simple local search
for graph coloring,”Proc. of the 3d Workshop on Algorithm
Engineering WAE’99, Lecture Notes in Computer Science, vol.
1668, pp. 319–313, 1999.

[8] ——, “Constraint propagation in graph coloring,”Journal of
Heuristics, vol. 8, pp. 83–107, 2002.

[9] ——, “Bounding vertex coloring by truncated multistage branch
and bound,”Networks, pp. 231–242, 2004.

Enrico Malaguti et al. 385

TABLE II

PERFORMANCE OF THE MOST EFFECTIVE HEURISTICS.

Impasse [29] HCA [18] PC-RPC [2] MIPS-CLR [17] MMT
Instance name best k time succ. k time succ k time avg k bestk time avg k bestk time

DSJC125.1 5 5.0 5 0 5.00 5 5
DSJC125.5 17 17 1 17.0 17 1 17.00 17 108
DSJC125.9 44 44.0 44 0 44.00 44 110
DSJC250.1 8 8.0 8 5 8.00 8 9
DSJC250.5 28 28 22 9/10 28 13 28.4 28 14 29.00 29 51
DSJC250.9 72 72.4 72 31 72.75 72 96
DSJC500.1 12 10/10 12 120 12.4 12 84 13.00 13 60
DSJC500.5 48 49 660 5/10 48 268 1/10 49 720 49.4 49 349 51.25 51 202
DSJC500.9 127 2/10 127 1560127.8 127 480128.00 128 661
DSJC1000.1 20 ?/? 20 ? 1/10 20 2640 21.0 21 90 21.00 21 150
DSJC1000.5 83 89 1148 ?/? 83 2258 2/10 88 14400 89.0 88 4658 92.50 92 1104
DSJC1000.9 224 ?/? 224 ? 4/10 226 18000229.6 228 1565225.00 225 4419
DSJR500.1 12 12 0 12.0 12 0 12.00 12 0

DSJR500.1C 85 85 5 85.0 85 6 85.00 85 434
DSJR500.5 122 123 14 123.4 122 276 122.00 122 416
le45015a 15 15 0 15.0 15 1 15.00 15 12
le45015b 15 15 0 15.0 15 1 15.00 15 12
le45015c 15 15 5 6/10 15 8 10/10 15 2 15.2 15 11 15.00 15 22
le45015d 15 15 3 10/10 15 8 15.0 15 5 15.00 15 23
le45025c 26 10/10 26 5510/10 27 1 26.0 26 7 26.00 26 134
le45025d 26 10/10 27 1 26.4 26 1 26.00 26 134
le4505a 5 5.0 5 1 5.00 5 7
le4505b 5 5.0 5 2 5.00 5 0
le4505d 5 5.0 5 3 5.00 5 0
r125.1 5 5 0 5.0 5 0 5.00 5 0
r125.1c 46 46 0 46.0 46 0 46.00 46 9
r125.5 36 36 0 36.0 36 0 36.00 36 1
r250.1 8 8 0 8.0 8 0 8.00 8 0
r250.1c 64 64 0 64.0 64 2 64.00 64 53
r250.5 65 65 7 65.8 65 16 65.00 65 50
r1000.1 20 20 1 20.0 20 0 20.00 20 16
r1000.1c 98 98 46 98.8 98 557 98.00 98 1979
r1000.5 237241 77 238.6 237 1345234.00 235 2298
school1 14 14.0 14 0 14.00 14 0

school1nsh 14 14.0 14 1 14.00 14 0
latin square10 99 100.2 99 938101.75 101 1444
flat30020 0 20 20 0 10/10 20 0 20.0 20 2 20.00 20 40
flat30026 0 26 26 1 10/10 26 0 26.0 26 1 26.00 26 42
flat30028 0 28 31 156 6/10 31 20 3/10 28 420 31.0 31 133 31.75 31 73
flat100050 0 50 50 0 10/10 50 18 50.0 50 14 50.00 50 1024
flat100060 0 60 60 0 10/10 60 90 60.0 60 59 60.00 60 1107
flat100076 0 83 89 897 4/5 83 1471 5/10 87 18000 87.8 87 2499 94.5 91 1086

[10] F. Chow and J. Hennessy, “The priority-based coloring approach
to register allocation,”ACM Transactions on Programming
Languages and Systems, vol. 12, no. 4, pp. 501–536, 1990.

[11] J. Culberson and F. Luo, “Exploring the k-colorable landscape
with iterated greedy,” inCliques, Coloring, and Satisfiability:
2nd DIMACS Implementation Challange, 1993, ser. DIMACS
Series in Discrete Mathematics and Theoretical Computer Sci-
ence, D. Johnson and M. Trick, Eds. American Mathematical
Society, 1996.

[12] D. de Werra, “An introduction to timetabling,”European Jour-
nal of Operational Research, vol. 19, pp. 151–162, 1985.

[13] I. Diaz and P. Zabala, “A branch and cut algorithm for graph
coloring,” in Proceedings of the Computational Symposium
on Graph Coloring and its Generalization, Ithaca, New York,
2002.

[14] J. Dongarra, “Performance of various computers using standard

linear equations software, (linpack benchmark report),” Uni-
versity of Tennessee, Computer Science Department, Technical
Report CS-89-85, 2005.

[15] R. Dorne and J. Hao, “Tabu search for graph coloring, t-
coloring and set t-colorings,” inMeta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization, S. Voss,
S. Martello, I. Osman, and C. R. (eds.), Eds. Boston: Kluwer
Academic Publishers, 1998.

[16] C. Fleurent and J. Ferland, “Object-oriented implementation of
heuristic search methods for graph coloring,” inCliques, Col-
oring, and Satisfiability: 2nd DIMACS Implementation Chal-
lange, 1993, ser. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, D. Johnson and M. Trick, Eds.
American Mathematical Society, 1996.

[17] N. Funabiki and T. Higashino, “A minimal-state processing
search algorithm for graph coloring problems,”IEICE Trans.

386 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE III

AVERAGE GAP ON THE COMMON SUBSET OF INSTANCES.

Instance set from [29] Instance set from [18] Instance set from [2] Full instance set [17]
Impasse
avg gap 1.0114

HCA
avg gap 1.0163

PC-RPC
avg gap 1.0086

MIPS CLR

avg gap 1.0072

MMT Algorithm
avg gap 1.0139 1.0476 1.0325 1.01341

Fundamentals, vol. E83-A, no. 7, pp. 1420–1430, 1990.
[18] P. Galinier and J. Hao, “Hybrid evolutionary algorithms for

graph coloring,”Journal of Combinatorial Optimization, vol. 3,
no. 4, pp. 379–397, 1999.

[19] A. Gamst, “Some lower bounds for a class of frequency assign-
ment problems,”IEEE Transactions on Vehicular Technology,
vol. 35, no. 1, pp. 8–14, 1986.

[20] M. Garey and D. Johnson,Computers and Intractability: A
Guide to the Theory of NP-Completeness, ser. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science.
New York: Freedman, 1979.

[21] A. Hertz and D. de Werra, “Using tabu search techniques for
graph coloring,”Computing, vol. 39, pp. 345–351, 1987.

[22] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Opti-
mization by simulated annealing: an experimental evaluation;
part 2, graph coloring and number partitioning,”Operations
Research, vol. 39, no. 3, pp. 378–406, 1991.

[23] D. Johnson and M. T. (eds.),Cliques, Coloring, and Satis-
fiability: 2nd DIMACS Implementation Challange, 1993, ser.
DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science. American Mathematical Society, 1996.

[24] J. P. Kelly and J. Xu, “A set-partitioning-based heuristic for the
vehicle routing problem,”INFORMS Journal on Computing,
vol. 11, no. 2, pp. 161–172, 1999.

[25] F. Leighton, “A graph coloring algorithm for large sceduling
problems,” Journal of Research of the National Bureau of
Standards, vol. 84, no. 6, pp. 489–503, 1979.

[26] R. Marsten and F. Shepardson, “Exact solution of crew schedul-
ing problems using the set partitioning model: recent successful
applications,”Networks, vol. 112, pp. 167–177, 1981.

[27] A. Mehrotra and M. Trick, “A column generation approach for
graph coloring,”INFORMS Journal on Computing, vol. 8, pp.
344–354, 1996.

[28] M. Monaci and P. Toth, “A set-covering based heuristic ap-
proach for bin-packing problems,”INFORMS Journal on Com-
puting, (to appear).

[29] C. Morgenstern, “Distibuted coloration neighborhood search,”
in Cliques, Coloring, and Satisfiability: 2nd DIMACS Imple-
mentation Challange, 1993, ser. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, D. Johnson
and M. Trick, Eds. American Mathematical Society, 1996.

[30] T. Sager and S. Lin, “A pruning procedure for exact graph
coloring,” ORSA Journal on Computing, vol. 3, no. 3, pp. 226–
230, 1991.

[31] E. Sewell, “An improved algorithm for exact graph coloring,”
in Cliques, Coloring, and Satisfiability: 2nd DIMACS Imple-
mentation Challange, 1993, ser. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, D. Johnson
and M. Trick, Eds. American Mathematical Society, 1996.

[32] D. Wedelin, “An algorithm for large scale 0-1 integer program-
ming with application to airline crew scheduling,”Annals of
Operations Research, vol. 57, pp. 283–301, 1995.

[33] T. Woo, S. Su, and R. N. Wolfe, “Resource allocation in a
dynamically partitionable bus network using a graph coloring
algorithm,” IEEE Trans. Commun., vol. 39, no. 12, pp. 1794–
1801, 2002.

ORP3, VALENCIA, SEPTEMBER 6-10

387

Investigating inventory control tactics in two node capacitated
supply chains

Georgia Skintzi*, Gregory Prastacos† and George Ioannou‡

Athens University of Economics and Business
Department of Management Science and Technology

Evelpidon 47A & Lefkados 33, 113 62 Athens, Greece
*Email: gskintzi@aueb.gr

†Email: gpp@aueb.gr
‡Email: ioannou@aueb.gr

Abstract— In this paper we explore two alternative
inventory control policies, upstream managed inventory
and downstream managed inventory. Recent empirical
results indicate that in certain industries has been a
significant alteration in the perspective and the way
inventory is managed. In contrast with “traditional” supply
chains where the downstream node makes stock level
decisions and controls inventory there has been a tendency
in supply chain management to shift inventory decisions
and control to the upstream. We consider a two-node
supply chain that consists of one upstream node
(manufacturer) and one downstream node (retailer). We
examine two cases of inventory control, in the first case the
downstream node is responsible for inventory decisions and
bears the burden of inventory holding while in the second
case the upstream node is responsible for deciding the stock
level and hold inventory.
Keywords - Supply chain management, Inventory, Vendor
managed inventory.

Ι. INTRODUCTION

NVENTORY theory has been an influential
research topic since the seminal work of [2] that

triggered and stimulated a vast literature on
dynamic inventory policy [1]. During the last two
decades inventory theory and specifically inventory
control found a fertile ground to develop in the
context of supply chain management. [5] reviews
supply chain inventory management models. The
authors classified models into six categories
according to the aspects they address: multiple
retailers with stochastic demand, multiple retailers
with deterministic demand, capacity allocation,
information and production timing, internal
markets, vendor managed inventories. During the
last decade technological advancements coupled
with the pressure of globalization and fierce
competition have forced organizations towards new

business models revealing the benefits of
cooperation and information sharing. In this context
new inventory models have evolved and put into
practice.

In the business world, there has been recorder an
increased tendency to transfer inventory decisions
upstream in the supply chain in contrast with
“traditional” inventory practices where the
downstream node makes stock level decisions and
controls inventory. In [17] the authors list the new
innovative approaches: Click and Mortar (CAM),
Drop-Shipping (DS), Vendor Managed Inventory
(VMI), Consignment VMI, and Vendor Hub.
Empirical research indicates that upstream
inventory control has been successfully employed
by numerous organizations. CAM has been adopted
by pharmaceutical chain CVS, the electronics
retailer Circuit City [18] and Virgin’s V Shops [16].
VMI has been successfully implemented in the
grocery industry [10], [6] and [22]resulting in most
cases in improved performance, cost reduction, and
increased service levels. Other VMI success stories
include the apparel sector, the household appliances
sector, and the electronics industry. In all cases has
been recorded a considerable decrease in inventory
and increase in service levels.

The large number of applications and empirical
research of upstream inventory control indicate the
significance of the approach and the need for
theoretical background. Although the inventory
control literature is vast, only recently has it been
extended to incorporate the new trends in practical
inventory control. Literature mainly examines

I

388 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

supplier/manufacturer-retailer supply chains [4], [6]
and [19] focusing on retailers or manufacturers
competition and supplier-manufacturer supply
chains [14], [20], and [9], inventory costs and
supplier contracts. [11] and [12] have investigated
the implications of upstream inventory control on
the Bullwhip effect suggesting that VMI may be
employed to effectively respond to demand
fluctuations and therefore, to the bullwhip effect.
Several authors have also investigated the
implications of vendor managed inventory on
transportation operations [8], [7], [13], and [21].

The problem we address in this chapter emanates
from the inventory control literature. We consider a
two-node supply chain that consists of one upstream
node (manufacturer) and one downstream node
(retailer). The manufacturer produces a single
product and provides it to the next supply chain
node, the retailer. When demand is realized the
retailer forwards the products to the market. We
examine two cases of inventory control: in the first
case the downstream node is responsible for
inventory decisions and bears the burden of
inventory holding while in the second case the
upstream node is responsible for deciding the stock
level and hold inventory. We explore the
implications in production and inventory levels in
both cases and propose specific directions for
managing inventories. It should be highlighted that
the optimization models were developed in game
theoretical settings. The members of the supply
chain do not passively react to given parameters but
dynamically set their strategy in order to maximize
their profits.

The remaining of the paper is organized as follows.
In section II the problem is described in detail. In
section III the optimization models and the results
are presented. In section IV the results are discussed
and analyzed. Finally section V provides some
concluding remarks and future directions.

IΙ. PROBLEM DEFINITION: WHO SHOULD CONTROL

INVENTORIES?

We consider a typical serial supply chain that
consists of one manufacturer (upstream node), one
retailer (downstream node) and one warehouse
(buffer node). The manufacturer produces a single

product and provides it to the next supply chain
node, the retailer. When demand is realized the
retailer forwards the products to the market. We
consider a time horizon of one period. At the
beginning of the period the capacity is decided and
the warehouse is build by the node that controls
inventory and production is realized by the
upstream node. At the end of the period demand is
revealed, the downstream node decides the quantity
that will be sold and releases the products to the
market. During the period, products are stored in the
warehouse. According to who has the control of the
warehouse, the wholesale price of inventory is
decided by the upstream node at the beginning or at
the end of the period. We examine both cases of
downstream and upstream control. Figure 1
represents the supply chain configurations in case
the downstream or the upstream node controls
inventory.

Fig. 1. Supply chain representation in case
downstream node controls inventory and in case
upstream node controls inventory

A. The case of downstream control
In case the downstream node controls inventory the
problem of the downstream node is to determine the
capacity of the warehouse at the beginning of the
period and the amount of inventory released in the
market at the end of the period given the wholesale
price of the product, the costs of building and
operating the warehouse and the cost of holding the
inventory in order to maximize his profits, given
inventory constraints (he cannot release to the
market quantity greater than the quantity produced
and stored). The problem of the upstream node is to
determine the wholesale price of products and the
level of production at the beginning of the period,
given the cost of production and that the

Georgia Skintzi et al. 389

downstream node will act rationally in order to
maximize his profits. We have assumed that the
capacity of the warehouse and the production size
are non-extensible after the completion of the
warehouse and the production process respectively.
Moreover, for simplicity we have assumed that
unsold items have no value and lost sales have no
penalty.
Figure 2 represents graphically the decision and
action process of the downstream and the upstream
node.

At the beginning of the period the downstream node
(D) determines the size of the warehouse, builds the
warehouse, places his orders for quantity equal to
the capacity of the warehouse and receives the
products. We assume that the production and the
transportation of the products are realized instantly.
“D” stores the products during the period and at the
end when demand is revealed the optimal quantity
to be released to the market is determined. The
upstream node at the beginning of the period
defines the wholesale price, produces, receives
orders and provides products to the downstream
node.

B. The case of upstream control
In case the upstream node controls inventory the
problem of the upstream node is to determine the
capacity of the warehouse and to produce at the
beginning of the period given the costs of building
and operating the warehouse, the cost of holding the
inventory and the cost of production. At the end of
period the manufacturer determines the wholesale
price of the product given that the downstream’ s
node optimal policy in order to maximize his
profits. The problem of the upstream node is to
define the optimal quantity of inventory released in
the market at the end of the period given the

wholesale price of the product in order to maximize
his profits, given inventory constraints (he cannot
release to the market quantity greater than the
quantity produced and stored). Similarly to the case
of downstream control we assume that the capacity
of the warehouse and the production size are non-
extensible after the completion of the warehouse
and the production process respectively. Moreover,
for simplicity we have assumed that unsold items
have no value and lost sales have no penalty.

Figure 3 below represents graphically the decision
and action process of the upstream and the
downstream node.

Fig. 2. Downstream’ s and upstream’ s action plans in case of downstream control

390 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

At the beginning of the period the upstream node
decides the capacity of the warehouse, builds the
warehouse and produces quantity equal to the
capacity of the warehouse. We assume that the
production is completed instantly. The manufacturer
stores the products during the period and at the end
defines the wholesale price and fills the downstream
node’ s orders. We assume that the transportation of
the products is realized instantly. The downstream
node at the end of the period when demand is
revealed determines the optimal quantity of
products to be released in the market, receives the
products and forwards them to the market.

In both cases the objective of the upstream and the
downstream node is to optimize their profits. The
retailer optimally solves his problem given the
wholesale price and subject to the inventory
constraints. The manufacturer maximizes his profits
subject to the optimal policy of the other player.

III. FORMULATING THE MODEL

We assume that the demand in period 1 is linear. P1
is the price of the product and q is the quantity of
inventory released in the market during period 1.
The inverse demand curve for period 1 is:

1P qα β= − (1)

To introduce uncertainty we will follow the analysis
proposed by [3] based on [15] and assume that α is
stochastic and follows a Bernoulli process:

, (high demand) with probability
, (low demand) with probability (1)

H

L

a p
a p

α
⎧⎪⎪= ⎨⎪ −⎪⎩

where aH>aL. In case demand is high then the price
of product will be higher than in case of low
demand, if the same quantity of inventory is
released. We also assume that there exists a traded
security that pays out aH euros in the high state (in
the case of high demand) and aL euros in the low
state (in the case of low demand). The price of such
security at time zero (0) is A0=aHeH+aLeL, where eH
is the Arrow Debreu state price corresponding to a
€1 payout in the case of high demand and €0
otherwise, and eL is the Arrow Debreu state price
corresponding to a €1 payout in the case of low
demand and €0 otherwise. Moreover, a riskless
bond exists that pays out €1 in period 1. The price
of such bond at date 0 is B0=eH+eL<1. The
existence of such traded securities allows the
pricing kernel to be uniquely determined. This
assumption allows us to perform the valuations
without regard to the specific risk preferences of the
manufacturer and even if there is no consensus on
the value of probabilities of high and low demand.

Fig. 3. Downstream’ s and upstream’ s action plans in case of upstream control

Georgia Skintzi et al. 391

Under the risk neutral measure the expected growth
of the traded security equals the risk free rate. In
this model the latter is determined by the two risk-
neutral probabilities pH=eH/B0, pL=eL/B0. Under this
measure the mean of the intercept term of the
demand curve is:
μα=Α0/Β0 (2)
and the variance is:

2 2 2
0[() /]()H L H Le e B a aασ = − (3)

We also have:

0 0(/)H A B αα σ ρ= + (4)

0 0(/) (1/)L A B αα σ ρ= − (5)
where
ρ=eL/eH (6)

A. The case of downstream control
At the beginning of the period the capacity of the
warehouse and the production size should be
determined while the demand is not known. At the
end of period 1 demand is revealed and the quantity
of inventory released should be determined subject
to inventory constraints, that is the downstream
node cannot release to the market quantity greater
than inventory kept. In period 1 the net cash flow
the downstream node receives is given below:

1 ()DDR q a qβ= − (7)

In (7) 1
DDR is the income the downstream node

receives from selling q units at price (a-βq).
In period 0 the net present value of the project,
considering that during period 0 the downstream
node determines the capacity of the warehouse and
during period 1 optimally manages the project, is
given below:

0

1 1

() ()

 E[]

D

D

DR K W iK MK HMK

DR D

=− + − −

+
 (8)

where D1 is the state dependant stochastic discount
rate (pricing kernel), W is the fixed cost and i is the
variable cost of building and operating the
warehouse. K is the capacity of the warehouse that
equals the amount of inventory held, the inventory
holding node will not build and operate a warehouse
greater nor smaller than the inventory that will be
held. M is the per unit cost of purchasing the
product from the upstream node. HMK is the
holding cost the downstream node bears. More
specifically, H is the cost of holding the inventory
expressed as a percentage of the purchasing cost M.

Therefore HM is the marginal holding cost. In
period 1 the downstream node will choose q in
order to maximize the net cash flow subject to
inventory constraints (he cannot sell more than what
he has produced).
Given eH and eL:

0

* *

* *

()

 [()]

 [()]

D

H H H H

L L L L

DR W iK MK HMK

e q a q

e q a q

β

β

=− + − −

+ −

+ −

 (9)

The objective of the manufacturer is to maximize
the net present value of the project by identifying
the size of inventory held and the capacity of the
warehouse and solving the problem of period 1
optimally subject to inventory constraints.

During period 0 the upstream node determines his
pricing policy by maximizing his revenues given
that during period 1 and 0 the downstream node
optimally manages his project. The net present
value of the downstream’ s node project is given
below:

0 ()UDR K M C= − (10)
where C is the per unit cost of production.
Summarizing, Downstream’ s node problem in
period 1: 10

Max ()D

q K
DR q

≤ ≤
 subject to inventory

constraint. Downstream’ s node problem in period
0: 00

Max ()D

K
DR K

≥
Upstream’ s node problem in

period 0: 00
Max ()U

M
DR M

≥

Proposition 1:
The optimal quantity of inventory released in the
market by the downstream node during period 1 is:

, if
2 2

*
, if

2

a a K
q

aK K

β β

β

⎧⎪⎪ <⎪⎪⎪=⎨⎪⎪ ≥⎪⎪⎪⎩

Proof: See Appendix

Proposition 2:
The optimal quantity of inventory held during
period 0 and the optimal capacity of the warehouse
build is:

392 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

0

0

(1) (), if
2 1

*
(1) (), if

2 1

H H L

H H H H L

H

A i M H e a a i
B H

K
e a i M H e a a i

e H

β

β

⎧ − − + − −⎪⎪ Μ>⎪⎪ +⎪=⎨⎪ − − + − −⎪ Μ<⎪⎪ +⎪⎩

Proof: See Appendix

Proposition 3:
The upstream’ s node optimal pricing policy is:

0 (1) , if
2(1)

*
(1) , if

2
H H

H

A i C H
H

M
e a i C H

e

σ σ

σ σ
β

⎧ − + +⎪⎪ <⎪⎪ +⎪=⎨⎪ − + +⎪ >⎪⎪⎪⎩

The downstream’ s node optimal response is:

0

0

(1) ,
2

*
(1) ,

2
H H

H

A i C H
B

K
e a i C H

e

σ σ
β

σ σ
β

⎧ − − +⎪⎪ <⎪⎪⎪=⎨⎪ − − +⎪ >⎪⎪⎪⎩

where

0

0

1
1 1 H

C i A
e B

ρ
σ ρ

ρ ρ

⎛ ⎞+ ⎟⎜ ⎟⎜= + + ⎟⎜ ⎟⎟⎜+ + + ⎝ ⎠

Proof: See Appendix

Table I summarizes the optimal capacity of the
warehouse, the optimal quantity of inventory and
the optimal amount of inventory released in the
market.

As a result of the above analysis the upstream node
will order K* units of inventory from the upstream
node and in case of low uncertainty will release to
the market all inventory while in case of high
uncertainty will release all his inventory if demand
proves to be high otherwise he will release quantity
equals to qL

*. It should be highlighted that, as
expected, in case of high uncertainty the inventory
held is greater than that in the case of low
uncertainty. Moreover the upstream node will
optimally respond to downstream’ s node ordering
policy by charging M* for his product. Notice that

the quantity the downstream node orders decreases
as the wholesale price increases.

B. The case of upstream control
During period 0, the capacity of the warehouse and
the production level (both controlled by the
upstream node in this case) should be determined,
while demand is not known. At the beginning of
period 1 demand is revealed and the quantity of
inventory released should be determined subject to
inventory constraints, that is the downstream node
cannot release to the market quantity greater than
the inventory available by the upstream node. In
period 1 the net cash flow the downstream node
receives is given below:

1 ()DUR q a q Mqβ= − − (11)

1
DUR is the income the downstream node receives

from selling q units at price (a-βq).

In period 0 the net present value of the upstream’ s
node project, considering that during period 1 the
downstream node determines the inventory released
to the market, is given below:

0

1 1

(,) ()

 E[]

U

D

UR K M W iK CK HCK

R D

=− + − −

+
 (12)

where HCK is the holding cost the upstream node
bears. More specifically, H is the cost of holding the
inventory expressed as a percentage of the
production cost C. Therefore, HC is the marginal
holding cost. It should be noted that the per unit
holding cost is less in case the upstream node
controls inventory since inventory cost is expressed
as a percentage of the value of inventory which
increases as we move down in the supply chain.
Hence, in case the downstream node controls
inventory the marginal inventory cost is HM while
in case the upstream node controls inventory the
marginal inventory cost is HC<HM.
Given eH and eL the net present value of the
upstream’ s node project is:

0
* * * *

()

[()] [()]

D

H H H H L L L L

UR W iK MK HMK

e q a q e q a qβ β

=− + − −

+ − + −
 (13)

The objective of the upstream node is to maximize
the net present value of the project by identifying
the size of inventory held and the price of the
product sold to the downstream node given that the

Georgia Skintzi et al. 393

downstream node optimally manages his project
during period 1 subject to inventory constraints (he
cannot sell more units than those produced by the
upstream node). Summarizing, Downstream’ s node
problem in period 1: 10

Max ()D

q K
UR q

≤ ≤
 subject to

inventory constraint. Upstream’ s node problem in
period 0: 00

Max (,)D

K
UR K M

≥

Proposition 4:
The optimal quantity of inventory released in the
market by the downstream node during period 1 is:

,
2 2

*
,

2

a a K
q

aK K

β β

β

⎧ −Μ −Μ⎪⎪ <⎪⎪⎪= ⎨⎪ −Μ⎪ ≥⎪⎪⎪⎩

Proof: See Appendix

Proposition 5:
The optimal quantity of inventory held during
period 0 and the optimal capacity of the warehouse
build is:

0

0

0

0

,
2

*
,

2

L L

L

H L

L

a M a BM
B e

K
a M a BM

B e

β

β

⎧ −⎪⎪ ≤⎪⎪ +⎪=⎨⎪ −⎪ >⎪⎪ +⎪⎩

Notice that as the price of product increases the
optimum capacity of inventory held also increases.

Proof: See Appendix

The upstream’ s node optimal pricing policy is:

0

0

0

0

(1) ,
2

*
(1) ,

2

La B i C H
B

M
A i C H

B

σ σ

σ σ

⎧ + + +⎪⎪ ≤⎪⎪⎪= ⎨⎪ + + +⎪ >⎪⎪⎪⎩

Therefore, the optimal quantity of inventory held
could be rewritten as:

0

0*

0 0

0

(1) ,
4

2 (1) ,
4

L

H

a B i C H
B

K
a B A i C H

B

σ σ
β

σ σ
β

⎧ − − +⎪⎪ ≤⎪⎪⎪= ⎨⎪ − − − +⎪ >⎪⎪⎪⎩

where

0 0 0

0 0

[(1)]()

H

A C H i B A
B e B

σ ρ
⎛ ⎞+ + + ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠

Proof: See Appendix

Table II summarizes the optimal capacity of the
warehouse, the optimal quantity of inventory and
the optimal amount of inventory released in the
market.

As a result of the above analysis the upstream node
will produce K* units and will charge M*. It should
be stressed that in case of low uncertainty the
quantity produced by the upstream node is greater
than in the case of high uncertainty. In addition the
downstream node will release to the market all
inventory in case of low uncertainty while in case of
high uncertainty he will release all his inventory if
demand proves to be high otherwise he will release
quantity equals to qL

*. Note that the quantity the
downstream node orders and releases to the market
decreases as the wholesale price increases.

IV. WHO SHOULD CONTROL INVENTORIES?

From the previous analysis certain direction may be
derived as to who should control inventory and in
what case.

(i) For the case of low demand uncertainty (σ σ<)
the downstream node will be better off in case of
upstream inventory control only if the initial
investment in warehousing facilities is greater than
the critical value W ′ ()W W ′> . The upstream

node will be better off in case he controls inventory
if the initial investment in warehousing facilities is
lower than the critical valueW ′ ()W W ′< . Since

W W′ ′< there is no solution that will lead to a
situation that both members of the supply chain are
better off.

394 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE I
RESULTS FOR THE CASE OF DOWNSTREAM INVENTORY CONTROL

Inventory
Released Standard

Deviation
Inventory/Capacity

(K) High
State

Low
State

Price of Inventory (M)

σ σ<
0

0

(1)
2

A i M H
Bβ

− − +
 K* K* 0 (1)

2(1)
A i C H

H
− + +

+

σ σ> (1)
2

H H

H

e a i M H
eβ

− − +
K*

2
La
β

(1)

2(1)
H He a i C H

H
− + +

+

TABLE II
RESULTS FOR THE CASE OF UPSTREAM INVENTORY CONTROL

Inventory
Released Standard

Deviation

Inventory/
Capacity

(K) High
State

Low
State

Price of Inventory (M)

aσ σ<
2

La M
β
−

 K* K* 0

0

(1)
2

La B i C H
B

+ + +

aσ σ>
2

Ha M
β
−

 K*
2

La M
β
− 0

0

(1)
2

A i C H
B

+ + +

On the contrary both players will be worse off if
W W W′ ′< < .
Where

2
0 0 0 0

0

(2) 3 2 ()
16

L L H H LA A a B a B e a aW
Bβ

− + + Φ −′ =

2

0 0

0

0 0 0 0

0

(1) [(1)
8 (1)

(1)] [(1)]
8 (1)

L L

B H A HW
B

a B H A B A a H
B

β

β

Φ − − +Φ −′ =
+Η

+ + − +
+

+Η

and Φ=[C(1+H)+i].

(ii) For the case of medium demand uncertainty
(σ σ σ< <) the downstream node will be better
off in case of upstream inventory control only if the
initial investment in warehousing facilities is greater
than the critical value W ′′ ()W W ′′> . The

upstream node will be better off in case he controls
inventory if the initial investment in warehousing
facilities is lower than the critical value W ′′

()W W ′′< In this case W W′′ ′′> . Both members

of the supply chain will be better off in case of
upstream inventory control if W W W′′ ′′< < .
Where

2
0

0

0 0 0

0

(1)()
8 (1)

[(2) (2)]
8 (1)

L

H H L L

H a BW
B

B e a A e a A
B

β

β

+ −Φ′′ =
+Η

+ +Φ Φ−
−

+Η

and

2

0
2

0 0

0

2 ()()
16

[3 (2) (4)]
16

H L H L

L L H H L H

a a e eW
B

B a B e e a a a
B

ρ
β

β

Φ + Φ − −′′ =

+ + −
−

.

(iii) For the case of high demand uncertainty

Georgia Skintzi et al. 395

(σ σ>) the downstream node will be better off in
case of upstream inventory control if the initial
investment in warehousing facilities is greater than
the critical value W ′′′ ()W W ′′′> .

The upstream node will be better off in case the
downstream node controls inventory if the initial
investment in warehousing facilities is lower than
the critical value W ′′′ ()W W ′′′< . In this case it is

not clear if W W′′′ ′′′< or W W′′′ ′′′> . Therefore,
for the case W W′′′ ′′′< there is no situation where
both members of the supply chain are better off,
while for the case W W′′′ ′′′> both are better off
when W W W′′′ ′′′< < .

Where

0 0

0
2 2

0 0

0

()()
8 (1)

(1)(8)
8 (1)

H H L LB e a A e aW
B

H B A
B

β

β
β

−Φ −Φ+′′′ =
+Η

+ Φ − −Φ
+

+Η

 and

2 2 2

0 0

0

0 0

0

(2 2 2 3)
16

4 () (1 4 4)
16

L H H L

H L H L L

B a B a a eW
B

e e a a A e A
B

ρ
β

β

Φ + Φ+ − +′′′ =

− + − −
−

Notice that the breaking points of standard deviation
alter as the inventory control policy changes. In case
the downstream node controls inventory

0

0

1
1 1 H

C i A
e B

ρ
σ ρ

ρ ρ

⎛ ⎞+ ⎟⎜ ⎟⎜= + + ⎟⎜ ⎟⎟⎜+ + + ⎝ ⎠
while in

case the upstream node controls inventory

0 0 0

0 0

[(1)]()

H

A C H i B A
B e B

σ ρ
⎛ ⎞+ + + ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠

, while

σ σ< . Moreover in case σ σ< and σ σ σ< <
the quantity of inventory kept and the capacity of
the warehouse is greater if the downstream node
controls inventory while if σ σ> then the quantity
of inventory kept and the capacity of the warehouse
is greater if the upstream node controls inventory.

V. CONCLUSIONS

Inventory control has traditionally been the main
leverage in the struggle to effectively respond to

demand uncertainty and fluctuations. Technological
advancements and the realization that each
company is part of one or more supply chains that
dictate its performance and effectiveness have
resulted to the adoption of cooperative strategies
through information sharing and contracting.
Empirical research indicates that has been a
significant alteration in the perspective and the way
inventory is managed, providing evidence that a
new inventory control policy has emerged called
vendor managed inventory or upstream inventory
control. While most research focuses either on case
studies and simulation models or on the impact of
VMI on transportation operations, bullwhip effect
and competition we explored the effects of upstream
inventory control in a manufacturer-retailer
capacitated supply chain under warehousing
considerations. Downstream and upstream
inventory control policies are analyzed and rules
that identify when each policy should be employed
are derived. In addition, the members of the supply
chain do not passively determine their optimal
policies but with respect to each others strategy in a
game theoretical setting. The optimization models
and the dynamic approach enlighten the dynamics
of upstream inventory control policies, explore the
implications in pricing, and in production and
inventory levels and propose specific directions for
managing inventory successfully.

REFERENCES

[1] Arrow, K.J., “The genesis of Optimal inventory

policy”. Operations Research, 2002, vol. 50,
no. 1, pp. 1-2.

[2] Arrow, K.J.; Harris, T. and Marschak, J.,
“Optimal inventory policy”, Econometrica,
1951, vol. 19, pp. 250-272.

[3] Burnetas, A., Ritchken, P., “Option Contracts in
Supply Chains”, 6th Annual Real Options
Conference. Paphos, Cyprus, July 2002
[Online]. Available:
http://www.realoptions.org/papers2002/burnetas
ritchken.pdf.

[4] Cachon, G.P., “Stock wars: Inventory
competition in a two-echelon supply chain with
multiple retailers”, Operations Research, 2001,
vol. 49, no. 5, pp. 658-674.

[5] Cachon, G.P., “Competitive supply chain
inventory management” in Quantitative Models
for Supply Chain Management. International

396 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Series in Operations Research and Management
Science, 17. Eds. Tayur, S., Ganeshan, R. and
Magazine. Kluwer Cambridge, 2002.

[6] Cachon, G.P. and Fisher, M.L., “Campbell
Soup’s continuous replenishment program:
Evaluation and enhanced inventory decision
rules”, Production and Operations Management
1997, 6, 266-276.

[7] Cetinkaya, S. and Lee, C.Y. “Stock
replenishment and shipment scheduling for
vendor-managed inventory systems”,
Management Science, 2000, vol. 46, no. 2, pp.
217-232.

[8] Cheung, K.L. and Lee, H.L. “The inventory
benefit of shipment coordination and stock
rebalancing a supply chain”, Management
Science, 2002, vol. 48, no. 2, pp. 300-306.

[9] Choi, K.S.; Dai, J.G. and Song, J.S., “On
measuring supplier performance under vendor-
managed-inventory programs in capacitated
supply chains”, Manufacturing & Service
Operations Management, 2004, vol. 6, no. 1,
pp. 53-72.

[10] Clark, T.H. and Hammond, J.H.
“Reengineering channel reordering processes to
improve total supply chain performance”
Production and Operations Management, 1997,
vol. 6, no. 3, pp. 248-265.

[11] Disney, S.M. and Towill, D.R. “The effect
of vendor managed inventory (VMI) dynamics
on the Bullwhip Effect in supply chains”,
International Journal of Production Economics,
2003(a), vol. 85, pp. 199-215.

[12] Disney, S.M. and Towill, D.R., “Vendor-
managed inventory and bullwhip reduction in a
two-level supply chain”. International Journal
of Operations & Production Management,
2003(b), vol. 23, no. 6, pp. 625-651.

[13] Disney, S.M.; Potter, A.T.; and Gardner,
B.M., “The impact of vendor managed

inventory of transport operations”, Transport
Research Part E. 2003, vol. 39, pp. 363-380.

[14] Dong, Y. and Xu, K., “A supply chain
model of vendor managed inventory”,
Transportation Research Part E, 2002, vol. 38,
pp. 75-95.

[15] Duffie D., Dynamic Asset Pricing Theory.
Princeton University Press, 1996.

[16] Jardine, A. and Anderson, A.C., “Virgin to
sell online brands in V Shop”, Marketing. 2002,
vol. 7, pp. 168.

[17] Lee, C.C. and Chu, W.H., “Who should
control inventory in a supply chain?” European
Journal of Operational Research, 2005, vol.
164, pp. 158-172.

[18] Lee, H.L. and Whang, S., “Value of
postponement from variability reduction
through uncertainty resolution and forecast
improvement” in Product Variety Management:
Research Advances. Ho, T. and Tang, C. (Eds.)
Kluwer Publishers, Boston., 1998, pp. 66-84.

[19] Mishra, B.K. and Raghunathan, S.,
“Retailer- vs. Vendor- managed inventory and
brand competition”, Management Science,
2004, vol. 50,no. 4, pp. 445-457.

[20] Pohlen, T.L. and Goldsby, T.J., “VMI and
SMI programs. How economic value added can
help sell the change” International Journal of
Physical Distribution & Logistics Management,
2003, vol. 33, no. 7, pp. 565-581.

[21] Rusdiansyah, A. and Tsao, D., “An
integrated model of the periodic delivery
problems for vending-machine supply chains”,
Journal of Food Engineering. 2005, to be
published.

[22] Tyan, J. and Wee, H.M., “Vendor managed
inventory: a survey of the Taiwanese grocery
industry” Journal of Purchasing and Supply
Management, 2005, To be published.

APPENDIX

PROOF OF PROPOSITION 1
In period 1 the downstream node solves the problem:

10
Max ()=()D

q
DR q a q qβ

≥
− (1.1)

subject to the constraint q K≤ (1.2)
In case we did not have a capacity constraint the optimal solution would be:

*

2
H

H
aq
β

= , in case of high demand (1.3)

Georgia Skintzi et al. 397

*

2
L

L
aq
β

= , in case of low demand (1.4)

Taking into consideration the capacity constraint the optimal solution is:

, if
2 2

*
, if

2

a a K
q

aK K

β β

β

⎧⎪⎪ <⎪⎪⎪⎪=⎨⎪⎪ ≥⎪⎪⎪⎪⎩

 (1.5)

PROOF OF PROPOSITION 2

In period 0 the downstream node solves the problem:

* *
00

* *

Max D () () [()]

 [()]

D
H H H HK

L L L L

R K W iK MK HMK e q a q

e q a q

β

β
≥

=− + − − + −

+ −
 (2.1)

subject to the constraints
*
Hq K≤ (2.2)
*
Lq K≤ (2.3)

We should consider three cases:

0
2

LaK
β

< ≤ (2.4)

2 2
L Ha aK
β β
< ≤ (2.5)

2
Ha K
β
< (2.6)

Case (2.6) is not applicable since it suggests that the capacity of the warehouse the manufacturer will build will
be larger than the largest possible optimal quantity produced and stored *()Hq . Since case (2.6) is economically
irrational, that leaves us with cases (2.4) and (2.5).
Consider case (2.4).

{ }*
0 1

0
2

D () Max () [()] [()]
L

D
H H L LaK

R K W iK MK HMK e K a K e K a K
β

β β
≤ ≤

= − + − − + − + − The optimal

solution is:
0 0

0*
1

(1) (),
2 1 1

(),
2 1

H H L

L H H L

A i M H A ie a a i M
B H H

K
a e a a iM

H

β

β

⎧ −− + −− −⎪⎪ ≤ ≤⎪⎪ + +⎪=⎨⎪ − −⎪ <⎪⎪ +⎪⎩

Consider case (2.5).

*
0 2

2 2

D () Max () [()] [()]
2 2L H

D L L
H H L La aK

a aR K W iK MK HMK e K a K e a
β β

β β
β β≤ ≤

⎧ ⎫⎪ ⎪⎪ ⎪= − + − − + − + −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

The optimal solution is:

398 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

*
2

(1) (),0
2 1

(),
2 1

H H H H L

H

L H H L

e a i M H e a a iM
e H

K
a e a a iM

H

β

β

⎧ −− + − −⎪⎪ ≤ ≤⎪⎪ +⎪=⎨⎪ − −⎪ ≥⎪⎪ +⎪⎩

 (2.7)

The result then follows.

PROOF OF PROPOSITION 3
Given the results of Proposition 2 the upstream’s profit as a function of M is

*
1

0
*
2

()(), if
1()

()(), if
1

H H L

U

H H L

e a a iK M C M
HDR M

e a a iK M C M
H

⎧ − −⎪⎪ − ≥⎪⎪ +⎪=⎨⎪ − −⎪ − <⎪⎪ +⎪⎩

Therefore, the maximum value of 0 ()UDR M is given by

{ }* * *
0 1 2() max ,U U UDR M DR DR=

where,
{ }* *

1 1max ()UDR K M C= − (3.1)

{ }* *
2 2max ()UDR K M C= − (3.2)

From solving (3.1) we have

0

*
1

(1) , if C C
2(1)

() , if C C
1

H H L

A i C H
HM

e a a i
H

⎧ − + +⎪⎪ ′≥⎪⎪ +⎪=⎨⎪ − −⎪ ′<⎪⎪ +⎪⎩

 where
() (1)

1
H H L L He a a a e iC

H
ρ− − + −′=

+

From solving (3.2) we have

*
2

(1) , if C C
2(1)

() , if C C
1

H H

H H L

e a i C H
HM

e a a i
H

⎧ − + +⎪⎪ ′′≤⎪⎪ +⎪=⎨⎪ − −⎪ ′′>⎪⎪ +⎪⎩

 where
()

1
H H L L He a a a e iC

H
− − −′′=
+

Since C C′ ′′< the solution can be summarized as follows

0

*

* *
2 1

* *0
2 1

(1) , if C C
2(1)

(1) , if C C
2(1)

(1) , if C <C &
2(1)

(1) , if C <C &
2(1)

H H

H H

e a i C H
H

A i C H
H

M
e a i C H C DR DR

H
A i C H C DR DR

H

⎧ − + +⎪⎪ ′≤⎪⎪ +⎪⎪⎪ − + +⎪ ′′⎪ ≥⎪ +⎪⎪=⎨⎪ − + +⎪ ′ ′′< >⎪⎪ +⎪⎪⎪⎪ − + +⎪ ′ ′′< <⎪⎪ +⎪⎩

 (3.3)

Georgia Skintzi et al. 399

The solution can be simplified, by substituting the values of *
2DR and *

1DR for the case where, the relationship
* *
2 1 0DR DR− > can be written as the following quadratic inequality

2 2 2 2 2 2(1) 2(1)[()] 2 () 0H H L H H L H L L H HC H H e a a i C i e i a a e e a e a+ − + − − + − − − − >
The roots of the inequality are

1 () 1H H L H Lk e a a i e a ρ= − −− + and 2 () 1H H L H Lk e a a i e a ρ= − − + +
and the inequality is valid for 1 0 2k K k< < . Based on this we can simplify (3.3) as follows

0
1

*

1

(1) , if C
2(1)

(1) , if C
1

H H

A i C H k
HM

e a i C H k
H

⎧ − + +⎪⎪ >⎪⎪ +⎪=⎨⎪ − + +⎪ <⎪⎪ +⎪⎩

Further, the conditions C>k1 and C<k1 can be reexpressed as an equivalent condition involving the volatility of

the demand curve by substituting 0

0
H

Aa
B

σ ρ= + and 0

0
L

Aa
B

σ
ρ

= − . Therefore, we obtain

0 0

0

0

0

(1) , 1
2(1) 1 1

*
(1) , 1

2 1 1

H

H

H H

H

A i C H C i A
H e B

M
e a i C H C i A

e e B

ρ
σ ρ

ρ ρ

ρ
σ ρ

β ρ ρ

⎧ ⎛ ⎞⎪ − + + + ⎟⎪ ⎜ ⎟⎜⎪ < + + ⎟⎜⎪ ⎟⎟+ ⎜⎪ + + + ⎝ ⎠⎪⎪= ⎨⎪ ⎛ ⎞⎪ − + + + ⎟⎜⎪ ⎟⎜> + + ⎟⎪ ⎜ ⎟⎪ ⎟⎜+ + + ⎝ ⎠⎪⎪⎩

 (3.4)

for simplicity 0

0

1
1 1 H

C i A
e B

ρ
σ ρ

ρ ρ

⎛ ⎞+ ⎟⎜ ⎟⎜= + + ⎟⎜ ⎟⎟⎜+ + + ⎝ ⎠

By substituting to (2.7) we have

0

0

(1) ,
2

*
(1) ,

2
H H

H

A i C H
B

K
e a i C H

e

σ σ
β

σ σ
β

⎧ − − +⎪⎪ <⎪⎪⎪=⎨⎪ − − +⎪ >⎪⎪⎪⎩

PROOF OF PROPOSITION 4
In period 1 the downstream node solves the problem:

10
Max ()=()D

q
DR q a q q Mqβ

≥
− − (4.1)

subject to the constraint
q K≤ (4.2)

In case we did not have a capacity constraint the optimal solution would be:
*

2
H

H
a Mq

β
−

= , in case of high demand (4.3)

*

2
L

L
a Mq

β
−

= , in case of low demand (4.4)

400 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Taking into consideration the capacity constraint the optimal solution is:

, if
2 2

*
, if

2

a M a M K
q

a MK K

β β

β

⎧ − −⎪⎪ <⎪⎪⎪=⎨⎪ −⎪ ≥⎪⎪⎪⎩

 (4.5)

PROOF OF PROPOSITION 5

In period 0 the upstream node solves the problem:

* *
00

Max D () () [] []D
H H L LK

R K W iK CK HCK e q M e q M
≥

=− + − − + + (5.1)

subject to the constraints
*
Hq K≤ (5.2)
*
Lq K≤ (5.3)

We should consider three cases:

0
2

La MK
β
−

< ≤ (5.4)

2 2
L Ha M a MK
β β
− −

< ≤ (5.5)

2
Ha M K
β
−

< (5.6)

Case (5.6) is not applicable since it suggests that the capacity of the warehouse the manufacturer will build will
be larger than the largest possible optimal quantity produced and stored *()Hq . Since case (5.6) is economically
irrational, that leaves us with cases (5.4) and(5.5).
Consider case (5.4) where

{ }* *
0 1 1

0
2

D (,) Max () (1)
L

D
H La MK

R K M W iK CK H e KM e KM
β
−

≤ ≤
= − + − + + + (5.7)

since 0D (,)DR K M is increasing with respect to K and will be maximized in *
1 2

La MK
β
−

= . Therefore, (5.7)

will be rewritten:

* *
0 1 1D (,)

Max () (1)
2 2 2 2

D

L L L L
H L

R K M

a M a M a M a MW i C H e M e M
β β β β

=

⎧ ⎫− − − −⎪ ⎪⎪ ⎪− + − + + +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 (5.8)

From solving (5.8) we have * 0
1

0

(1)
2

Li C H a BM
B

+ + +
= .

Consider case (5.5) where

* *
0 2 2

2 2

D (,) Max () (1)
2L H

D L
H La M a MK

a MR K M W iK CK H e KM e M
β β

β− −
< ≤

⎧ ⎫−⎪ ⎪⎪ ⎪= − + − + + +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
(5.9)

Georgia Skintzi et al. 401

0D (,)DR K M is increasing with respect to K. Therefore, (5.9) will be maximized in *
2 2

Ha MK
β
−

= and may be

rewritten:

* *
0 2 2D (,)

Max () (1)
2 2 2 2

D

H L
H L

R K M

a M a M a M a MW i C H e M e M
β β β β

Η Η

=

⎧ ⎫− − − −⎪ ⎪⎪ ⎪− + − + + +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 (5.10)

From solving (5.10)we have * 0
2

0

(1)
2

i C H AM
B

+ + +
= for 0

0

L

L

a B M
B e

<
+

. Therefore,

0

0

0

0

,
2

*
,

2

L L

L

H L

L

a M a BM
B e

K
a M a BM

B e

β

β

⎧ −⎪⎪ <⎪⎪ +⎪=⎨⎪ −⎪ >⎪⎪ +⎪⎩

 by substituting M we have

0

0*

0 0

0

(1) ,
4

2 (1) ,
4

L

H

a B i C H
B

K
a B A i C H

B

σ σ
β

σ σ
β

⎧ − − +⎪⎪ ≤⎪⎪⎪=⎨⎪ − − − +⎪ >⎪⎪⎪⎩

 and

0

0

0

0

(1) ,
2

*
(1) ,

2

La B i C H
B

M
A i C H

B

σ σ

σ σ

⎧ + + +⎪⎪ ≤⎪⎪⎪= ⎨⎪ + + +⎪ >⎪⎪⎪⎩

 where 0 0 0

0 0

[(1)]()

H

A C H i B A
B e B

σ ρ
⎛ ⎞+ + + ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠

.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 403

Abstract— Ejection chain methods lead the state-of-

the-art in local search heuristics for the traveling
salesman problem (TSP). The most effective local search
approaches primarily originate from the Stem-and-Cycle
(S&C) ejection chain method and the classical Lin-
Kernighan (LK) procedure, which can be viewed as a
special case of an ejection chain method. This paper
describes major components of the most effective ejection
chain algorithms that are critical for success in solving
large scale TSPs. A performance assessment of foremost
algorithms is reported based upon an experimemtal
analysis carried out on a standard set of symmetric and
asymmetric TSP benchmark problems.

Keywords—traveling salesman problem, ejection
chains, local search.

I. INTRODUCTION
he Traveling Salesman Problem (TSP) consists

in sequentially visiting a set of cities only once
and finally returning to the initial city. The goal is
to find the tour of minimum total distance. In spite
of the simplicity of the problem statement, the
TSP is exceedingly challenging and is the most
studied problem in combinatorial optimization,
having inspired well over a thousand publications.

In graph theory, the problem can be defined on
a graph),(AVG = with n vertices (nodes)

},...,{ 1 nvvV = and a set of arcs

},,|),{(jiVvvvvA jiji ≠∈= with a non-

negative cost (or distance) matrix)(ijcC =

associated with A . The problem is considered to
be symmetric (STSP) if we have jiij cc = for all

Avv ji ∈),(, and asymmetric (ATSP) otherwise.
Elements of A are often called edges (rather than
arcs) in the asymmetric case. The STSP, where
distances satisfy the triangle inequality

)(ikjkij ccc ≥+ , is the most studied special case

of the problem. The STSP (ATSP) consists in
determining the minimum cost Hamiltonian cycle
(circuit) on the problem graph, which is often
simply called a tour.

The TSP is a classic NP-hard combinatorial
problem, and therefore there is no polynomial-
time algorithm able to solve all possible instances
of the problem. Therefore, heuristic algorithms are
used to provide that are high quality but not
necessarily optimal. The importance of finding
effective and efficient heuristics to solve large-
scale TSP problems prompted the “8th DIMACS
Implementation Challenge”, organized by
Johnson, McGeogh, Glover, and Rego [18] and
solely dedicated to TSP algorithms.

In this paper we focus on heuristics based on
ejection chain methods because they have proven
to be highly effective in solving TSP problems.

Since efficiency is also fundamental for high
performance algorithms we also emphasize the
importance of choosing an appropriate data
structure to represent the tour and describe the
state-of-the-art data structures used in the
implementation of TSP algorithms.

Although there are several individual
publications on ejection chain approaches to TSP,
with this paper we intend to provide a new survey
that summarizes and compares the best of those
approaches that fit into the local search category.
Other more general survey publications
concerning heuristics for TSP, such as Johnson
and McGeoch book chapters [15, 17], are not up
to date and therefore we also bring in other
algorithms to the analysis. Furthermore, we
introduce completely new algorithms such as our
two implementations for the ATSP. In addition,
we also summarize the latest developments in
efficiency obtained by the use recently introduced

Ejection Chain Algorithms for the Traveling
Salesman Problem

T

D. Gamboa*, C. Osterman†, C. Rego† and F. Glover‡
*Escola Superior de Tecnologia e Gestão de Felgueiras, Instituto Politécnico do Porto, Apt. 205, 4610-156,

Felgueiras, Portugal
Email: dgamboa@estgf.ipp.pt

†School of Business Administration, University of Mississippi, University, MS 38677, USA
Email: {costerman, crego}@bus.olemiss.edu

‡Leeds School of Business, University of Colorado, Boulder, CO 80309, USA
Email: fred.glover@colorado.edu

404 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

data structures to represent the tour.
 In the following sections we briefly describe the
most prominent ejection chain algorithms for the
TSP, discuss their salient performance
characteristics, and finally present some
conclusions.

II. SYMMETRIC TSP

A. Ejection chain based algorithms
Subpath ejection chain methods start from an

initial tour and iteratively attempt to improve the
current solution, generating moves coordinated by
a reference structure. The generation of moves
throughout the ejection chain process is based on
a set of legitimacy restrictions that determine the
set of edges allowed to be used in subsequent
steps of constructing the ejection chain. Ejection
chains are variable depth methods that generate a
sequence of interrelated simple moves to create a
compound move.

In the graph theory context, a subpath ejection
chain of L levels on graph G consists of a
sequence of simple operations, called ejection
moves, < Lm eee ,...,,...,1 >, that sequentially

transform a subgraph mG of G into another

subgraph 1+mG by disconnecting a subpath and
reconnecting it with different components. At
each level of the chain the subgraph may not
represent a feasible solution (usually the reference
structure does not correspond to a solution), but it
is always possible to obtain a solution to the
problem by applying an extra operation called a
trial move. Therefore, a neighborhood search
ejection chain procedure consists in generating a
sequence of moves < 1 1, ,..., , ,..., ,m m L Le t e t e t >,

where < ,m me t > represents the paired ejection and
trial moves of level m of the chain. The new
solution is obtained by carrying out the compound
move < 1 2, ,..., ,m me e e t >, where the subscript m
identifies the chain level that produced the best
trial solution. For an extensive description of
ejection chain methods we refer the reader to [24].

In this section we summarize the main
components of the most effective local search
ejection chain algorithms and analyze their
performance. These algorithms are chiefly based
on the Stem-and-Cycle (S&C) procedure [11] and
the Lin-Kernighan (LK) heuristic [20].

The S&C procedure is a specialized approach
that generates dynamic alternating paths. The
classical Lin-Kernighan approach, by contrast,
generates static alternating paths. Funke, Grünert
and Irnich [7] give a theoretical analysis of the
differences between the types of paths generated
by S&C and LK procedures.

Johnson and McGeoch Lin-Kernighan (LK-
JM)

The Lin-Kernighan neighborhood search is
designed as a method to generate k-opt moves
(which consist in deleting k edges and inserting k
new edges) in a structured manner that provides
access to a relevant subset of these moves by an
efficient expenditure of computational effort. The
approach is based on the fact that any k-opt move
can be constructed as a sequence of 2-opt moves
[4], and a restricted subset of those move
sequences can be produced in a systematic and
economic fashion.

The method starts by generating a low order k-
opt move (with 4≤k) and then creates a
Hamiltonian path by deleting an edge adjacent to
the last one added. This completes the first level
of the LK process. In succeeding levels each move
consists of linking a new edge to the unique
degree 1 edge that was not adjacent to the last
edge added, followed by deleting the sole edge
whose removal will generate another Hamiltonian
path.

Additional sophistication of the basic method is
provided by a backtracking process that allows
restarting with an alternative vertex for insertion
or deletion of an edge at level i and proceeding
iteratively until reaching level L.

The Lin-Kernighan algorithm implementation
analyzed in this paper is from Johnson and
McGeoch [16], featured among the lead papers of
the “8th DIMACS Implementation Challenge”
[18]. The results reported for this implementation
use Greedy initial solutions, 20 quadrant-neighbor
candidate lists, the “don’t look bits” strategy, and
the 2-level tree data structure [6] to represent the
tour.

We will indicate the primary algorithms that
incorporate one or more of these strategies in their
design, including the best algorithms as
determined by the 8th DIMACS Implementation
Challenge. Algorithms that incorporate more
innovative structures and that achieve the highest
levels of performance are described in greater

D. Gamboa et al. 405

detail.

Neto’s Lin-Kernighan (LK-N)

This implementation is described in [21]. Its
main differences from LK-JM are the
incorporation of special cluster compensation
routines, the use of a candidate set combining 20
quadrant-neighbors and 20 nearest neighbors, and
a bound of 50 moves for the LK searches. It also
takes advantage of the “don’t look bits” technique
and the 2-level tree data structure.

Applegate, Bixby, Chvatal, and Cook Lin-
Kernighan (LK-ABCC)

This implementation is part of the Concorde
library [1] and is based on [2]. It uses Q-Boruvka
starting tours, 12 quadrant-neighbors candidate
lists, the “don’t look bits” technique, and the 2-
level tree data structure. LK-ABCC bounds the
LK searches by 50 moves, and the backtracking
technique is slightly deeper than that of the LK-
JM implementation.

Applegate, Cook and Rohe Lin-Kernighan
(LK-ACR)

In this case, the implementation is very similar
to the preceding LK-ABBC approach, but the
backtracking strategy is even deeper and broader.
The depth of the LK searches, by contrast, is half
that of the LK-ABBC approach (25 moves). This
implementation is based on the design reported in
[1, 3].

Helsgaun's Lin-Kernighan Variant (LK-H)

This implementation, described in [14],
modifies several aspects of the original Lin-
Kernighan heuristic. The most notable difference
is found in the search strategy. The algorithm uses
larger (and more complex) search steps than the
original one. Also, sensitivity analysis is used to
direct and restrict the search. The algorithm does
not employ backtracking, but it uses the “don’t
look bits” technique and the 2-level tree data
structure.

LK-H is based on 5-opt moves restricted by
carefully chosen candidate sets. Helsgaun's
method for creating candidate sets may be the
most valuable contribution of the algorithm. The
rule in the original algorithm restricts the
inclusion of links in the tour to the five nearest
neighbors of a given city. LK-JM includes at least
20 nearest quadrant neighbors. Helsgaun points

out that edges selected simply on the basis of
length may not have the highest probability of
appearing in an optimal solution. Another
problem with the original type of candidate set is
that the candidate subgraph need not be connected
even when a large fraction of all edges is
included. This is the case for geometrical
problems in which the point sets exhibit clusters.

Helsgaun therefore develops the concept of an
α -nearness measure that is based on sensitivity
analysis of minimum spanning 1-trees. This
measure undertakes to better reflect the
probability that an edge will appear in an optimal
solution. It also handles the connectivity problem,
since a minimum spanning tree is (by definition)
always connected.

The key idea, in brief, is to assign a value to
each edge based on the length of a minimum 1-
tree containing it. A candidate set of edges can
then be chosen for each city by selecting edges
with the lowest values. The effectiveness of α -
nearness in selecting promising edges can be
further improved by transforming the graph. For
this, a subgradient optimization method is utilized
that strives toward obtaining graphs in which
minimum 1-trees are close to being tours.

By using the α -measure, the cardinality of the
candidate set may generally be small without
reducing the algorithm’s ability to find short
tours. In fact, Helsgaun claims that for his initial
set of test problems, the algorithm was able to find
optimal tours using as candidate edges the 5 α -
nearest edges incident to each node.

Nguyen, Yoshihara, Yamamori and Yasunaga
Lin-Kernighan Variant (LK-NYYY)

A short description of this implementation can
be found in [18]. This variant starts with a 5-opt
move but uses 3-opt moves in the LK searches as
opposite to LK-H that uses 5-opt as a basic move.
It also uses “don’t look bits”, Greedy starting
solutions, and 12 quadrant-neighbor lists, but it
uses a data structure with properties similar to
segment trees [6]. The results reported from this
algorithm were submitted to the DIMACS
Challenge after the summary chapter [18] was
finished. An extremely significant difference from
the Helsgaun variant is that LK-NYYY is able to
run instances up to 1,000,000 nodes whereas LK-
H only manages instances up to 18,900 nodes and
consumes a significant amount of computational
time as is evident in Table IV.

406 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Rego, Glover and Gamboa Stem-and-Cycle
(SC-RGG)

The SC-RGG procedure differs from the LK
procedure in several key ways. Most notably the
LK approach uses a Hamiltonian path as the
reference structure to generate moves throughout
the neighborhood construction. This structure is
very close to being a valid TSP solution (it only
requires adding an edge to link the two degree 1
nodes to obtain a tour). As a result, the structure
implicitly limits the different types of moves it
can generate. More general ejection chain
methods allow a diversified set of reference
structures which are able to generate moves that
the classical TSP neighborhood approaches
cannot.

The S&C method is based on the stem-and-
cycle reference structure [11]. The implementation
reported here was designed by Rego [23] and
subsequently enhanced by Gamboa, Rego and
Glover [8, 9]. The S&C reference structure is a
spanning sub-graph of G consisting of a path
called a stem),...,(rt vvST = connected to a

cycle),,...,,(
21 rssr vvvvCY = . A diagram of a

Stem-and-Cycle structure is shown in Figure 1.
The vertex rv in common to the stem and the
cycle is called the root, and the two vertices of the
cycle adjacent to rv are called subroots. Vertex

tv is called the tip of the stem.

Fig. 1. The S&C reference structure

The method starts by creating the initial S&C

reference structure from a TSP tour, by linking
two nodes of the tour and removing one of the
edges adjacent to one of those nodes. In each step
of the ejection chain process, a subpath is ejected
in the form of a stem. Each ejection move links
the tip node to any other node on the graph,
except for the one adjacent to the tip. Two
different ejection moves are possible depending
where in the graph the node to be linked to tv is

placed (in the stem or in the cycle). Trial solutions
are obtained by inserting an edge),(st vv , where

sv is one of the subroots, and deleting edge

),(sr vv .
The results reported in this paper improve upon

those for the S&C method reported in the
DIMACS challenge due to changes outlined in
[8]. Here we present results using Greedy initial
solutions, 12 quadrant-neighbor candidate lists
concatenated with a list generated by the
construction of Delaunay triangulations, and the
2-level tree data structure.

B. Comparative analysis of performance
In this subsection we evaluate the performance

of the heuristic algorithms referenced in the
previous subsection using the results submitted to
the “8th DIMACS Implementation Challenge”
[18] and the updated results for SC-RGG for a
comparative analysis. We restrict attention to the
evaluation of the results reported for the
algorithms relevant to this paper’s main focus. For
a complete list of algorithm results and other
information related to the generation of the
testbed instances, the scale factors to compare
running times for different computer systems, and
other characteristics of the challenge, we refer the
reader to the Challenge web site [18].

The complete Challenge testbed consists of 3
sets of instances: uniformly distributed problems
(sizes between 1,000 and 10,000,000 nodes),
clustered problems (sizes between 1,000 and
316,228 nodes), and those from the TSP Library
[25] with at least 1,000 nodes. In the current study
we limited the number of problems to instances up
to 1,000,000 nodes.

A benchmark code was provided for Challenge
participants to run in the same machines as the
competing algorithms were run, in order to obtain
a more accurate comparison of running times.
Since we carried out the tests for the updated
version of S&C on the same machine we used to
submit the first results to the DIMACS Challenge,
we use the same scale factor to normalize the new
implementation running times.

Tables I-IV summarize the results of the
aforementioned algorithms. The values presented
are averages of solution quality and computational
times (in seconds), where instances are grouped
by size. This grouping is similar to the one used
by Johnson and McGeoch [17] to design their

s1

t

s2

r

cyclestem

--

D. Gamboa et al. 407

results tables in the book chapter that summarizes
the Challenge’s submissions. It is important to
stress, however, that a number of algorithms and
results were submitted or updated after the chapter
was published. In the solution quality tables, in
addition to reporting average percentage excess
over the optimal solution or the Held-and-Karp
lower bound (%), we present the number of best
solutions (NBS) found by each algorithm,
meaning that for the indicated number of instances
the associated algorithm obtained the solution of
highest quality. The values in bold indicate the
best averages.

We separate the basic LK algorithmic variants
and the S&C approach from the other two LK
variants since the latter are considerably more
sophisticated and hence the comparison with the
first five would be unfruitful. In other words, we
separate the algorithms using 2-opt as a basic
move from the ones using 5-opt or 3-opt. Basic
LK variants and S&C determine moves by
deleting one edge and inserting another one,
completing the 2-exchange with the trial move.
Helsgaun and NYYY variants search for valid 5-
exchange moves and 3-exchange moves. To make
this search possible in terms of computational
times they use special and very sophisticated
candidate lists as previously explained. These

sophistications and move evaluations can be
introduced in a S&C variant and only in that case
it would it be fruitful to compare S&C with
Helsgaun and NYYY. We are considering this
possibility for further experiments with the S&C
method for TSP.

From Tables I and II it is clear that the S&C
approach is better than all other implementations
for generating high quality solutions. It has,
however, longer running times which are due to
the lack of sophisticated techniques like the “don’t
look bits” approach that reduces the size of the
neighborhood to be considered at each step of the
algorithm without sacrificing tour quality. For the
journal version of the paper we intend to report
results for a version of the S&C algorithm with
this technique incorporated in order to rigorously
assess its influence in the running times. The
tables also suggest that LK-JM has some
advantages over the clustered instances.

From Tables III and IV we can assess that the
LK-H achieves higher solution quality but with
very heavy computational times. This is a serious
drawback because the method becomes extremely
difficult to use for solving the bigger instances.
LK-NYYY obtains reasonably good results in this
group of algorithms and is able to report solutions
to all instances.

TABLE I

SIMPLE LK AND S&C – SOLUTION QUALITY

 Problem Size/Number of Instances - Uniformly Distributed Problems
 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 Total

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS % NBS Average NBS
LK-JM 1,18 1 1,27 1 2,02 -- 2,02 -- 1,97 -- 1,96 -- 1,96 -- 1,77 2
LK-N 1,17 1,26 -- 1,99 -- 1,88 -- 1,95 -- 1,97 -- 1,92 -- 1,73 0
LK-ABCC 1,47 2 1,71 -- 2,60 -- 2,48 -- 2,54 -- 2,67 -- 2,68 -- 2,31 2
LK-ACR 1,61 2,18 -- 2,72 -- 2,72 -- 2,74 -- 2,75 -- 2,77 -- 2,50 0
SC-RGG 0,79 7 0,95 4 1,68 3 1,61 2 1,65 2 1,86 1 1,91 1 1,49 20
 Problem Size/Number of Instances - Clustered Problems
 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 Total
Algorithm % NBS % NBS % NBS % NBS % NBS % NBS Average NBS
LK-JM 1,21 6 2,32 4 3,41 2 3,72 -- 3,63 1 3,67 1 2,99 14
LK-N 1,97 1 3,55 -- 4,76 -- 4,42 -- 4,78 -- -- -- 3,90 1
LK-ABCC 3,22 -- 5,58 -- 5,70 -- 6,38 -- 5,31 -- 5,45 -- 5,27 0
LK-ACR 3,34 -- 5,48 -- 5,92 -- 6,28 -- 5,55 -- 5,54 -- 5,35 0
SC-RGG 1,35 3 2,57 1 3,24 1 3,16 2 3,69 1 3,99 -- 3,00 8

408 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE I (Cont.)
 Problem Size/Number of Instances - TSPLIB Problems
 1000/4 3162/3 10000/2 31623/1 100000/1 Total
Algorithm % NBS % NBS % NBS % NBS % NBS Average NBS
LK-JM 1,40 -- 1,28 -- 1,38 -- 1,23 -- 1,21 -- 1,30 0
LK-N 1,43 -- 1,44 -- 1,34 -- 1,49 -- -- -- 1,43 0
LK-ABCC 2,56 -- 2,41 -- 1,86 -- 1,65 -- 1,21 -- 1,94 0
LK-ACR 3,49 -- 2,59 -- 3,17 -- 2,40 -- 2,00 -- 2,73 0
SC-RGG 0,52 4 0,60 3 0,91 2 1,02 1 1,17 1 0,84 11

TABLE II

SIMPLE LK AND S&C – COMPUTATIONAL TIME

 Problem Size/Number of Instances - Uniformly Distributed Problems
 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1

Algorithm CPU CPU CPU CPU CPU CPU CPU
LK-JM 0,20 0,69 2,32 7,16 22,75 60,62 322,47
LK-N 0,19 0,87 3,35 14,40 89,58 574,42 3577,74
LK-

ABCC 0,09 0,34 1,49 5,95 21,43 60,79 307,17

LK-ACR 0,07 0,29 0,93 2,95 16,40 76,32 318,10
SC-RGG 4,04 19,82 100,92 733,93 5804,09 33239,39 255971,44

 Problem Size/Number of Instances - Clustered Problems
 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1

Algorithm CPU CPU CPU CPU CPU CPU
LK-JM 1,66 4,97 15,37 59,26 173,11 495,47
LK-N 4,35 15,04 51,17 138,59 558,07 --
LK-

ABCC 0,20 0,72 2,55 11,04 37,91 107,67

LK-ACR 0,11 0,45 1,40 4,49 24,97 114,19
SC-RGG 4,17 18,41 135,12 956,39 5416,85 60199,97

 Problem Size/Number of Instances - TSPLIB Problems
 1000/10 3162/5 10000/3 31623/2 100000/2

Algorithm CPU CPU CPU CPU CPU
LK-JM 0,34 0,64 4,30 12,95 24,27
LK-N 0,41 1,08 10,26 47,09 --
LK-

ABCC 0,10 0,29 1,22 3,48 8,84

LK-ACR 0,08 0,23 0,74 1,74 5,42
SC-RGG 7,59 26,47 134,99 665,85 3253,16

TABLE III
HELSGAUN & NYYY – SOLUTION QUALITY

 Problem Size/Number of Instances – Uniformly Distributed Problems
 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 Total

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS % NBS Average NBS
LK-H 0,16 10 0,19 5 0,83 3 0,83 2 -- -- -- -- -- -- 0,50 20
LK-NYYY 0,73 -- 0,74 -- 1,57 -- 1,48 -- 1,48 2 1,53 1 1,49 1 1,29 4
 Problem Size/Number of Instances - Clustered Problems
 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1
Algorithm % NBS % NBS % NBS % NBS % NBS % NBS Average NBS
LK-H 0,71 8 1,38 4 3,32 1 3,58 1 -- -- -- -- 2,25 14
LK-NYYY 1,22 2 2,18 1 3,08 2 3,45 1 3,51 2 3,49 1 2,82 9

D. Gamboa et al. 409

TABLE III (Cont)
 Problem Size/Number of Instances - TSPLIB Problems
 1000/4 3162/3 10000/2 31623/1 100000/1
Algorithm % NBS % NBS % NBS % NBS % NBS Average NBS
LK-H 0,24 4 0,15 3 0,24 2 0,46 1 0,85 1 0,39 11
LK-NYYY 1,15 -- 0,86 -- 0,72 -- 0,99 -- 1,03 -- 0,95 0

TABLE IV

HELSGAUN & NYYY – COMPUTATIONAL TIME

 Problem Size/Number of Instances - Uniformly Distributed Problems

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1

Algorithm CPU CPU CPU CPU CPU CPU CPU

LK-H 5,64 71,49 861,71 7819,27
LK-NYYY 0,16 0,57 1,76 4,97 20,86 84,73 507,62

 Problem Size/Number of Instances - Clustered Problems

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1

Algorithm CPU CPU CPU CPU CPU CPU

LK-H 6,93 70,28 768,31 12812,46
LK-NYYY 0,50 1,36 3,96 9,68 38,81 147,20

 Problem Size/Number of Instances - TSPLIB Problems

 1000/10 3162/5 10000/3 31623/2 100000/2

Algorithm CPU CPU CPU CPU CPU

LK-H 7,82 73,32 1063,13 7982,09 48173,84
LK-NYYY 0,26 0,66 1,96 5,09 13,06

C. Advances on data structures for large STSPs
The problem of data representation is fundamental

to the efficiency of search algorithms for the TSP
and particularly important for large STSP instances.
The nature of these algorithms necessitates the
performance of certain basic tour operations
involving subpath reversal and traversal. The
computational effort that must be devoted to these
operations becomes increasingly pronounced with
larger problem instances. For example, if the tour is
represented as an array (or doubly linked list) of
nodes, a subpath reversal takes time ()O n , where n
is the problem size.

We have recently developed a new data
structure—the k-level satellite tree—for the purpose
of minimizing the contribution of tour management
toward the overall runtime cost of a given search.

The 2-level tree [6] has for many years been
considered the most practical choice for representing
the tour, retaining that reputation until the recent
emergence of the k-level satellite tree described
herein. A worst-case cost of ()O n for tour
operations may be achieved using the 2-level tree
representation. The idea is to divide the tour into
roughly n segments, where each segment is
maintained as a doubly linked list and the segments
are connected in a doubly linked list.

The k-level satellite tree takes the segmentation
idea a step further: the tour is divided into segments

containing roughly 1 kn nodes each, and the
resulting segments are grouped into parent segments
containing about 1 kn segments each. Ultimately, k –
1 groupings are performed, giving the tree k levels
with at least 1 kn parents on the top level. The
leveraging effect achieved by this grouping of nodes
into segments is the same as that achieved by the 2-
level tree, except that we no longer assume that “2”
is always the appropriate number of levels.

The 2-level tree representation reduces the time
complexity of move operations but pays for it with
slightly larger constant costs, also called overhead.
One might guess that choosing higher values for k
(making the tree “taller”) would further reduce
complexity while driving up overhead. It turns out
that when these costs are balanced, the best value for
k increases logarithmically with n, but only
approximately, since k must be integer. A related
property is that, in most cases, the ideal size of a
segment will remain the same as problem size
increases. This can be shown algebraically under the
assumption, simply put, that a given algorithm will
splice the tree during moves about as often as it will
traverse parents. Therefore, the key to choosing k is
discovering the ideal segment size. This value,
however, varies depending on the design and tuning
of a given algorithm, and therefore should be
determined experimentally.

Some of the overhead associated with introducing
additional levels may be defrayed by utilizing a

410 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

satellite design [22]. A satellite list is similar to a
doubly linked list but is symmetric in that an
orientation is not inherent. Furthermore, there are no
drawbacks in its practical use. The traditional 2-
level tree incorporates doubly linked lists. If these
are replaced with satellite lists, many of the query
operations required in the course of a given
algorithm may be performed more quickly than
would be possible otherwise. This benefit becomes
more pronounced when the tree is expanded to
include more than two levels.

In summary, the tour is most efficiently
represented with a k-level satellite tree in which k is
chosen appropriately. The best value for k can be
calculated according to the size of the instance and
the ideal segment size, which is unique to each
algorithm implementation and must be determined
experimentally.

Recent experiments show the k-level satellite tree
representation to be far more efficient than its
predecessors. Particularly outstanding reductions in
algorithm running times occur with large problem
instances. When the tree is created with k chosen
optimally in comparison to k=2, the average running
time reduction balloons from a modest 7% for 1,000
node problems to 27% for 10,000 node problems
and to 71% for 100,000 node problems. For these
tests, a S&C algorithm implemented with the k-level
satellite tree was run on Euclidean instances from
the DIMACS Challenge [12].

Fortunately, leading ejection chain algorithms for
the TSP are similar enough that they may all make
use of the same data structures. Consequently, the
improvement offered by the k-level satellite tree
may be shared to a common advantage in the same
way that the 2-level tree has found welcome in
multiple implementations.

III. ASYMMETRIC TSP

A. Ejection chain based algorithms
The Kanellakis-Papadimitriou (KP) heuristic [19]

(based on the LK procedure) was the only local
search ejection chain algorithm for the ATSP
submitted to the “8th DIMACS Implementation
Challenge” as reported by Johnson and McGeoch in
the Challenge summary chapter [15]. The other two
algorithms presented here were not submitted to the
Challenge. These are the ATSP version of the S&C
algorithm described in the previous section and a
new approach for the ATSP using the doubly-rooted
stem-and-cycle reference structure [12].

Kanellakis-Papadimitriou Heuristic (KP-JM)

Lin and Kernighan were not concerned with the
ATSP when they developed their TSP heuristic in
1973 [20]. Since LK is based on 2-opt moves which
always imply segment reversals that entail

exceedingly high computational effort, this method
can not be directly applied to the ATSP. A variant of
the LK approach presented by Kanellakis and
Papadimitriou in 1980 [19] solved this problem by
using segment reordering instead of segment
reversals (creating and breaking cycles so that the
resulting sequence corresponds to a sequence of 3-
opt moves). The KP method starts with a variable-
depth search based on LK but where the performed
moves correspond to a k-opt move for odd values of

3≥k . When the variable-depth search fails to
improve the solution, the method searches for an
improving 4-opt double-bridge move (with no
reversals). Then KP returns to variable-depth search
and iterates in this manner until neither of the
searches improves the tour.

The KP algorithm implementation analyzed in this
paper is due to Johnson and McGeoch and described
in Cirasella et al. [5]. It takes advantage of the same
speedup techniques used in the authors’ LK
implementation [16], such as neighbor lists and
“don’t look bits”. It also uses the dynamic
programming approach introduced by Glover [13] to
find the best 4-opt move in 2()O n time.

Rego, Glover, Gamboa Stem-and-Cycle
(SC-RGG)

This algorithm is based on the STSP algorithm by
the same authors but ignores moves that generate
path reversals. This implementation does not use
candidate lists to reduce the neighborhood size
which penalizes the computation times as is shown
in Table V and discussed in the following
subsection.

Rego, Glover, Gamboa and Osterman Doubly-
Rooted S&C (DRSC-RGGO)

The main distinguishing feature of this approach
is its use of the doubly-rooted reference structure
defined in Glover [12], which generalizes the S&C
structure by allowing for additional moves on each
level of the ejection chain. The doubly rooted
structure has two forms: a tricycle in which the two
roots are connected by three paths, thereby
generating three cycles and a bicycle in which the
roots are connected by a single path, joining two
cycles (see Figure 2 where 1r and 2r indicate the
roots).

D. Gamboa et al. 411

Fig. 2. The Doubly-Rooted reference structure

Ejection moves consist of adding a new edge (s, j),

where s is a subroot and deleting the edge (s, r)
resulting in node j as the new root.

In this implementation additional features are
integrated in the ejection chain process. At the
beginning of each level of the chain a 4-opt double-
bridge move is selected and applied, and the ejection
move selected at that level is the best of n where the
subroot involved in the move is randomly chosen.
The results reported for this algorithm correspond to
a preliminary study since its development is
ongoing. For details on this implementation, we
refer the reader to [10].

It is worth noting that all the implementations use
Nearest Neighbor starting tours.

B. Comparative analysis of performance
Table V shows the results reported for the three

algorithms on all the TSP Library [25] asymmetric
instances with at least 100 nodes. The table shows
the percentage deviation above the optimal solution
(%), the running times in seconds and average of
both values for each algorithm. The best solution for
each instance is indicated in bold.
Since, for our preliminary ATSP results, we did not
use the benchmark code for times normalization, it
is important to refer the machines where the tests
were carried out. The SC-RGG and DRSC-RGGO
algorithms used an Intel Centrino 1.5 GHz processor
with 128 MB of RAM, and results were obtained in
a single run of the algorithm with fixed parameters.
The results for the KP-JM algorithm are averages
over at least 5 runs for each instance. on a Silicon
Graphics Power Challenge machine with 31 196
MHz MIPS R10000 processors, 1 MB 2nd level
caches and 7.6 GB of main memory shared by all
processors.

From Table V we can infer that the SC-RGG
algorithm obtains competitive results but the DRSC-
RGGO approach is clearly more effective in

producing high quality solutions. The latter achieves
16 best solutions (and 9 optimal values) as opposed
to the 4 best solutions (and 3 optimal values) of the
KP implementation. The overall percentage
deviation average is extremely better for the doubly-
rooted S&C approach, although the computational
times are higher.

TABLE V

SOLUTION QUALITY & COMPUTATIONAL TIME

 KP-JM SC-RGG DRSC-RGGO
Problem % CPU % CPU % CPU
atex600 4,25 3,38 6,97 61,44 3,54 900,5
big702 2,10 6,04 3,54 104,59 1,58 432,59
Code198 0,00 0,54 0,00 1,17 0,00 0,06
Code253 0,10 1,09 0,35 2,06 0,00 25,64
dc112 0,39 15,47 0,91 0,83 0,14 16,47
dc126 0,65 22,69 1,68 1,37 0,20 47,59
dc134 0,57 13,43 0,80 1,50 0,21 20,56
dc176 0,67 20,48 2,39 1,22 0,19 70,48
dc188 0,59 12,98 1,19 2,86 0,22 97,77
dc563 0,79 111,95 2,47 29,08 0,93 175,30
dc849 0,62 114,80 0,63 64,56 0,63 134,20
dc895 0,60 144,43 2,18 136,11 0,58 1918,80
dc932 0,26 119,17 1,23 118,97 0,40 1514,72
ftv100 3,11 0,40 1,45 0,70 0,00 4,84
ftv110 4,04 0,40 1,28 1,09 0,31 15,36
ftv120 3,12 0,50 1,80 1,27 0,92 11,42
ftv130 2,16 0,60 2,90 1,26 0,26 10,73
ftv140 3,15 0,60 2,23 1,55 0,25 42,77
ftv150 4,43 0,70 2,68 1,51 1,80 11,80
ftv160 5,89 0,70 5,63 2,28 0,00 21,13
ftv170 4,44 0,90 3,59 2,72 0,11 106,89
rbg323 0,78 3,71 1,06 16,81 0,08 40,25
rbg358 1,50 3,33 3,44 28,92 0,00 50,91
rbg403 0,22 9,00 0,28 43,71 0,00 21,02
rbg443 0,11 11,74 1,10 67,07 0,00 4,95
td100.1 0,00 0,20 0,09 1,29 0,00 1,44
td1000.20 0,01 7,29 0,06 691,82 0,10 2733,70
td316.10 0,00 3,87 0,17 33,00 0,00 53,05
Average 1,59 22,51 1,86 50,74 0,44 303,03

IV. CONCLUDING REMARKS
In this paper we describe and compare the most

effective and efficient local search ejection chain
algorithms for the TSP. We conclude that the S&C
approach clearly outperforms the basic LK
implementations. It is also clear that gains in
performance are accomplished by enhancing the
variable-depth search by using k-opt moves with

4≥k and by more effective candidate lists that
narrow the neighborhood size without losing
solution quality. We may also add that ejection
chain methods not only lead the local search TSP
algorithms but also give the overall best solutions

412 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

when the local search algorithms described here are
used as engines for iterated local search heuristics.

REFERENCES

[1] D. Applegate, R. Bixby, V. Chvátal, and W. Cook,

"Concorde: A code for solving Traveling
Salesman Problems," 1999,
http://www.math.princeton.edu/tsp/concorde.html.

[2] D. Applegate, R. Bixby, V. Chvátal, and W. Cook,
"Finding Tours in TSP," Research Institut for
Discrete Mathematics, Universitat Bonn, Bonn,
Germany, 99885, 1999.

[3] D. Applegate, W. Cook, and A. Rohe, "Chained
Lin-Kernighan for Large Traveling Salesman
Problems," INFORMS Journal on Computing, vol.
15, pp. 82-92, 2003.

[4] N. Christofides and S. Eilon, "Algorithms for
Large-Scale Traveling Salesman Problems,"
Operations Research Quarterly, vol. 23, pp. 511-
518, 1972.

[5] J. Cirasella, D. S. Johnson, L. A. McGeoch, and
W. Zhang, "The Asymmetric Traveling Salesman
Problem: Algorithms, Instance Generators and
Tests," presented at Algorithm Engineering and
Experimentation, Third International Workshop,
ALENEX 2001, 2001.

[6] M. L. Fredman, D. S. Johnson, L. A. McGeoch,
and G. Ostheimer, "Data Structures for Traveling
Salesman," Journal of Algorithms, vol. 18, pp.
432-479, 1995.

[7] B. Funke, T. Grünert, and S. Irnich, "A Note on
Single Alternating Cycle Neighborhoods for the
TSP," Lehr- und Forschungsgebiet Operations
Research und Logistik Management, RWTH
Aachen, Germany 2003.

[8] D. Gamboa, C. Rego, and F. Glover,
"Implementation Analysis of Efficient Heuristic
Algorithms for the Traveling Salesman Problem,"
Computers and Operations Research, 2004, in
press.

[9] D. Gamboa, C. Rego, and F. Glover, "Data
Structures and Ejection Chains for Solving Large-
Scale Traveling Salesman Problems," European
Journal of Operational Research, vol. 160, pp.
154-171, 2005.

[10] D. Gamboa, C. Rego, F. Glover, and C. Osterman,
"A Doubly-Rooted Stem-and-Cycle Ejection
Chain Algorithm for the Asymmetric Traveling
Salesman Problem: Preliminary Study," 2005, in
preparation.

[11] F. Glover, "New Ejection Chain and Alternating
Path Methods for Traveling Salesman Problems,"
Computer Science and Operations Research, pp.
449-509, 1992.

[12] F. Glover, "Ejection Chains, Reference Structures
and Alternating Path Methods for Traveling
Salesman Problems," Discrete Applied
Mathematics, vol. 65, pp. 223-253, 1996.

[13] F. Glover, "Finding a Best Traveling Salesman 4-
Opt Move in the Same Time as a Best 2-Opt

Move," Journal of Heuristics, vol. 2, pp. 169-179,
1996.

[14] K. Helsgaun, "An Effective Implementation of the
Lin-Kernighan Traveling Salesman Heuristic,"
European Journal of Operational Research, vol.
126, pp. 106-130, 2000.

[15] D. S. Johnson, G. Gutin, L. A. McGeoch, A. Yeo,
W. Zhang, and A. Zverovitch, "Experimental
Analysis of Heuristics for the ATSP," in The
Traveling Salesman Problem and Its Variations,
G. Gutin and A. Punnen, Eds. Boston: Kluwer
Academic Publishers, 2002, pp. 445-487.

[16] D. S. Johnson and L. A. McGeoch, "The Traveling
Salesman Problem: A Case Study in Local
Optimization," in Local Search in Combinatorial
Optimization, E. H. L. Aarts and J. K. Lenstra,
Eds.: John Wiley and Sons, Ltd., 1997, pp. 215-
310.

[17] D. S. Johnson and L. A. McGeoch, "Experimental
Analysis of Heuristics for the STSP," in The
Traveling Salesman Problem and Its Variations,
G. Gutin and A. Punnen, Eds. Boston: Kluwer
Academic Publishers, 2002, pp. 369-443.

[18] D. S. Johnson, L. A. McGeoch, F. Glover, and C.
Rego, "8th DIMACS Implementation Challenge:
The Traveling Salesman Problem," 2000,
http://www.research.att.com/~dsj/chtsp/.

[19] P. C. Kanellakis and C. H. Papadimitriou., "Local
search for the asymmetric traveling salesman
problem," Operations Research, vol. 28, pp.
1086–1099, 1980.

[20] S. Lin and B. Kernighan, "An Effective Heuristic
Algorithm for the Traveling Salesman Problem,"
Operations Research, vol. 21, pp. 498-516, 1973.

[21] D. Neto, Efficient Cluster Compensation for Lin-
Kernighan Heuristics.: Department of Computer
Science, University of Toronto, 1999.

[22] C. Osterman, C. Rego, and D. Gamboa, "The
Satellite List: A Reversible Doubly-Linked List,"
presented at 7th International Conference on
Adaptive and Natural Computing Algorithms
(ICANNGA 2005), Coimbra, Portugal, 2005.

[23] C. Rego, "Relaxed Tours and Path Ejections for
the Traveling Salesman Problem," European
Journal of Operational Research, vol. 106, pp.
522-538, 1998.

[24] C. Rego and F. Glover, "Local Search and
Metaheuristics," in The Traveling Salesman
Problem and Its Variations, G. Gutin and A.
Punnen, Eds. Dordrecht: Kluwer Academic
Publishers, 2002, pp. 309-368.

[25] G. Reinelt, "TSPLIB - A Traveling Salesman
Problem Library," ORSA Journal on Computing,
vol. 3, pp. 376-384, 1991.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 413

Parallel machine scheduling with resource
dependent processing times

Raúl Cortés*, Jose Pedro García*, Rafael Pastor† and Carlos Andrés*

*Universidad Politécnica de Valencia. Dpto. Organización de Empresas, Economía Financiera y Contabilidad
Camino Vereda s/n. 46022 Valencia. Spain

Email: racorfi@omp.upv.es, jpgarcia@omp.upv.es, candres@omp.upv.es
†Universidad Politécnica de Cataluña

C/Jordi Girona, 31. 08034 Barcelona. Spain
Email: rafael.pastor@upc.edu

Abstract— We consider the problem of scheduling jobs on
various parallel machines under single resource constraints,
where the processing time of a job depends on both the
machine used to process the job and the amount of allocated
resource. The aim is to minimize the total weighted earliness
and tardiness with regard to the programmed delivery date.
A complete review of similar problems that have been
analyzed in the literature is presented. To conclude, an
original formulation for the problem is proposed.

Keywords— Parallel machine scheduling, resource
constraints, variable speed.

I. INTRODUCTION
raditionally, scheduling models have treated job
processing times as parameters of the problem.

However, in multiple productive environments it is
possible to control the processing times by
reallocating some of the available resources. This
kind of problems require not only the assignment of
the jobs to the machines, but also the choice of
resource allocation, which in most cases tends to
increase the problem complexity. In the present
work, we analyze the problem of scheduling n jobs
on m unrelated parallel machines, with controllable
processing times by the allocation of a limited
resource. As a general rule, there are three different
types of parallel machines considered in the
literature. When the processing time of a job does
not depend on the machine used to process the job,
(jpp iij ∀=) the machines are defined as identical
parallel machines. On uniform parallel machines, the
processing time of a job depends on the machine

speed (
j

i
ij s

p
p =). Finally on unrelated parallel

machines, given a pair of jobs and a pair of
machines, there is no relationship between the
processing times of the two jobs on each one of the
two machines.

Thus, the problem could be outlined as follows.
Let N={1,2,..,n} be the set of jobs (indexed by i or l)
that are to be processed on m unrelated parallel

machines (indexed by j). Each job is to be processed
without pre-emption on one of the machines, which
can only handle one job at a time. To process the
jobs on each machine, there exists a single, discrete
and renewable resource, indexed by r. Let R denote
the total amount of this resource, which is a constant
through the planning horizon. The processing time
of job i on machine j depends on the amount of
resource r allocated to the machine. This processing
time will be denoted as Pijr. In the particular case
analyzed in this paper, once the allocation of
resource r to machine m is made, it remains constant
to process all the jobs on that machine. Finally, for
each job on each machine there exists a minimum
(Rminij) and a maximum (Rmaxij) amount of
resource units that could be allocated to that job on
that machine.

For each job there is a programmed delivery date
(Di), and an earliness and tardiness penalty weight
(ai, bi). Being Ci the completion time of job i, we
define Ei=max {0, Di-Ci} and Ti= max {0, Ci-Di} the
earliness and tardiness of job i respectively.

By using the widely accepted notation scheme for
machine scheduling proposed by Graham et al.[9]
we denote our problem as R| res | ∑ +

i
iiii TbEa)(.

This problem is known to be NP-Hard (see Chen
[3]) since the same problem without the added
complexity of resource allocation is already NP-
Hard.

The resolution of the problem focused on proves
to be of great interest, since it can be easily extended
and adapted to many specific problems in the
industry, by assuming certain simplifications. The
present study is framed inside a global research line
that faces the application and adaptation of classic
Operations Management tools in productive
environments with disabled workers. Particularly,
the industrial reality of Sheltered Work Centers for
Disabled could be modelled by parallel machines
with different speed, where the job processing times

T

414 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

depend also on the number of workers assigned to
the job. However, the authors observed that this
model can be extended to very disparate industries,
such as varnishes manufacturing in chemical
industry or components manufacturing in
automotive industry.

II. LITERATURE REVIEW

The first study on job scheduling involving

processing times controlled by resource allocation
was initiated by Vickson [15]. Since then, and
especially in the last decade, the problem has
received increasing attention. However, depending
on the consideration of some important parameters
(e.g. resource characteristics, machines, objectives),
very different approaches to the resource allocation
problem can be found in the literature.

Concerning resources characteristics, the
distinction between renewable and not renewable
resources is usually made. In problems involving
renewable resources the total amount of resource is
limited (e.g. manpower) and the job processing
times are discrete depending on the amount of
resource allocated to the job, see Daniels et al. [6],
[7]. In Kellerer and Strusevich [10] a particular case
of renewable resources where job processing times
are not controlled by resource allocation analyze.
Later on Kellerer and Strusevich [11] extend their
work with the consideration of multiple resources.
This kind of scheduling problems is known as
scheduling under resource constraints problems. On
the other hand, not renewable resources (e.g.
electricity, fuel) usually imply continuous
processing times and a related cost in the objective
function, since the amount of resource is not limited.
Interesting studies dealing with not renewable
resources are Alidaee and Ahmadian [1], Cheng et
al. [5], [4] among others.

As regards machines, we have focused
particularly on parallel machine scheduling
problems. A very exhaustive review of these
scheduling problems can be found in [12]. To the
best of our knowledge, only Trick [14] considers the
problem of resource allocation with unrelated
parallel machines. Alidaee and Ahmadian [1] and
Chen [3] studied this problem with identical parallel
machines. By means of an interesting
transformation, Chen extends his previous studies on
parallel machines (see Chen and Powell [2]) to the
problem involving resource allocation. The author
exploits a body of work that has produced
interesting results that consists of transforming the
problem into a set covering model. In this method,

the linear programming relaxation of the problem is
solved first. Then a variety of techniques, such as
cutting plane or branch-and-bound, are used to find
an integer solution to the set covering problem. In
the works of Daniels et al. [6], [7], and the works of
Kellerer and Strusevich [10], [11] the machines are
dedicated, i.e. the assignments of jobs to machines is
specified. Daniels and Mazzola [8] and Nowicki
[13] consider the problem of resource allocation and
controllable processing times in flow shop
environments. Finally, Cheng et al. [4], [5] studied
the case of a single machine.

With regard to jobs, usually the studies involving
processing times controlled by resource allocation
consider non pre-emptive jobs. Only the works of
Kellerer and Strusevich [10], [11] consider the
possibility of interruption.

Finally, with reference to objectives, the usual
scheduling criterions are considered. In Daniels et
al. [6], [7], Daniels and Mazzola [8], and Kellerer
and Strusevich [10], [11] the aim is to minimize the
maximum completion time Cmax. As a general rule,
the renewable resources characteristic appears as a
constraint in the model, and not as a cost to
minimize. On the other hand, if the resources are not
renewable, usually a cost related to the total resource
consumption appears as a cost to minimize. To be
precise, in most of the cases an overall cost function,
which consists of a resource allocation cost and a
scheduling cost, is to minimize. For instance, in
Alidaee and Ahmadian [1] the aim is to minimize
the production costs (related to resource
consumption) plus total weighted earliness and
weighted tardiness. Similarly, Trick [14] considers
the minimization of processing costs plus Cmax, and
in Cheng et al. [5] and Chen [3] the objective is to
minimize the resource allocation costs plus weighted
number of tardy jobs.

As a general rule, parallel machine scheduling
problems, due to their high analytical complexity,
have been approached by means of heuristic
procedures where their performance is evaluated by
ratios that allow for comparisons to be made.
Only Daniels et al. [6], [7], Daniels and Mazzola [8]
and Chen [3] worked on exact solution algorithms
for NP-Hard problems in this area.

To the best of our knowledge, there are no
formulations to be found in the literature for the
problem of minimizing a delivery date related cost
function, for unrelated parallel machines with
processing times controlled by resource allocation.

III. MODEL FORMULATION

Raúl Cortés et al.

415

For the model formulation, besides the indexes
and parameters described in section I, a new index
k=1,...,n, has to be defined, referred to the position a
job takes in the machine sequence. Thus, we define
the following binary variables:

⎪⎩

⎪
⎨
⎧

otherwise
resourcesrwith

kpositioninjmachineonprocessedisijobif
xijkr

,0

,1

⎩
⎨
⎧

otherwise
jmachinetoallocatedareresourcesrif

y jr ,0
,1

In addition, a binary variable, δiljk, will be used to

force the following condition, which will be
expressed in the model by means of constraints (7)
and (8)

iijrlrljkijkr CPCxx ≤+→=∧ − 11 (1)

Therefore, we define:

⎩
⎨
⎧ == −

otherwise
xxif rljkijkr

iljk ,0
1,1 1δ

Hence, the scheduling problem we are considering

can be formulated as follows:

∑
=

+
n

i
iiii TbEa

1
)(min (2)

s.t.

iCDE iii ∀−≥ (3)

iDCT iii ∀−≥ (4)
max

1 1 min
1

ij

ij

Rm n

ijkr
j k r R

x i
= = =

= ∀∑∑ ∑ (5)

max

1 min

1 ,
ij

ij

Rn

ijkr
i r R

x k j
= =

≤ ∀ ∀∑ ∑ (6)

kjxx
n

i

R

Rr
ijkr

n

i

R

Rr
rijk

ij

ij

ij

ij

,
1

max

min1

max

min
1 ∀≤∑ ∑∑ ∑

= == =
+

 (7)

max max

1
min min

1 , , ,
ij lj

ij lj

R R

ijkr ljk r iljk
r R r R

x x i l j k−
= =

+ − ∂ ≤ ∀∑ ∑ (8)

max

min

, , ,
ij

ij

R

l ijkr ijr iljk i
r R

C x P M M C i l j k
=

+ ⋅ + ⋅∂ ≤ + ∀∑ (9)

max

1
1 min

ij

ij

Rm

i ij r ijr
j r R

C x P i
= =

≥ ⋅ ∀∑ ∑ (10)

∑
=

∀≤
R

r
jr jy

1
1 (11)

max

min 1 1
,

ij

ij

R n R

ijkr jr
r R k r

r x r y j i
= = =

⋅ ≤ ⋅ ∀∑ ∑ ∑ (12)

()
max

min 1 1

,
ij

ij

R n R

ijkr jr
r R k r

R r R x r y j i
= = =

− − ⋅ ≥ ⋅ ∀∑ ∑ ∑ (13)

∑∑
= =

≤⋅
R

r

m

j
jr Ryr

1 1

 (14)

iCET iii ∀≥ 0,, (15)

Where M is an upper bound on the schedule
makespan.

Equations (3), (4), and (15) define
),0(max iiii CDE −= and),0(max iiii DCT −=

for earliness and tardiness of job i.
The set of constraints expressed by equation (5)

expresses that each job is to be processed once.
Constraints (6) ensure that there will be only one job
or less processed in k-th place on machine j.
Constraints (7) force that the positions of the jobs in
the sequence of a machine are consecutive.
Constraints (8) and (9) and (10) define the
completion time of the jobs: by means of the binary
variable δiljk the condition expressed in (1) is forced
in constraints (8) and (9), whereas constraints (10)
are used to guarantee that the completion time of a
job is at least its processing time when it is
processed in first place in the sequence.

Constraints (11) ensure one resource allocation at
the most for each machine, and constraints (12) and
(13) require that all the jobs processed on machine j
have the same amount of resource allocated. Finally,
constraint (14) limits the total amount of resource
allocated among the machines.

IV. CONCLUSIONS
We have analyzed the last studies referring

scheduling with job processing times controlled by
resource allocation, and the different approaches to
similar problems in this area. An original model for
a due-date-related objective in an environment with
unrelated parallel machines for job scheduling and
resource allocation has been presented. Due to the
model structure it seems rather improbable that
optimal solutions can be found for problems with a
large size, in a reasonable time. At the moment test
problems are being generated to evaluate the
performance of the model with regard to the size of
the problem. Further investigations should be carried
out in order to develop particular resolution
algorithms to solve problems with a larger size.

416 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

APPENDIX
Appendix A. Notation

Term Definition
i,l Indexes for jobs
j Index for machines
k Index for position
r Index for resources
n Number of jobs
M Number of machines
R Amount of resources
Di Due date for job i
Pijr Processing time for job i on machine j with

r resources
ai Earliness penalty weight (per time unit) for

job i
bi Tardiness penalty weight (per time unit) for

job i
Ei Earliness of job i
Ti Tardiness of job i

REFERENCES
[1] B. Alidaee and A. Ahmadian. 2 Parallel Machine

Sequencing Problems Involving Controllable Job
Processing Times. European Journal of Operational
Research 70 (3):335-341, 1993.

[2] Z. L. Chen and W. B. Powell. Solving parallel machine
scheduling problems by column generation. Informs
Journal on Computing 11 (1):78-94, 1999.

[3] Z. L. Chen. Simultaneous job scheduling and resource
allocation on parallel machines. Annals of Operations
Research 129 (1-4):135-153, 2004.

[4] T. C. E. Cheng, A. Janiak, and M. Y. Kovalyov.
Bicriterion single machine scheduling with resource
dependent processing times. Siam Journal on Optimization
8 (2):617-630, 1998.

[5] T. C. E. Cheng, Z. L. Chen, and C. L. Li. Single-machine
scheduling with trade-off between number of tardy jobs
and resource allocation. Operations Research Letters 19
(5):237-242, 1996.

[6] R. L. Daniels, B. J. Hoopes, and J. B. Mazzola. An
analysis of heuristics for the parallel-machine flexible-
resource scheduling problem. Annals of Operations
Research 70:439-472, 1997.

[7] R. L. Daniels, B. J. Hoopes, and J. B. Mazzola. Scheduling
parallel manufacturing cells with resource flexibility.
Management Science 42 (9):1260-1276, 1996.

[8] R. L. Daniels and J. B. Mazzola. Flow-Shop Scheduling
with Resource Flexibility. Operations Research 42
(3):504-522, 1994.

[9] R. L. Graham, Lawler E.L, Lenstra, J.K. and Rinnooy Kan
A.H.G. Optimization and approximation in deterministic
sequencing and scheduling: A survey. Ann. Discrete
Mathematics, 5:287--326, 1979.

[10] H. Kellerer and V. A. Strusevich. Scheduling parallel
dedicated machines under a single non-shared resource.
European Journal of Operational Research 147 (2):345-
364, 2003.

[11] H. Kellerer and V. A. Strusevich. Scheduling problems for
parallel dedicated machines under multiple resource
constraints. Discrete Applied Mathematics 133 (1-3):45-68,
2003.

[12] E. Mokotoff. Parallel machine scheduling problems: A
survey. Asia-Pacific Journal of Operational Research 18
(2):193-242, 2001.

[13] E. Nowicki. An Approximation Algorithm for the M-
Machine Permutation Flow-Shop Scheduling Problem with
Controllable Processing Times. European Journal of
Operational Research 70 (3):342-349, 1993.

[14] M. A. Trick. Scheduling Multiple Variable-Speed
Machines. Operations Research 42 (2):234-248, 1994.

[15] R. G. Vickson. 2 Single-Machine Sequencing Problems
Involving Controllable Job Processing Times. Aiie
Transactions 12 (3):258-262, 1980.

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 417

A Tabu Search algorithm for two-dimensional
non-guillotine cutting problems

Francisco Parrẽno∗, Ramn lvarez-Valds† and J. Manuel Tamarit†
∗University of Castilla-La Mancha. Department of Computer Science

E.Politecnica Superior, 02071 Albacete, Spain
Email: fparreno@info-ab.uclm.es

†University of Valencia, Department of Statistics and Operations Research.
46100 Burjassot, Valencia, Spain

Email: ramon.alvarez@uv.es

Abstract— In this paper we study the two-dimensional
non-guillotine cutting problem, the problem of cutting
rectangular pieces from a large stock rectangle so as to
maximize the total value of the pieces cut. The problem
has many industrial applications whenever small pieces
have to be cut from or packed into a large stock sheet. We
propose a tabu search algorithm. Several moves based on
reducing and inserting blocks of pieces have been defined.
Intensification and diversification procedures, based on
long-term memory, have been included. The computational
results on large sets of test instances show that the
algorithm is very efficient for a wide range of packing
and cutting problems.

Keywords— Non-guillotine cutting; heuristics; Tabu
Search

I. I NTRODUCTION

T HE two-dimensional non-guillotine cutting prob-
lem consists of cutting a given finite set of small

rectangular pieces from a large stock rectangle of fixed
dimensions with maximum profit. The problem appears
in many production processes in the textile, paper, steel,
glass and wood industries.R = (L, W) is the large
stock rectangle of lengthL and width W . Each piece
i has dimensions(li, wi), and valuevi, i = 1, . . . , m.
The pieces have fixed orientation and must be cut with
their edges parallel to the edges of the stock rectangle
(orthogonal cuts). The problem is to cut off the rectangle
R into xi copies of each piecei, such that0 ≤ Pi ≤
xi ≤ Qi, and the total values of the pieces cut,

∑

i vixi

is maximized. We will denote byM =
∑

i Qi the
maximum number of pieces which could be cut.

According to the values ofPi andQi we can distin-
guish three types of problems:

1) Unconstrained:
∀i, Pi = 0, Qi = ⌊L ∗ W/li ∗ wi⌋ (trivial bound).

2) Constrained:
∀i, Pi = 0; ∃i, Qi < ⌊L ∗ W/li ∗ wi⌋

3) Doubly constrained:
∃ i, Pi > 0; ∃ j, Qj < ⌊L ∗ W/lj ∗ wj⌋

In Figure 1 we see an example with a stock rectangle
of R = (10, 10), and m = 10 pieces to be cut. The
first solution (Figure 1(b)) is optimal for the uncon-
strained problem, while the second solution (Figure 1(c))
corresponds to the constrained problem and the third
(Figure 1(d)) to the doubly constrained problem, with
somePi 6= 0.

Some authors have considered the unconstrained prob-
lem: Tsai et al. [20], Arenales and Morabito [3], Healy
et al. [11]. Nevertheless, the constrained problems are
more interesting for applications and more research has
been devoted to this case. Some exact methods have
been proposed by Beasley [4], Scheithauer and Terno
[18], Hadjiconstantinou and Christofides [10], Fekete
and Schepers [8], and Caprara and Monaci [6].

A simple upper bound for the problem can be obtained
by solving the following bounded knapsack problem,
where variablexi represents the number of pieces of
type i cut in excess of its lower boundPi:

Max
m

∑

i=1

vixi +
m

∑

i=1

viPi (1)

s.t. :
m

∑

i=1

(liwi)xi ≤ LW −
m

∑

i=1

Pi(liwi) (2)

xi ≤ Qi − Pi, i = 1, . . . , m (3)

xi ≥ 0, integer, i = 1, . . . , m. (4)

Other bounds, apart from those included in the ex-
act methods mentioned above, have been proposed by
Scheithauer and Terno [19], Amaral and Wright [2].

Several heuristic algorithms have been proposed re-
cently. Wu et al. [22] develop a constructive algorithm
for the special case in whichPi = Qi ∀i. At each

418 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Stock rectangle : R = (10, 10)

Piece li wi Pi Qi vi

1 3 2 1 2 7
2 7 2 1 3 20
3 4 2 1 2 11
4 6 2 0 3 13
5 9 1 0 2 21
6 8 4 0 1 79
7 4 1 1 2 9
8 1 10 0 1 14
9 3 7 0 3 52
10 4 5 0 2 60

1 2

3 4

5

6

7

8

9

10

8 8

10

10

10

10

(b) Unconstr.
Opt: 268

1 1

10

10

99

7

(c) Constr. Opt:
247

2

73

1

10 9 9

7

(d) Doubly cons.
Opt: 220

Fig. 1. Instance 3 from Beasley [4]

step a piece is cut in a corner of the current cutting
pattern and the piece to cut is decided according to a
fitness evaluation function which estimates the quality
of the complete solution that could be obtained starting
from the piece being considered. The other proposals
are based on metaheuristic procedures, mainly simulated
annnealing and genetic algorithms. Lai and Chan [14],
[15] use simulated annealing. Each solution is given by
an ordered list of pieces and a list is translated into
a cutting pattern by a placement algorithm. Instead of
the more usual bottom-left algorithm, they propose a
difference algorithm in which the piece is placed in the
existing empty space which is nearest to the bottom
left corner of the stock sheet. They report a limited
computational experience on a small set of randomly
generated instances and one real problem from a printing
company. The Leung et al. [16], [17] algorithms are
based on the work by Lai and Chan [14], [15] and by
Jakobs [13]. Jakobs [13] develops a genetic algorithm for
the related strip packing problem and uses as placement
algorithm a bottom-left procedure. They combine both

metaheuristics and both placement algorithms and report
computational results on a set of randomly generated
instances. Beasley [5] develops a genetic algorithm based
on a non-linear formulation of the problem, where vari-
ables indicate if a piece is cut or not and its position
on the stock sheet. Therefore, the solutions are lists
of variables and directly show the cutting pattern. No
placement algorithm is needed. He presents a complete
computational study on a set of standard test problems
and on a number of large randomly generated problems.
Alvarez-Valdes et al [1] follow a different approach and
develop a GRASP algorithm. Their computational tests
collect the problems used by Leung et al. [16], [17] and
by Beasley [5].

In this paper, we present a Tabu Search algorithm
for the two-dimensional non-guillotine cutting problem.
We provide computational results obtained on four sets
of test problems: the 21 problems from the literature
collected by Beasley [5]; the 630 large random problems
also generated by Beasley [5]; 10 problems used by
Leung et al. [17], and the 21 problems used by Hopper
and Turton [12]. The last set of problems were initially
designed for the strip packing problem and have been
adapted to the two-dimensional non-guillotine cutting
problem with the aim of testing the algorithm on a set
of large and difficult zero-waste instances.

II. A CONSTRUCTIVE ALGORITHM

In this section we briefly describe a constructive
algorithm that will be used in the Tabu Search algo-
rithm. More details may be found in [1]. Constructing a
solution is an iterative process in which we combine two
elements: a listP of pieces still to be cut, initially the
complete list of pieces, and a listL of empty rectangles
in which a piece can be cut, initially containing only the
stock rectangleR = (L, W). At each step a rectangle
is chosen fromL, and from the pieces inP fitting in it
a piece is chosen to be cut. That usually produces new
rectangles going intoL and the process goes on until
L = ∅ or none of the remaining pieces fit into one of
the remaining rectangles.
Step 0. Initialization:

L = {R}, the set of empty rectangles.
P = {p1, p2, . . . , pm}, the set of pieces still to be
cut.
The setP is initially ordered according to 3 criteria:
Order by non-increasingPi ∗ li ∗wi, giving priority
to pieces which must be cut. If there is a tie (for
instance, ifPi = 0,∀i), order by non-increasing
vi/(li ∗ wi). If there is a tie (for instance, ifvi =
li ∗ wi,∀i), order by non-increasingli ∗ wi.

Francisco Parrẽno et al. 419

B = ∅, the set of pieces cut. Pieces of the same
type may appear grouped in rectangularblocks.

Step 1. Choosing the rectangle:
Take R∗, the smallest rectangle ofL in which a
piecepi ∈ P can fit.
If such R∗ does not exist, stop.
Otherwise, go to Step 2.

Step 2. Choosing the piece to cut:
Choose a piecepi and a quantityni ≤ Qi, forming
block B∗ to be cut inR∗.
The piecei is chosen to produce the largest increase
in the objective function. BlockB∗ is cut in the
corner of R∗ which is nearest to a corner of the
stock rectangle.
UpdateP, B andQi which indicates the number of
pieces still to be cut.
Move block B∗ towards the nearest corner of the
stock rectangle.

Step 3. Updating the listL:
Add to L the possible rectangles produced when
cutting B∗ from R∗.
Take into account the possible changes inL when
moving blockB∗.
Merge rectangles to favor cutting new pieces ofP.
Go back to Step 1.

Though we keep a list of empty rectanglesL, we
really have an irregular, polygonal empty space in which
the pieces still to be cut can be considered for fitting.
One way of adapting our listL to the flexibility of non-
guillotine cutting is to merge some of the rectangles from
the list, producing some new rectangles in which the
pieces to be cut could fit better.

When we merge 2 rectangles, at most 3 new rectangles
may appear, usually onelarge rectangle and 2small
ones (see Figure 2). Among the several alternatives for
merging we try to select the best, that is, the one in
which it is possible to cut the pieces best situated in the
ordered listP. With this objective in mind, we impose
some conditions:

1) If the order of the best piece which fits into the
large rectangle is strictly lower than the order of
the pieces in the original rectangles, we merge
them.

2) If the order of the best piece which fits into the
large rectangle is equal to the order of the pieces
in the original rectangles, we merge them if the
area of the large rectangle is bigger than the area
of each one of the original rectangles.

3) If the order of the best piece which fits in thelarge
rectangle is strictly greater than the order of the
pieces in the original rectangles, we do not merge

them.

In Figure 2 we see several possible cases. In Figure
2(a) the two original rectangles will always be merged.
The new rectangle is larger than them and all the pieces
fitting in the original rectangles will fit in it. In Figure
2(b) the new rectangles are not larger than the original
ones. These will be merged only if the new central
rectangle accommodates a piece of lower order than
those fitting in the original rectangles. In Figure 2(c) one
of the new rectangles is larger than the original ones and
therefore they will be merged unless the best piece fitting
in the original vertical rectangle does not fit in the new
ones.

(a) (b) (c)

Fig. 2. Merging 2 empty rectangles

At the end of the constructive process, a solution is
composed of a list of blocksB, and a list of empty
rectanglesL, with total value

∑

i vixi.

III. A T ABU SEARCH ALGORITHM

Tabu Searchis now a well-established optimiza-
tion algorithm (for an introduction, refer to the book
by Glover and Laguna [9]). The basic elements of the
algorithm are described in the following subsections.

A. Definition of moves

The solution space in which we move is composed
of feasible solutions only. In this space we will define
several moves to go from one solution to another. An
initial solution is obtained by applying the constructive
algorithm described in Section 2.

We distinguish two types of moves: block reduction
and block insertion. In block reduction, the size of an
existing block is reduced, eliminating some of its rows
or columns. In block insertion, a new block is added to
the solution. For both moves we first present a scheme
of the procedures and then a detailed example.

• Block reduction
Step 0. Initialization:

B = the list of blocks of the current solution
L = the list of empty rectangles

420 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Step 1. Choosing the block to reduce

TakeB, one of the blocks ofB, with k columns
and l rows of piecespi.
Select the numberr of columns (rows) to
eliminate,

1 ≤ r ≤ k (1 ≤ r ≤ l),
keeping the number of pieces in the solution
xi ≥ Pi.
If Pi = 0, the block may disappear completely.
The new waste rectangleR is added toL.

Step 2. Move the remaining blocks to their nearest
corners:

The list of waste rectanglesL is updated ac-
cordingly.

Step 3. Fill the empty rectangles with new blocks:

Apply the constructive algorithm of Section 2,
The algorithm starts from the current listsL
and B, and P contains the pieces which can
still be cut and added to the current solution.
Before proceeding to the construction process,
rectangles inL are considered for merging, to
best accommodate the pieces ofP.
When selecting the piece to cut, the piece
eliminated at Step 1 is not considered until
another piece has been included in the modified
solution.

Step 4. Merge the blocks with the same structure:

We try to merge blocks of the same piece with
the same length or width if they are adjacent
and have a common side, or if one of them can
be moved to make them both adjacent to one
common side.

In Figure 3 we see an example of a reduction move
on an instance proposed by Jakobs [13] and used
later by Leung et al. [17]. The stock rectangle is
R = (120, 45), m = 22 and M = 25 pieces can
be cut from it, completely filling it. Figure 3(a)
shows a solution with 23 pieces which cannot ac-
commodate two (6x12) pieces. The setL of empty
rectangles is composed ofR1 = (60, 24, 72, 30) and
R2 = (72, 18, 84, 24) (in light grey). In Step 1,
a block composed of one piece (12x21) (in dark
grey), is selected to be reduced and therefore it
disappears from the solution, creating a new empty
rectangleR3 = (72, 24, 84, 45) which is added to
L (Figure 3(b)). In Step 2, a block composed of
a piece (12x15) is moved to the top right corner.
Therefore,L = {R1, R2, R4, R5}, where R4 =

(60, 30, 72, 45) and R5 = (72, 24, 84, 30) (Figure
3(c)). In Step 3 the constructive procedure fills the
empty rectangles. First,R1 and R4 are merged,
forming R6 = (60, 24, 72, 45), andR2 and R5 are
merged, formingR7 = (72, 18, 84, 30). Then, R7

is selected and the two pieces (6x12) are cut in
it, completely filling it. Finally, R6 is taken and
the piece initially eliminated is cut in it. The final
solution, which is optimal, appears in Figure 3(d).

(a) Selection

(b) Reduction

(c) Moving to the corner

(d) Fill

Fig. 3. Block reduction. Instance 3 from Jakobs [13]

1

2

3

(a) Step 1

1

2

4

5

(b) Step 2

6

7

(c) Merge (d) Fill

Fig. 4. Empty rectangles in the reduction move

• Block insertion

Step 0. Initialization:

B = the list of blocks
L = the list of empty rectangles

Step 1. Choosing the block to insert

Take pi, a piece for whichxi < Qi, and

Francisco Parrẽno et al. 421

consider a block of these pieces withk columns
and l rows (k ∗ l ≤ Qi − xi).

Step 2. Select the position to insert the new block

Step 3. Remove the pieces of the solution overlap-
ping with the inserted block

Update B (some of the original blocks are
reduced or eliminated)
UpdateL (some new empty rectangles may
appear).

Step 4. Fill the empty rectangles with new blocks

Step 5. Merge the blocks with the same structure:

Steps 4 and 5 are the same as in block reduc-
tion.

In Step 3, two strategies have been considered to select
the position of the new block. In both cases, the block
is placed partially or totally covering one or more empty
rectangles.

• For each empty rectangle consider the four alterna-
tives in which a corner of the rectangle is chosen
for the corresponding corner of the block. If the
dimensions of the block are larger than those of the
rectangle, the block may overlap with other blocks
or may occupy part of other empty rectangles.

• Select only one empty rectangle, that producing the
largest intersection with the block if the bottom left
corner of the block were placed in the bottom left
corner of the rectangle. For this rectangle, the four
alternatives described above are considered.

In Figure 5 we see an example of the second strat-
egy. In Figure 5(a) two empty rectangles, in grey, are
considered to accommodate the new block, in white. As
the largest common area corresponds to rectangle 1, it
is chosen. In Figure 5(b) the four corners of the empty
rectangle are considered for situating the corner of the
new block.

In Figure 6 we see an example of an insertion move
on an instance proposed by Fekete and Schepers [8]
and later used by Beasley [5]. The stock rectangle is
R = (100, 100), m = 15 and M = 50 pieces can
be cut from it. Figure 6(a) shows a solution of value
z = 27539. The setL of empty rectangles is composed
of R1 = (70, 41, 72, 81) and R2 = (72, 80, 100, 81). In
Step 1 we select a piecei = 5 of dimensions (6x40)
with Qi = 5 and only 2 copies in the current solution
and consider a blockB∗ of one piece. In Step 2 we
place B∗ over R1, selecting the top left corner of the
rectangle to locate the top left corner of the block.B∗

completely coversR1 and part ofR2, which becomes
R3 = (76, 80, 100, 81). B∗ also partially covers an

1

2

(a) Largest common area

(b) Possible positions

Fig. 5. Selecting the position of the new block

existing block (Figure 6(b)). Therefore, in Step 3, we
remove the pieces of the initial solution overlapping with
B∗. That produces two new empty rectanglesR4 =
(76, 40, 78, 80) and R5 = (72, 40, 76, 41) (Figure 6(c)).
In Step 4, the filling procedure starts form this listL =
{R3, R4, R5}. First, R3 and R4 are merged, producing
R6 = (76, 40, 78, 81) andR7 = (78, 80, 100, 81). While
none of the remaining pieces could fit either inR3 or in
R4, a piecei = 13 of dimensions (2x41) now fits into
R6. The new solution is better than the initial one and
has a valuez∗ = 27718, optimal for the problem (Figure
6(d)).

(a) Initial (b) Insert

(c) Eliminate overlap (d) Merge and fill

Fig. 6. Block insertion. Instance 1 from Fekete and Schepers
[8]

422 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

B. Moves to be studied

At each iteration we study all the possible reduction
and insertion moves which can be applied to the current
solution.

• Reduction:

1) Take each block of the solution, one at a time,
in random order.

2) Consider all possibilities of reduction in the
directions adjacent to empty rectangles.

• Insertion:

1) Select a piece for which the number of copies
in the solution,xi, is lower thanQi, one at
time, in random order.

2) Consider all the possible blocks which can be
built with this piece.

3) Consider all the alternatives for placing the
block onto an empty rectangle.

C. Selection of the move

The objective function consists only of maximizing
the value of pieces cutf(x) =

∑

i vixi. However, if
the moves are evaluated according to that function, there
can be many moves with the same evaluation. Therefore,
if there are ties, we break them by using a secondary
objective functiong(x) = k1S + k2|L| + k3C + k4F .

• S (Symmetry): We try not to explore symmetric solu-
tions but prefer solutions in which empty rectangles
are mostly concentrated to the right and to the top
of the stock rectangle.
S = 1 if there is no symmetric solution with the
wastes more concentrated to the right and to the
top. Otherwise,S = 0.

• |L| (Number of empty rectangles)). If possible, we
prefer solutions in which the number of empty
rectangles will be as low as possible.

• C (Centered and concentrated wastes): We prefer
solutions in which empty rectangles are centered
and concentrated as much as possible, because that
will make it easier to merge them and obtain spaces
for more pieces. We consider the smallest rectangle
ER containing all the empty rectangles and
C = 1 − (0.75 ∗ rd + 0.25 ∗ ra)
where rd is the distance from the center ofER
to the center of the stock rectangle, divided by the
distance from the center of the stock rectangle to its
bottom left corner, andra is the area ofER divided
by the area of the stock rectangle.

• F (Feasibility). In doubly constrained problems, the
initial solution may not be feasible. In this caseF =
1. Otherwise,F = 0.

These criteria are added to the secondary function
with some weights reflecting their relative importance,
according to the results of a preliminary computational
experience on a subset of problems. In the current
implementation, the weights are:

Criterion Coefficient Weight
Symmetry k1 5000
Empty rectangles k2 −950
Centered empty rectangles k3 50
Feasibility k4 −50000

D. Tabu list

The tabu list contains for each solution the following
pair of attributes: the value of the objective function
and the smallest rectangleER containing all its empty
rectangles. A move is then tabu if these two attributes
of the new solution match one pair of the tabu list.

The tabu list size varies dynamically. After a given
number of iterations without improving the solution, the
length is randomly chosen from[0.25 ∗ M, 0.75 ∗ M],
whereM =

∑

i Qi.
The aspiration criterionallows us to move to a tabu

solution if it improves the best solution obtained so far.

E. Intensification and diversification strategies

The moves we have defined involve a high level of
diversification. However, we have included two more
diversification strategies:

• Long term memory
Throughout the search process, we keep in mem-
ory the frequency of each piece appearing in the
solutions.
This information is used for both diversification and
intensification purposes. When used for diversifica-
tion, we favor the moves of pieces not appearing
very frequently in the solutions, then inducing new
pieces to appear. When used for intensification, we
consider only pieces corresponding to high quality
solutions and then we favor these pieces appearing
again in the new solutions.
In a diversification phase, the objective function is
modified by subtracting a term that is the sum of the
frequencies of the pieces appearing in the solutions:
f(x) → f(x) −

∑

i freq(pi)
In an intensification phase, the objective function is
modified by adding a term reflecting the frequency
of the pieces in the set of elite solutionsE
f(x) → f(x) + K

∑

i∈E freq(pi)
• Restarting

According to the secondary objective function, we
tend to explore solutions satisfying the symmetry

Francisco Parrẽno et al. 423

criterion. After a given number of iterations without
improving the best known solution, the current
solution is changed by performing a horizontal
and a vertical symmetry on it. The new solution
obtained in that way would be quite different from
the recently studied solutions and it is taken as a
new starting point for the search.

F. Adjusting the bounds of the pieces

Throughout the iterative process we have the best
known solution of valuevbest. We can use this value
to adjustPi of some pieces that must appear if we want
to improve the solution, andQj of some pieces whose
inclusion would not allow us to improve the solution.

• Increasing lower boundsPi

Let us definetotalpieces =
m
∑

i

vi∗Qi, the total value

of the available pieces. If there is a piecei such that
Pi < Qi, andtotalpieces−(Qi−Pi)∗vi <= vbest, a
solution with the minimumPi copies of this type of
piece cannot improve the best known solution. Any
better solution must include more pieces of this type
andPi can be increased. If we computet as:

max t : totalpieces − t ∗ vi > vbest ; t ≥ 0, t ≤
Qi − Pi

Then, Pi = Qi − t. This improved lower bound
can be useful in the constructive phase, in which
the pieces withPi > 0 are cut first, and in the
improvement phase, in which pieces in their lower
bounds are not considered to be removed from the
current solution.

• Decreasing upper boundsQi

Let us denote byR =
∑

Pi>0
Pi ∗ li ∗ wi the area

of the pieces which must appear in any feasible
solution,Rv =

∑

Pi>0
Pi∗vi, the value of these pieces,

ei = vi/(li∗wi) the efficiency of piecei andemax =
max{ei, i = 1, . . . , m}, the maximum efficiency of
the pieces. If there is a piecei, with Qi > Pi and
ei < emax satisfying:

Qi ∗ li ∗ wi ∗ (emax − ei) ≥
emax ∗ (L ∗ W − R) + Rv − vbest

any solution withQi copies of this piece cannot
improve the best known solution. Therefore, at any
better solution the number of copies of piecei
should be limited to belowQi. If we computet
as:

max t : t ∗ li ∗ wi ∗ (emax − ei) <
emax ∗ (L ∗ W − R) + Rv − vbest

t ≥ 0, t ≤ Qi − Pi

thenQi = Pi + t. This decrease in the upper bound
can be useful when constructing and improving so-
lutions in the subsequent iterations. In some cases,
Qi can be set to 0 and the corresponding piece is
no longer considered for cutting.

G. Path relinking

Path Relinking is an approach for integrating intensifi-
cation and diversification strategies in the context of Tabu
Search (Glover and Laguna [9]). This approach generates
new solutions by exploring trajectories that connect high
quality solutions. Starting from one of these solutions,
called the initiating solution, a path is generated in the
solution space that leads towards another solution, called
the guiding solution. This is done by selecting moves that
introduce the attributes of the guiding solution into the
new solutions.

Throughout the search process we keep a set of elite
solutions, the best solutions found. We now take pairs
of elite solutions and use one of them, solution A, as
the initiating solution and the other, solution B, as the
guiding solution. As the Tabu search algorithm favors
solutions with empty rectangles preferably in the upper
right part of the stock rectangle, both solutions will tend
to have the empty rectangles in this zone. Therefore,
we apply a vertical symmetry to the initiating solution
before starting the Path Relinking process.

We follow a constructive strategy, inserting the blocks
of solution B, one at a time, into solution A. The inser-
tion move follows the procedure described in Section 3.1.
The pieces overlapping with the block are eliminated,
the remaining blocks are moved to their nearest corners
and the resulting empty rectangles are filled. At the end
of the process, we will have reproduced solution B, but
along the path new solutions will have been generated.
When inserting the blocks of solution B, we first insert
the blocks adjacent to the sides of the stock rectangle
and then the blocks in the center.

An example of the first step of Path Relinking appears
in Figure 7. Solution A with value 5376 is selected as
the initiating solution (Figure 7(a)), and solution B with
value 5352 as the guiding solution (Figure 7(b)). The
vertical symmetry applied to solution A produces the
solution of Figure 7(c). Then a block of B is inserted
on it (Figure 7(d)). The pieces overlapping with it are
deleted as well as one piece of the same type of the piece
being inserted so thatQi is not exceeded. The remaining
blocks are moved to their nearest corners, as indicated
by the arrows in Figure 7(e). Finally the empty spaces
are merged and filled with new pieces, producing the
solution in Figure 7(f). This solution is different from
solutions A and B and has a value of 5395.

424 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

(a) Solution A: 5376 (b) Solution B: 5352

(c) Simmetry on A (d) Insert a block of B

(e) Eliminate overlapping (f) Merge and fill

Fig. 7. Path Relinking. Instance 2 from Jakobs [13]

IV. COMPUTATIONAL EXPERIENCE

A. Test problems

We have used several sets of test problems:

1) A set of 21 problems from the literature: 15
from Beasley [4], 2 from Hadjiconstaninou and
Christofides [10], 1 from Wang [21], 1 from
Christofides and Whitlock [7], 5 from Fekete and
Schepers [8]. For all of them the optimal solutions
are known. They have also been solved by Beasley
[5].

2) A set of 630 large problems generated by Beasley
[5], following the work by Fekete and Schepers
[8]. All the problems have a stock rectangle of size
(100, 100). For each value ofm, number of piece
types (m =40, 50, 100, 150, 250, 500, 1000), 10
problems are randomly generated withPi = 0,
Qi = Q∗,∀i = 1, . . . , m where Q∗ = 1; 3; 4.
These 630 instances are divided into 3 types,

according to the percentages of the types of pieces
of each class:

Class Description Length Width
1 Short and wide [1,50] [75,100]
2 Long and narrow [75,100] [1,50]
3 Large [50,100] [50,100]
4 Small [1,50] [1,50]

Type Percentages of pieces of each class
1 2 3 4

1 20 20 20 40
2 15 15 15 55
3 10 10 10 70

The value assigned to each piece is equal to its area
multiplied by an integer randomly chosen from
{1, 2, 3}.

3) The 21 test problems mentioned first were trans-
formed by Beasley [5] into doubly constrained
problems by defining some lower boundsPi.
Specifically, for each type of piece fromi =
1, . . . , m satisfying:

m
∑

j=1,j 6=i

(ljwj)Pj + liwi ≤ (LW)/3, the lower

boundPi is set to 1.
This set of problems would allow us to test the
algorithm in the general case of doubly constrained
problems.

4) Finally, we have included the test problems used
by Leung et al. [17], consisting of 3 instances from
Lai and Chan [14], 5 from Jakobs [13], and 2 from
Leung et al. [17]. We have also included 21 larger
instances from Hopper and Turton [12]. There are
unweighted problems in which the value of each
piece corresponds to its area and the objective is
to minimize the waste of the stock rectangle. The
problems have been generated in such a way that
the optimal solution is a cutting pattern with zero
waste.

We have included the Leung et al. [17] and Hopper
and Turton [12] sets of problems because they have
characteristics which can be considered complementary
to the two first sets used by Beasley, as can be seen
in Table I, in which we show the ratios of total pieces
available to be cut to the upper bound of pieces fitting
into the stock rectangles. We can see that the problems
of the second set, Types I, II and III, can be considered
selection problems because there are many available
pieces and only a small fraction of them will make part
of the solution. However, the Leung et al. and Hopper
and Turton problems arejigsaw problems. All available
pieces will make part of the solution and the difficulty
here is to find their correct position in the cutting pattern.

Francisco Parrẽno et al. 425

An algorithm working well on both types of problems
can be considered a general purpose algorithm.

Sets of problems Averages
Total value of pieces/ Total area of pieces/
Upper bound of value Upper bound of area

Literature problems 3,13 3,61
Type I 123,69 185,60
Type II 101,69 152,71
Type III 79,67 119,20
Zero-waste problems 1,00 1,00

TABLE I

Test problems – Characteristics.

B. Implementation

Our algorithm has been coded inC + + and run
on a PentiumIII at 800 Mhz. After 100 iterations
without improving the best known solution, the length
of the tabu list is changed. After 400 iterations without
improvement we do a diversification phase based on
long term frequencies over 100 iterations or until an
improved solution is found. We then recover the original
objective function and continue the search. After 400
iterations without improvement we do an intensification
phase withK = 100 over 100 iterations or until an
improved solution is found. We recover the original
objective function but if the solution has not been not
improved, instead of continuing the search from it we
do a restarting move and proceed from the new solution.

In Section 4.1 we have described three types of prob-
lems: constrained selection problems, constrained jigsaw
problems and doubly constrained problems. Some of the
strategies described in Section 3 are more adequate for
some of these types of problems. In Step 2 of the Block
insertion move, if we have a selection problem, we use
the second strategy, identifying the empty rectangle with
the largest common area and only studying the possible
positions of the new block on it. If we have a jigsaw
problem, we study all the empty rectangles as possible
placements for the block. The algorithm automatically
detects the type of problem and applies the adequate
strategy.

The algorithm runs until it reaches the optimal solu-
tion, if known, or the corresponding upper bound, or until
a limit of 1500 iterations. The strategy of stopping at the
optimal solution or the upper bound has been used by
Beasley [5] and we have adopted it in order to compare
our results with those obtained by him. The limit of 1500
has been set to keep the running times similar to those
of the GRASP algorithm used by Alvarez-Valdes et al.
[1].

Throughout the search we keep a set of 10 elite
solutions upon which the Path Relinking procedure will
act. However, as the solutions provided by Tabu Search
were so good, Path Relinking could not improve the
initial solutions and this procedure has not been included
in the final implementation.

C. Computational results

The computational results appear in Tables II, III and
IV. The first two tables include a direct comparison with
Beasley’s results [5] and with the GRASP algorithm
results [1] in terms of solution quality. The comput-
ing times cannot be directly compared with Beasley’s
time. Beasley coded his algorithm in FORTRAN and
used a Silicon Graphics O2 workstation (R10000 chip,
225MHz, 128 MB). An approximate comparison (http :
//www.spec.org) indicates that his computer is twice
as fast as ours. On Table II we see that our Tabu Search
algorithm optimally solves all the problems in very short
computing times, clearly outperforming the other two
algorithms in terms of quality and running times. For
the large problems in Table III the optimal solutions
are not known and the comparisons are made with
knapsack upper bounds. Table III shows that the Tabu
Search algorithm again obtains better results on every
type of problem, except form = 50, Q∗ = 1 in which
GRASP is slightly better. The computing times are much
shorter than those of Beasley’s algorithm, though they
are larger than those required by the GRASP procedure.
Both algorithms are based on similar ideas. The more
elaborated Tabu Search algorithm obtains better solutions
but needs longer processing times.

The adjustment of lower bounds does not have signif-
icant effects on the performance of the algorithms, but
the adjustment of upper bounds does have a dramatic
effect, especially in these large random problems in
which there are important differences in the efficiency
of the pieces. For instance, for problems withm =
1000 types of pieces, more than60% of the pieces are
discarded as soon as good solutions are found. That
increases significantly the speed of GRASP and Tabu
Search algorithms which use these adjustments.

The direct comparison with Leung et al. [17] is not
possible, though their 19 test instances are a subset of
those appearing in Table IV. On the one hand, they do
not give CPU times. On the other hand, they propose two
versions of their algorithm, each of them with several
mutation rates, and give minimum and mean waste in
15 runs of 30000 iterations. The best that can be said is
that our average distance to optimum is slightly better
than the average distances of their algorithms and quite

426 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

similar to the best distances they obtain after 15 runs. We
can also point out, as Beasley [5] illustrates, that there are
some optimal cutting patterns that cannot be obtained by
the Leung et al. [17] procedure, a situation that does not
arise with our procedure. In Table IV we again compare
the GRASP and the Tabu Search algorithms. Tabu Search
clearly outperforms GRASP in terms of the quality of the
solution, with quite similar computing times.

Finally, Table V shows the results of the algorithms on
the set of doubly constrained test problems. The upper
bound corresponds to the solution of the constrained
problem. The problems for which the algorithms do not
find solutions are not feasible, but they are maintained in
the set of test problems and therefore are included in the
table. The Tabu Search algorithm obtains the best result
for each instance of the set but its computing times are
slightly longer.

V. CONCLUSIONS

We have developed a new heuristic algorithm based
on Tabu Search techniques for the non-guillotine two-
dimensional cutting stock problem. Two moves have
been proposed, based on the reduction and insertion
of blocks of pieces. The efficiency of the moves is
based on amerge and fillstrategy that accommodates
the empty rectangles to the pieces still to be cut. Some
intensification and diversification strategies, based on
long-term memory, have also been included.

The computational results show that these ideas work
well for the constrained and doubly constrained test
problems proposed by Beasley [5]. For the Leung et al.
[17] and Hopper and Turton [12] zero-waste problems
the results are also good and the proposed algorithm can
be considered to work consistently well for a wide range
of cutting problems.

ACKNOWLEDGEMENTS

This work has been partially supported by Project
PBC-02-002, Consejeria de Ciencia y Tecnologia,
JCCM, the Spanish Ministry of Science and Technology
DPI2002-02553, and the Valencian Science and Tech-
nology Agency, GRUPOS03/174.

REFERENCES

[1] R. Alvarez-Valdes, F. Parreo, J.M. Tamarit, A GRASP algo-
rithm for constrained two-dimensional non-guillotine cutting
problems, Journal of Operational Research Society (2004), in
press.

[2] A. Amaral, A. Letchford, An improved upper bound for the
two-dimensional non-guillotine cutting problem, Working paper
available from the second author at Department of Management
Science, Management School, Lancaster University, Lancaster
LA1 4YW, England, 2003.

[3] M. Arenales, R. Morabito, An AND/OR-graph approach to the
solution of two-dimensional non-guillotine cutting problems,
European Journal of Operational Research 84 (1995) 599-617.

[4] J.E. Beasley, An exact two-dimensional non-guillotine cutting
tree search procedure, Operations Research 33 (1985) 49-64.

[5] J.E. Beasley, A population heuristic for constrained two-
dimensional non-guillotine cutting, European Journal of Oper-
ational Research 156 (2004) 601-627.

[6] A. Caprara, M. Monaci, On the two-dimensional Knapsack
problem, Operations Research Letters 32 (2004) 5-14.

[7] N. Christofides, C. Whitlock, An algorithm for two-dimensional
cutting problems, Operations Research 25 (1977) 30-44.

[8] S.P. Fekete, J. Schepers, On more-dimensional packing III:
Exact Algorithms, Report 97290 available from the first author
at Department of Mathematics, Technical University of Berlin,
Germany (1997), revised (2000).

[9] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publish-
ers, Boston, 1997.

[10] E. Hadjiconstantinou, N. Christofides, An exact algorithm for
general, orthogonal, two-dimensional knapsack problems, Eu-
ropean Journal of Operational Research 83 (1995) 39-56.

[11] P. Healy, M. Creavin, A. Kuusik, An optimal algorithm for
placement rectangle, Operations Research Letters 24 (1999) 73-
80.

[12] E. Hopper, B.C.H. Turton, An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem,
European Journal of Operational Research 128 (2001) 34-57.

[13] S. Jakobs, On genetic algorithms for the packing of polygons,
European Journal of Operational Research 88 (1996) 165-181.

[14] K.K. Lai, J.W.M. Chan, Developing a simulated annealing algo-
rithm for the cutting stock problem, Computers and Industrial
Engineering 32 (1997) 115-127.

[15] K.K. Lai, J.W.M. Chan, A evolutionary algorithm for the rectan-
gular cutting stock problem, International Journal of Industrial
Engineering 4 (1997) 130-139.

[16] T.W. Leung, C.H. Yung, M.D. Troutt, Applications of genetic
search and simulated annealing to the two-dimensional non-
guillotine cutting stock problem, Computers and Industrial
Engineering 40 (2001) 201-214.

[17] T.W. Leung, C.H. Yung, M.D. Troutt, Application of a mixed
simulated annealing-genetic algorithm heuristic for the two-
dimensional orthogonal packing problem, European Journal of
Operational Research 145 (2003) 530-542.

[18] G. Scheithauer, J. Terno, Modeling of packing problems, Opti-
mization 28 (1993) 63-84.

[19] G. Scheithauer, LP-based bounds for the Container and Multi-
Container Loading Problem, International Transactions in Op-
erations Research 6 (1999) 199-213.

[20] R.D. Tsai, E.M. Malstrom, H.D. Meeks, A two-dimensional
palletizing procedure for warehouse loading operations, IIE
Transactions 20 (1988) 418-425.

[21] P.Y. Wang, Two algorithms for constrained two-dimensional
cutting stock problems, Operations Research 31 (1983) 573-
586.

[22] Y.L. Wu, W. Huang, S.C. Lau, C.K. Wong, G.H. Young, An
effective quasi-human based heuristic for solving rectangle
packing problem, European Journal of Operational Research
141 (2002) 341-358.

Francisco Parrẽno et al. 427

Source of problem I Problem size Beasley’s GRASP TABU Optimal CPU time (seconds)
(L,W) m M solution solution solution solution Beasley GRASP TABU

Beasley [4] 1 (10, 10) 5 10 164 164 164 164 0,02 0,00 0,06
2 (10, 10) 7 17 230 230 230 230 0,16 0,00 0,00
3 (10, 10) 10 21 247 247 247 247 0,53 0,00 0,00
4 (15, 10) 5 7 268 268 268 268 0,01 0,00 0,00
5 (15, 10) 7 14 358 358 358 358 0,11 0,00 0,00
6 (15, 10) 10 15 289 289 289 289 0,43 0,00 0,00
7 (20, 20) 5 8 430 430 430 430 0,01 0,00 0,00
8 (20, 20) 7 13 834 834 834 834 3,25 0,77 0,16
9 (20, 20) 10 18 924 924 924 924 2,18 0,00 0,05

10 (30, 30) 5 13 1452 1452 1452 1452 0,03 0,00 0,00
11 (30, 30) 7 15 1688 1688 1688 1688 0,60 0,05 0,00
12 (30, 30) 10 22 1801 1865 1865 1865 3,48 0,05 0,06

Hadjiconstantinou 3 (30, 30) 7 7 1178 1178 1178 1178 0,03 0,000,00
and Christofides [10] 11 (30, 30) 15 15 1270 1270 1270 1270 0,04 0,00 0,00
Wang [21] (70, 40) 19 42 2721 2726 2726 2726 6,86 0,77 0,11
Christofides and Whitlock [7] 3 (40, 70) 20 62 1720 1860 1860 1860 8,63 0,39 0,06
Fekete and Scheppers [8] 1 (100, 100) 15 50 27486 27589 27718 27718 19,71 2,31 0,05

2 (100, 100) 30 30 21976 21976 22502 22502 13,19 4,17 2,14
3 (100, 100) 30 30 23743 23743 24019 24019 11,46 3,68 3,40
4 (100, 100) 33 61 31269 32893 32893 32893 32,08 0,00 0,66
5 (100, 100) 29 97 26332 27923 27923 27923 83,44 0,00 0,00

Mean percentage of deviation from optimum 1,21% 0,19% 0,00% 8,87 0,58 0,32
Number of optimal solutions (out of 21) 13 18 21

TABLE II

Computational results – Problems from literature

Mean percentages of deviation from knapsack upper bound
m Q* M Beasley’s GRASP TABU CPU time (seconds)

solution solution solution Beasley GRASP TABU
40 1 40 7,77 6,97 6,55 13,57 2,33 10,97

3 120 3,54 2,22 1,95 47,43 6,62 14,20
4 160 3,24 1,81 1,65 63,30 4,44 18,26

50 1 50 5,48 4,80 4,85 14,60 4,71 15,49
3 150 2,35 1,50 1,27 59,27 7,05 22,50
4 200 2,63 1,18 0,96 80,07 5,34 18,19

100 1 100 2,26 1,51 1,50 27,20 5,36 38,79
3 300 1,27 0,47 0,31 119,47 9,41 32,11
4 400 1,06 0,26 0,18 175,10 6,99 19,67

150 1 150 1,31 0,89 0,84 40,60 5,53 54,90
3 450 0,60 0,14 0,07 190,53 11,71 31,76
4 600 0,92 0,11 0,05 323,83 6,75 19,87

250 1 250 0,88 0,51 0,45 76,70 5,27 90,07
3 750 0,57 0,04 0,01 439,47 13,89 13,70
4 1000 0,39 0,03 0,00 693,67 6,65 4,50

500 1 500 0,26 0,05 0,03 203,10 3,24 86,17
3 1500 0,18 0,00 0,00 1210,80 12,24 1,10
4 2000 0,18 0,00 0,00 1790,83 1,15 0,84

1000 1 1000 0,09 0,00 0,00 667,23 1,01 7,80
3 3000 0,07 0,00 0,00 3318,47 6,53 1,54
4 4000 0,07 0,00 0,00 4840,57 0,29 1,19

Type I 1,64 1,04 0,95 558,11 5,13 19,61
Type 2 1,70 1,14 1,06 668,41 5,90 23,84
Type 3 1,66 1,03 0,94 830,02 7,28 32,56
All 1,67 1,07 0,98 685,51 5,91 25,34

TABLE III

Computational results– Large random problems.

428 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Source of I Problem size GRASP TABU Optimal CPU time
problem (L,W) m M solution solution solution GRASP TABU

Lai and Chan [14] 1 (400,200) 9 10 80000 80000 80000 0,00 0,00
2 (400,200) 7 15 79000 79000 79000 0,00 0,02
3 (400,400) 5 20 154600 160000 160000 4,12 0,38

Jakobs [13] 1 (70,80) 14 20 5447 5600 5600 10,16 1,89
2 (70,80) 16 25 5455 5540 5600 15,44 16,88
3 (120,45) 22 25 5328 5400 5400 12,57 0,42
4 (90,45) 16 30 3978 4050 4050 10,28 1,97
5 (65,45) 18 30 2871 2925 2925 14,94 1,53

Leung et al. [17] 1 (150,110) 40 40 15856 16280 16500 90,52 52,36
2 (160,120) 50 50 18628 19044 19200 132,26 63,95

Hopper and Turton [12] 1-1 (20,20) 16 16 400 400 400 0,94 0,42
1-2 (20,20) 17 17 386 400 400 9,28 4,23
1-3 (20,20) 16 16 400 400 400 0,06 0,95
2-1 (40,15) 25 25 590 600 600 19,44 0,44
2-2 (40,15) 25 25 597 600 600 17,36 4,16
2-3 (40,15) 25 25 600 600 600 0,71 0,00
3-1 (60,30) 28 28 1765 1800 1800 26,80 4,91
3-2 (60,30) 29 29 1755 1800 1800 37,35 10,11
3-3 (60,30) 28 28 1774 1800 1800 30,92 5,52
4-1 (60,60) 49 49 3528 3580 3600 102,05 45,27
4-2 (60,60) 49 49 3524 3564 3600 110,79 68,59
4-3 (60,60) 49 49 3544 3580 3600 94,41 51,11
5-1 (60,90) 73 73 5308 5342 5400 212,07 135,97
5-2 (60,90) 73 73 5313 5361 5400 231,56 96,80
5-3 (60,90) 73 73 5312 5375 5400 231,24 82,06
6-1 (80,120) 97 97 9470 9548 9600 480,44 240,39
6-2 (80,120) 97 97 9453 9448 9600 465,49 399,86
6-3 (80,120) 97 97 9450 9565 9600 478,02 206,78
7-1 (160,240) 196 196 37661 38026 38400 3760,14 3054,38
7-2 (160,240) 197 197 37939 38145 38400 2841,96 1990,70
7-3 (160,240) 196 196 37745 37867 38400 3700,99 5615,75

Mean percentage of deviation from optimum 1,68% 0,42% 423,95392,19
Number of optimal solutions (out of 31) 5 16

TABLE IV

Computational results – Zero-waste problems

Source of problem I Problem size Beasley’s GRASP TABU Upper CPU time (seconds)
(L,W) m M solution solution solution bound Beasley GRASP TABU

Beasley [4] 1 (10, 10) 5 10 164 164 164 164 0,02 0,00 0,00
2 (10, 10) 7 17 225 225 225 230 5,53 0,71 1,70
3 (10, 10) 10 21 220 220 220 247 7,85 1,21 2,26
4 (15, 10) 5 7 268 268 268 268 0,01 0,00 0,00
5 (15, 10) 7 14 301 301 301 358 5,05 0,72 1,48
6 (15, 10) 10 15 265 252 265 289 6,81 1,81 1,59
7 (20, 20) 5 8 430 430 430 430 0,01 0,00 0,00
8 (20, 20) 7 13 819 819 819 834 6,54 1,32 1,76
9 (20, 20) 10 18 924 924 924 924 5,64 0,00 0,00

10 (30, 30) 5 13 n/f n/f n/f n/f 2,38 0,22 0,94
11 (30, 30) 7 15 1505 1518 1518 1688 2,96 1,59 2,52
12 (30, 30) 10 22 1666 1648 1672 1865 3,78 1,65 3,73

Hadjiconstantinou 3 (30, 30) 7 7 1178 1178 1178 1178 0,25 0,000,00
and Christofides [10] 11 (30, 30) 15 15 1216 1216 1216 1270 2,60 2,08 3,18
Wang [21] (70, 40) 19 42 2499 2700 2716 2726 6,36 1,48 6,16
Christofides and Whitlock [7] 3 (40, 70) 20 62 1600 1720 1720 1860 6,81 0,88 5,27
Fekete and Scheppers [8] 1 (100, 100) 15 50 25373 24869 25384 27718 11,86 3,73 25,27

2 (100, 100) 30 30 17789 19083 19657 22502 5,80 3,02 18,35
3 (100, 100) 30 30 n/f n/f n/f n/f 4,03 0,66 12,41
4 (100, 100) 33 61 27556 27898 28974 32893 20,42 2,80 37,46
5 (100, 100) 29 97 21997 22011 22011 27923 18,41 3,30 61,90

Mean percentage of deviation from upper bound 8,11% 7,36% 6,62% 5.86 1.29 8.86
n/f: No feasible solution found

TABLE V

Computational results – Doubly constrained problems

ORP3, VALENCIA. SEPTEMBER 6-10, 2005 429

Problem of time-consistency in model of Kyoto
Protocol realization

Maria Dementieva∗, Pekka Neittaanm̈aki∗ and Victor Zakharov†
∗University of Jyv̈askyl̈a/Dept. of Mathematical Information Technology

P.O. Box 35, 40014 University of Jyväskyl̈a, Finland
Email: madement@cc.jyu.fi

†St. Petersburg State University/Faculty of Applied Mathematics
Universitetskii prospekt 35, Petergof, St. Petersburg, Russia 198504

Email: mcvictor@icape.nw.ru

Abstract— In this paper we consider a multistage co-
operative model of the Kyoto Protocol realization. An
important problem in dynamic cooperative games is time-
consistency of a solution. Time-consistency provides the
optimality of the solution at any moment of the process
with respect to relevant initial states. Otherwise, the
absence of time-consistency in the optimality principle
involves the possibility that the previous “optimal” decision
are abandoned at some current moment of time, thereby
making meaningless the problem for seeking an optimal
control. This is why particular emphasis is placed on the
construction of time-consistent optimality principles. We
use two different approaches to this problem and apply
them in real-life cooperative game.

Keywords— Game theory, flexibility mechanisms, envi-
ronment.

I. I NTRODUCTION

In this work we construct multistage cooperative
model of the Kyoto Protocol realization and suggest
time-consistent solutions to numerical examples with
three country groups.

Without a doubt, climate change is the first among
the global environmental threats to civilization at the
beginning of the XXI Century. The importance of this
problem is demonstrated by the adaptation costs the
global community pays to protect itself from a growing
number of natural disasters. The United Nations Frame-
work Convention on Climate Change was signed at the
World Summit on the Environment and Development
in Rio de Janeiro in 1992, and the Kyoto Protocol to
the Convention was adopted in 1997 [15]. The Kyoto
Protocol proposes six innovative “mechanisms:” joint
implementation, clean development, emission trading,
joint fulfilment, banking and sinks. The mechanisms aim
to reduce the costs of curbing emissions by allowing
Parties (Party is a term of Kyoto Protocol and means

a country, or group of countries, that has ratified the
Kyoto Protocol) to pursue opportunities to cut emissions
more cheaply abroad than at home. The cost of curbing
emissions varies considerably from region as a result
of differences in, for example, energy sources, energy
efficiency and waste management. It makes economic
sense to cut emissions where it is cheapest to do so,
given that the impact on the atmosphere is the same.

The Kyoto protocol defines six flexibility mechanisms
and three of them have the following sense: “joint imple-
mentation” provides for Annex B Parties (mostly highly
developed industry countries) to implement projects that
reduce emission, or remove carbon from the air, in other
Annex B Parties, in return for emission reduction units
(ERUs); the “clean development” mechanism provides
for Annex B Parties to implement projects that reduce
emissions in non-Annex B Parties, in return for certified
emission reductions (CERs), and assist the host Parties
in achieving sustainable development and contributing
to the ultimate objective of the Convention; “emission
trading” provides for Annex B Parties to acquire units
from other Annex B Parties. The emission reduction
units and certified emission reductions generated by the
flexibility mechanisms can be used by Annex B Parties
to help meet their emission targets.

That flexibility mechanisms are the base of the cooper-
ation because joint implementation, clean development,
and emission trading comprehend that Parties work to-
gether and receive common “benefit” (emission reduc-
tion), which should be allocated fairly. It is natural to
use the dynamic cooperative theory to model the Kyoto
Protocol realization [3]. For other models connected with
the flexibility mechanisms of the Kyoto Protocol see [1],
[5], [6], [10], [12], [13].

430 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

II. PRELIMINARIES

In this section we give a preliminary information and
basic definitions.

Let us denote a division of time periodt0 < t1 <
· · · < tm by T = {tr}

m
r=0, m ∈ IN. We call a pair(N, v)

a multistage cooperative game. HereN is a finite set of
players andv : 2N ×T 7→ IR is a characteristic function
of the game,v(∅, t) = 0 for all t ∈ T, v(S, tm) = 0
for all S ⊂ N . The sign(N, v(t∗)) means the subgame
at a momentt∗ ∈ T. We assume thatv(N, t) is the
decreasing function with respect tot.

A vector ξ = (ξ1, . . . , ξn) is called an imputation in a
cooperative game(N, v(t)) if its components satisfy the
following conditions

1) ξi ≥ v(i, t), ∀ i ∈ N, (1)

2)
∑

i∈N

ξi = v(N, t). (2)

A subsetC(N, v(t)) of imputation set is called the
core of cooperative game(N, v(t)) if all its elements
satisfy inequalities

∑

i∈S

ξi ≥ v(S, t), ∀S ⊂ N. (3)

The setX0(t) is the solution set of the following linear
programming problem

minimize
∑

i∈N ξi, (4)

subject to
∑

i∈S ξi ≥ v(S, t), S ⊂ N, S 6= N.(5)

Let Y 0(t) be the union

Y 0(t) =
⋃

ξ0∈X0(t)

Con(ξ0) =
⋃

ξ0∈X0(t)

{ξ|ξ ≥ ξ0}.

Now let us redefine some solution concepts for a mul-
tistage cooperative game(N, v) usingY 0(t). We call a
set

SC(v(t), ξ0(t)) =
{

ξ ∈ Con(ξ0(t))|
∑

i∈N

ξi = v(N, t)
}

subcore of the game(N, v(t)) with respect toξ0(t) from
X0(t); the set

GSC(N, v(t)) =
⋃

ξ0(t)∈X0(t)

SC(v(t), ξ0(t))

=
{

ξ ∈ Y 0(t)|
∑

i∈N

ξi = v(N, t)
}

is called grand subcore of the game(N, v(t)); and the
set

TCGSC(N, v(tk))

=
{

ξ ∈
m
⋂

r=k

Y 0(tr)|
∑

i∈N

ξi = v(N, tk)
}

is time-consistent grand subcore of the game(N, v(tk)),
tk ∈ T. Clearly, the grand subcore is a subset of the
core in the balanced TU-games. Moreover, the subcore
and the grand subcore are non-empty if and only if the
game is balanced [18].

To formalize the notion of time-consistency for coop-
erative games let us introduce the following definitions
[11].

Definition 2.1: The solution conceptφ(t) of a multi-
stage cooperative game(N, v) is called time-consistent
if for every ξ ∈ φ(t) and for all t∗ ∈ T there exists a
vectorα(t∗) ≥ 0, such thatξ − α(t∗) ∈ φ(t∗).

Definition 2.2: Suppose thatξ = (ξ1, . . . , ξn) ∈
φ(t0). Any matrixα = {αik}, i = 1, . . . , n, k = 0, . . . , l,
such that

ξi =

l
∑

k=0

αik, αik ≥ 0,

is called imputation distribution procedure (IDP).
The necessary and sufficient condition for time-

consistency of an imputation from the grand subcore is
the following [19].

Theorem 2.3: In a balanced multistage game(N, v),
t ∈ T, a vector ξ(t0) ∈ GSC(N, v(t0)) is time-
consistent if and only ifξ(t0) ∈ Y 0(t) for all t ∈ T.

Let us consider now an algorithm based on the max-
imization of total payoffs at every step. Assume that
the Theorem 2.3 is fulfilled for a multistage cooperative
game(N, v).

A. Algorithm

Let α(tk) be a total payoff vector at a period(tk, tm],
α(tk−1, tk) be a payoff vector at a momenttk, and
ṽ(N, tk) be a new guaranteed gain at a period[tk, tm].

We define the setZ0(tk) as a solution set of the
following minimization problem

minimize
∑

i∈N

ωi, (6)

subject to ω ∈
m
⋂

r=k

Y 0(tr). (7)

Remark that for alltk ∈ T there exists a solution of the
problem (6), (7). It ensues by construction ofY 0(tk).

Initial step. We choose a vector ξ(t0) ∈
TCGSC(N, v(t0)). The players will receive this
imputation by the end of the game (the momenttm).
We set

α(t0) := ξ(t0), ṽ(N, t0) := v(N, t0).

Step numberk. At this step we find a non-negative
payoff vector to the players at the momenttk with

Maria Dementieva et al. 431

respect to the vectorα(tk−1) and ṽ(N, tk−1) from the
previous step.

Consider a setZ0(tk). If for a vectorω ∈ Z0(tk) we
have

∑

i∈N ωi ≤ v(N, tk), then we set

α(tk) := ξ(tk), and ṽ(N, tk) := v(N, tk).

Here ξ(tk) ∈ TCGSC(N, v(tk)) and ξ(tk) ≤ ξ(tk−1).
Otherwise we set

α(tk) := ω, and ṽ(N, tk) :=
∑

i∈N

ωi.

Hereω is a vector fromZ0(tk). Finally, we set

α(tk−1, tk) := α(tk−1) − α(tk).

The last step.By the definition of a multistage game
we have

α(tm) := (0, 0), ṽ(N, tm) := 0,

and
α(tm−1, tm) = α(tm−1).

The existence of the feasibleα(tk+1) with respect to
α(tk) is proved in [19]. As the result of the algorithm we
have the non-negative payoff sequence{α(tk−1, tk)}

m
k=1

(i.e. the imputation distribution procedure), which guar-
antees the time-consistent solutionξ(t0).

It should also be stated that this method works if
there is at least a time-consistent solution and it helps to
construct IDP providing this solution. In the following
subsection we consider the regularization of a balanced
multistage cooperative game without time-consistent im-
putations in the grand subcore.

B. MDM-reduced game

In [4] the method of minimal reduction is introduced
to provide time-consistent solution. The distinctive of
this regularization method is the use of reduced games
to change the player set at the moment when the property
of time-consistency is broken. That is at such a moment
t∗ ∈ T the corresponding imputationξ(t∗) does not
belong to the grand subcoreGSC(N, v(t∗)). We find
the minimal coalitionK ⊂ N such thatξN\K(t∗) ∈
GSC(N \ K, vK

ξ0(·)). Here (N \ K, vK
ξ0(·)) is a modi-

fication of the Davis–Maschler reduced game [2]. In a
multistage cooperative game(N, v), t ∈ T, for a given
removing coalitionK ⊂ N , ξ0(t) ∈ X0(N, v(t)) and
a payoff vectorξ(t) the characteristic function of the
MDM-reduced game is the following

vK
ξ0(·) = vK

ξ0(S, ξK(t))

=

0, if S = ∅,
v(N, t) −

∑

j∈K ξj(t), if S = N \ K,

maxR⊆K{v(S ∪ R, t) −
∑

j∈R ξ0
j (t)}, otherwise.

In particular, the minimal coalition depends on the vector
ξ0(t∗). For details see [4].

III. K YOTO PROTOCOL MODEL

In this section we describe a cooperative model of re-
lations of countries (or groups of countries) under Kyoto
Protocol. The players pursue two mail goals: to achieve
the required amount of emission reduction units and
to decrease the reduction costs. The participants of the
corresponding projects can get significant income from
realization of the flexibility mechanisms. To define the
cooperative model we should set a method of calculation
the characteristic functionv of the game. We assume that
v(S), whereS is a coalition of players, is the difference
between the sum of the personal costs of players, when
they act individually, and total cost of coalitionS under
co-operation. Here player is Party in Kyoto Protocol. In
the model we use the following notations

Ki — emission quota of playeri;
ce
i — price of emission unit for playeri;

cq
i — price of emission unit on account of a

pollution quota of playeri;
∆Ei — required emission reduction of playeri;
∆Li — ecological sinks1 of player i;
∆Ki — a fraction of pollution quota that playeri

wants to use.

Let us consider a game with two players. The individual
cost of playeri is

H0
i = ce

i (∆Ei − ∆Li − ∆Ki). (8)

Under co-operation a more developed country (player
1) can invest money into the emission reduction in the
territory of another country (player2). That is,ce

1 > ce
2

andcq
1 > cq

2. Let us assume that the reduction costs are

H1 = ce
2 · δ1(∆E1 − ∆L1 − ∆K1)

‘ + cq
2 · δ2(∆E1 − ∆L1 − ∆K1)

+ ce
1(1 − δ1 − δ2)(∆E1 − ∆L1 − ∆K1); (9)

H2 = ce
2(∆E2 − ∆L2 − ∆K2

+ δ2(∆E1 − ∆L1 − ∆K1))

− ce
2 · δ1(∆E1 − ∆L1 − ∆K1)

− cq
2 · δ2(∆E1 − ∆L1 − ∆K1). (10)

Here δ1 and δ2 are parameters. It is possible to specify
that parameters in different ways by some appropriate
limits, for example byQ1 (the limit of emission unites

1The Protocol allows industrialized countries to meet part of their
emissions targets through activities that absorb CO2 so-called carbon
sinks. [17]

432 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

that the player1 wants to buy from the player2 at
the pricecq

2 on account of quotaK2), Q2 (the limit of
emission unites that the player2 wants to sell to the
player 1 on account of quotaK2), and M1 (financial
limit of the player1) in the following way

min{Q1, Q2} = δ2(∆E1 − ∆L1 − ∆K1) := Q,

M1 ≥ ce
2δ1(∆E1 − ∆L1 − ∆K1).

From (8)–(10) we have the value of characteristic func-
tion for the coalition of two players

v({1, 2}) = H0
1 + H0

2 − H1 − H2

= (∆E1 − ∆L1 − ∆K1)(δ1c
e
1 + δ2c

e
1 − δ2c

q
2)

= (∆E1 − ∆L1 − ∆K1)(δ1c
e
1 + δ2(c

e
1 − cq

2)). (11)

In the case of three players’ joint action we calculate

v({1, 2, 3}) = H0
1 + H0

2 + H0
3 − H1 − H2 − H3. (12)

We assume thatce
1 > ce

2 > ce
3 and cq

1 > cq
2 > cq

3. Then
the player1’s cost under cooperation is

H1 = cq
3 · δ2(13)(∆E1 − ∆L1 − ∆K1)

+ ce
3δ1(13)(∆E1 − ∆L1 − ∆K1)

+ cq
2 · δ2(12)(∆E1 − ∆L1 − ∆K1)

+ ce
3 · δ1(12)(∆E1 − ∆L1 − ∆K1)

+ ce
1(1 − δ2(13) − δ1(13) − δ2(12) − δ1(12))

· (∆E1 − ∆L1 − ∆K1). (13)

The first line of (13) is the cost due to the realization of
the flexibility mechanisms between the players1 and3,
the second line is the cost due to the realization of the
flexibility mechanisms between the players1 and2, and
the third is the cost of emission reduction in the territory
of player 1. Using the limitsQ1(13), Q3(13), Q1(12),
Q2(12), Q2(23), Q3(23), M1 andM2 defined as before,
and the following notations

min{Q1(13), Q3(13)}

= δ2(13)(∆E1 − ∆L1 − ∆K1) := Q(13),

min{Q1(12), Q2(12)}

= δ2(12)(∆E1 − ∆L1 − ∆K1) := Q(12),

min{Q2(23), Q3(23)}

= δ2(23)(∆E2 − ∆L2 − ∆K2 + Q(12)) := Q(23),

M1 ≥ce
3δ1(13)(∆E1 − ∆L1 − ∆K1)

+ ce
3 · δ1(12)(∆E1 − ∆L1 − ∆K1),

M2 ≥ ce
3 · δ1(23)(∆E2 − ∆L2 − ∆K2 + Q(12)),

let us write down the costs of the players2 and3 under
cooperation

H2 = cq
3 · δ2(23)(∆E2 − ∆L2 − ∆K2 + Q(12))

+ ce
3 · δ1(23)(∆E2 − ∆L2 − ∆K2 + Q(12))

+ ce
2(1 − δ2(23) − δ1(23))

· (∆E1 − ∆L1 − ∆K1 + Q(12))

− cq
2 · Q(12) − ce

2 · δ1(12)(∆E2 − ∆L2 − ∆K2),
(14)

H3 =

ce
3(∆E3 − ∆L3 − ∆K3 + Q(13) + Q(23))−cq

3 · Q(13)

− ce
3 · δ1(13)(∆E1 − ∆L1 − ∆K1)−cq

3 · Q(23)

− ce
3 · δ1(23)(∆E2 − ∆L2 − ∆K2 + Q(12)). (15)

Consequently from (12)–(15) and (8) we calculate the
valuev({1, 2, 3}).

By analogy to the previous formulas we can define
the characteristic function for any number of players.
The valuesv({i}) = 0 for every playeri conclude the
construction of the characteristic function.

IV. I MPUTATION DISTRIBUTION PROCEDURES FOR

KYOTO PROTOCOL MODEL

In this section we consider two multistage cooperative
games corresponding to the model of realization of flex-
ibility mechanisms. The characteristic functionv(S, t)
is the guaranteed economy in million dollars due to the
co-operation (joint implementation, clean development
and emission trading) during 5 years. The data for
calculations were taken from [8] and [16]. HereS is
a coalition of Parties (groups of Parties) in co-operation
on a period[t, T]. Characteristic function values depend
on a set of parameters: limitations of the emission
reduction investment, emission quota,etc. Depending
on the parameters we have the different variants of the
game. In the following examples we have three players:
1 is European Union (EU),2 is the new members of EU
(EU-A), and3 is Russian Federation.

A. Example with a time-consistent solution

Let us consider 3-person multistage cooperative game
(the characteristic function is in Table I).

The setsX0(t), t ∈ T, are the following

X0(t0) = {ξ0(t0) = (54050, 14100, 25850)},

X0(t1) = {ξ0(t1) = (35250, 11750, 23500)},

X0(t2) = {ξ0(t2) = (20000, 10000, 17000)},

X0(t3) = {ξ0(t3) = (21000, 7000, 10000)},

Maria Dementieva et al. 433

TABLE I

CHARACTERISTIC FUNCTION OF THE MULTISTAGE COOPERATIVE

GAME.

t v({1, 2, 3}, t) v({2, 3}, t) v({1, 3}, t) v({1, 2}, t)
t0 94000 39950 79900 68150
t1 70500 35250 58750 47000
t2 47000 27000 37000 30000
t3 38000 17000 31000 28000
t4 22500 10480 17250 14730
t5 0 0 0 0

X0(t4) = {ξ0(t4) = (10750, 3980, 6500)},

X0(t5) = {ξ0(t5) = (0, 0, 0)}.

At the momentstk, k = 0, 1, 2, 3, 5, the grand subcore
is equal to the setX0(tk)

GSC(N, v(t)) = X0(t)

and the unique imputationξ(t0) = ξ0(t0) is time-
consistent (see [19, Theorem 2.1]).

Let us now apply the algorithm to construct IDP for
this game.

Initial step. We set

α(t0) = ξ(t0) = (54050, 14100, 25850).

Step 1.We set

α(t1) = ξ(t1) = (35250, 11750, 23500)

and
α(t0, t1) = (18800, 2350, 2350).

Step 2.The solution of the problem (6), (7) is the
vectorω = (21000, 1000, 17000). The sum ofω’s com-
ponents are greater thanv(N, t2), hence we set

α(t2) = ω, ṽ(N, t2) = 48000,

α(t1, t2) = (14250, 1750, 6500).

Step 3.At this stepω = ξ0(t3), hence we can set

α(t3) = ξ(t3) = (21000, 7000, 10000)

and the payoff vector is

α(t2, t3) = (0, 3000, 7000).

Step 4.We should findα(t4) ∈ GSC(N, v(t4)) such
that α(t4) ≤ α(t3). Let us choose

α(t4) = ξ0(t4)+(400, 470, 400) = (11150, 4450, 6900),

then
α(t3, t4) = (9850, 2550, 3100).

TABLE II

CHARACTERISTIC FUNCTION OF THE MULTISTAGE COOPERATIVE

GAME.

t v({1, 2, 3}, t) v({2, 3}, t) v({1, 3}, t) v({1, 2}, t)
t0 94000 39950 79900 68150
t1 70500 35250 58750 47000
t2 47000 41125 21150 22325
t3 33950 15680 30520 20300
t4 18800 6800 15680 10620
t5 0 0 0 0

The last step.Hereα(t5) = (0, 0, 0) and

α(t4, t5) = α(t4) = (11150, 4450, 6900).

Consequently, the corresponding payoff trajectory is

54050
14100
25850

 →

35250
11750
23500

 →

21000
10000
17000

→

21000
7000
10000

 →

11150
4450
6900

 →

0
0
0

 (16)

and the imputation distribution procedureα is

α =

0 18800 14250 0 9850 11150
0 2350 1750 3000 2550 4450
0 2350 6500 7000 3100 6900

This IDP provides the time-consistent imputationξ(t0)
by non-negative payoffs to every player at every step of
the game.

B. Example without time-consistent solution

In this part we use a reduced game to construct
the imputation distribution procedure in the multistage
cooperative game presented in Table II.

The setsX0(t), t ∈ T, are the following

X0(t0) = {ξ0(t0) = (54050, 14100, 25850)},

X0(t1) = {ξ0(t1) = (35250, 11750, 23500)},

X0(t2) = {ξ0(t2) = (1175, 21150, 19975)},

X0(t3) = {ξ0(t3) = (17570, 2730, 12950)},

X0(t4) = {ξ0(t4) = (9710, 910, 5890)},

X0(t5) = {ξ0(t5) = (0, 0, 0)}.

The unique solutionξ(t0) ∈ GSC(N, v(t0)) is not
time-consistent because there is no vectorξ0(t) ∈ X0(t)
such thatξi(t0) ≥ ξ0

i (t) for all i ∈ N andt ∈ T (see [19,
Theorem 2.1]). The property of time-consistency is vio-
lated at the momentt = t2. Let us choose the vectorθ =

434 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

(18000, 9000, 20000) instead ofξ(t2) ∈ GSC(N, v(t2)).
The vectorθ does not belong to the grand subcore of
the subgame(N, v(t2)) due to the player2; we call
him a “disturbing” player. Let us create the MDM-
reduced game({1, 3}, v

{2}
ξ0), t ∈ {t2, t3, t4, t5}. To do

this we fix the vectorsξ(t3) = (17770, 3030, 13150)
andξ(t4) = (10510, 1600, 6690). Then the characteristic
function of the reduced game is the following

v
{2}
ξ0 ({1, 3}, θ, t2) = v(N, t2) − θ2 = 38000,

v
{2}
ξ0 ({1}, θ, t2) = v({1, 2}, t2) − ξ0

2(t2) = 1175,

v
{2}
ξ0 ({3}, θ, t2) = v({2, 3}, t2) − ξ0

2(t2) = 19875;

v
{2}
ξ0 ({1, 3}, ξ(t3)) = v(N, t3) − ξ2(t3) = 30920,

v
{2}
ξ0 ({1}, ξ(t3)) = v({1, 2}, t3) − ξ0

2(t3) = 17570,

v
{2}
ξ0 ({3}, ξ(t3)) = v({2, 3}, t3) − ξ0

2(t3) = 12950;

v
{2}
ξ0 ({1, 3}, ξ(t4)) = v(N, t4) − ξ2(t4) = 17200,

v
{2}
ξ0 ({1}, ξ(t4)) = v({1, 2}, t4) − ξ0

2(t4) = 9710,

v
{2}
ξ0 ({3}, ξ(t4)) = v({2, 3}, t4) − ξ0

2(t4) = 5890.

In the MDM-reduced multistage game the players 1
and 3 realize the solution from the grand subcore of this
game. The corresponding payoff trajectory can be, for
example, the following

54050
14100
25850

 →

35250
11750
23500

 →

18000
9000
20000

→

17770
9000
13150

 →

10510
9000
6900

 →

0
0
0

and the imputation distribution procedureα is

α =

0 18800 17250 230 7260 10510
0 2350 2750 0 0 9000
0 2350 3500 6850 6250 6200

 .

Decision maker should fix the moment when the player
2 can get the payoff of 9000. For example, it can
be the momentt = t5. This method combines both
classical methods of regularization — regularization of
the optimality principle and delays of total payoffs. It
constructs an IDP in the time-inconsistent case.

V. CONCLUSION

In this paper we considered two different approaches
to the problem of time-consistency in the real-life mul-
tistage cooperative game. The first method let us to
construct the imputation distribution procedure providing

a time-consistent solution from the grand subcore of the
game. The second method works if there is no time-
consistent imputations in a balanced game and it helps
to regularize the game and the optimality principle. We
applied both methods to the problem connected with
Kyoto Protocol realization.

REFERENCES

[1] L. Barreto and S. Kypreos, “Emissions trading and technology
deployment in an energy-systems “bottom-up” model with tech-
nology learning,”European Journal of Operational Research
vol. 158, no. 1, pp. 243–261, 2004.

[2] M. Davis and M. Maschler, “The kernel of a cooperative game,”
Naval Research Logistics Quarterly, vol. 12, pp. 223–259, 1965.

[3] M. Dementieva, P. Neittaanm̈aki and V. Zakharov, “Time-
consistent decision making in models of co-operation,” Proc.
4th European Congress on Computational Methods in Applied
Sciences and Engineering (ECCOMAS 2004), Jyväskyl̈a, Fin-
land, 2004, vol. 2, pp. 435.

[4] M. Dementieva, P. Neittaanm̈aki and V. Zakharov, “Time-
consistency and the problem of minimal reduction,” inGame
Theory and Application, L. Petrosjan and V. Mazalov, Eds.,
vol. 10, 2004.

[5] M. Finus, “Game theory and international environmental
co-operation: a survey with an application to the Kyoto
Protocol,” Fondazione Eni Enrico Mattei Working paper
NOTA DI LAVORO 86.2000, 2000. Available online at
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm.

[6] F. Forǵo, J. F̈ulöp and M. Prill, “Game theoretic models for
climate change negotiations,”European Journal of Operation
Research, vol. 160, pp. 252–267, 2005. Available online at
http://www.sciencedirect.com.

[7] D.B. Gillies, Some theorems onn-person games. Ph.D. thesis,
Princeton University Press, Princeton, NJ, 1953.

[8] M. Grubb, Ch. Vrolijk and D. Brack,The Kyoto protocol —
a guide and an assessment. Royal Institute of International
Affairs, London, 1999.

[9] L. Petrosjan, “Stability of solutions inn-person differential
games,”Bulletin of Leningrad University, vol. 19, pp. 46–52,
1977. (in Russian)

[10] L.A. Petrosjan and G. Zaccour, “Time-consistent Shapley value
allocation of pollution cost reduction,”Journal of Economic
Dynamics& Control, vol. 27, no. 3, pp. 381–398, 2003.

[11] L. A. Petrosjan and N. A. Zenkevich,Game Theory, World
Scientific Publishing, 1996.

[12] St. Pickl, “Convex games and feasible sets in control theory,”
Mathematical Methods of Operations Research, vol. 53, no. 1,
pp. 51–66, 2001.

[13] St. Pickl and G.-W. Weber, “Optimization of a time-discrete
nonlinear dynamical system from a problem of ecology. An
analytical and numerical approach,”Vychislitelnye Tekhnologii,
vol. 6, no. 1, pp. 43–51, 2001. (in Russian)

[14] M. Simaan and J.B.Cruz, “On the Stackelberg strategy in
non-zero sum games,”Journal of Optimization Theory and
Applications, vol. 11, pp. 533–535, 1973.

[15] http://unfccc.int/resource/docs/convkp/kpeng.pdf
[16] http://www.wwf.ru, http://www.unfccc.int, http://www.ipcc.ch
[17] http://europa.eu.int/comm/environment/press/bio00172.htm
[18] V. Zakharov and O-Hun Kwon, “Selectors of the core and

consistency properties,” inGame Theory and Applications, L.
Petrosjan and V. Mazalov, Eds., vol. 4, pp. 237–250, 1999.

[19] V. Zakharov and M. Dementieva, “Multistage cooperative
games and problem of time-consistency,”International Game
Theory Review, vol. 6, no. 1, pp. 1–14, 2004.

